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Abstract 

Background: The course of the COVID-19 pandemic has been driven by several dynamic behavioral, 

immunological, and viral factors. We used mathematical modeling to explore how the concurrent 

reopening of schools, increasing levels of hybrid immunity, and the emergence of the Omicron variant 

affected the trajectory of the pandemic in India, using Andhra Pradesh (pop: 53 million) as an exemplar 

Indian state.  

 

Methods: We constructed an age- and contact-structured compartmental model that allows for individuals 

to proceed through various states depending on whether they have received zero, one, or two doses of the 

COVID-19 vaccine. We calibrated our model using results from another model (ie, INDSCI-SIM) as well 

as available context-specific serosurvey data. The introduction of the Omicron variant is modelled 

alongside protection gained from hybrid immunity. We predict disease dynamics in the background of 

hybrid immunity coming from infections and an ongoing vaccination program, given prior levels of 

seropositivity from earlier waves of infection. We describe the consequences of school reopening on 

cases across different age-bands, as well as the impact of the Omicron (BA.2) variant.  

 

Findings: We show the existence of an epidemic peak in India that is strongly related to the value of 

background seroprevalence. As expected, because children were not vaccinated in India, re-opening 

schools increases the number of cases in children more than in adults, although in all scenarios, the peak 

number of active hospitalizations was never greater than 0.45 times the corresponding peak in the Delta 

wave before schools were reopened. We varied the level of infection induced seropositivity in our model 

and found the height of the peak associated with schools reopening reduced as background infection-

induced seropositivity increased from 20% to 40%. At reported values of seropositivity of 64% from 

representative surveys done in India, no discernable peak was observed. We also explored counterfactual 

scenarios regarding the effect of vaccination on hybrid immunity. We found that in the absence of 

vaccination, even at high levels of seroprevalence (>60%), the emergence of the Omicron variant would 

have resulted in a large rise in cases across all age bands by as much as 1.8 times. We conclude that the 

presence of high levels of hybrid immunity resulted in fewer cases in the Omicron wave than in the Delta 

wave. 

 

Interpretation: In India, decreasing prevalence of immunologically naïve individuals of all ages was 

associated with fewer cases reported once schools were reopened. In addition, hybrid immunity, together 

with the lower intrinsic severity of disease associated with the Omicron variant, contributed to low 

reported COVID-19 hospitalizations and deaths.  

 

Funding: World Health Organization, Mphasis 
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INTRODUCTION 

The first confirmed case of COVID-19 in India was documented on Jan 30, 2020. The initial epidemic 

wave of COVID-19 in India peaked in September 2020. Thereafter, cases decreased gradually until the 

middle of February 2021, when a second wave, driven by the emergence of the Delta variant, led to a 

sharp increase in cases. At the apex of the second epidemic wave, daily reported cases were significantly 

higher than the previous wave. By late April 2021, India had surpassed 2.5 million active cases, 

overtaking Brazil as the country with the second highest number of confirmed COVID-19 cases in the 

world after the US. 

 

Schools have remained mostly closed in India during the pandemic, in an attempt to slow or arrest 

transmission of the virus.1 During the first epidemic wave, school closures together with broader 

lockdown measures (eg, travel restrictions) likely contributed to low levels of transmission. However, as 

travel restrictions and physical distancing measures were relaxed, the effectiveness of keeping schools 

closed in India was been widely discussed. Many have argued that the epidemiological benefits of 

keeping schools closed has been outweighed by the significant impact on cognitive and social 

development of children. Schools in many states reopened by Aug 2021, as the Delta wave ended.   

 

India’s COVID-19 vaccination drive began on Jan 16, 2021. Vaccinations were initially targeted at 

frontline workers (eg, police, revenue officials, local government officials) and health-care workers, but 

the target population was broadened a month later to include the elderly (ie, >60 years) and those older 

than 45 years with comorbidities (eg, diabetes mellitus, coronary heart disease, or hypertension). In later 

phases, younger age-groups became eligible for vaccines, until all adults older than 18 years were eligible 

for vaccination by May 1, 2021. From Jan 3, 2022, children between 15-18 years have been eligible for 

COVID-19 vaccination. A third dose was approved for those older than 18 years from April 10, 2022.   

 

COVID-19 vaccines have been found to be extremely efficient in reducing severe cases, hospitalizations, 

and deaths.2–10 Mathematical modeling has indicated that vaccinating in an age descending manner11–13 is 

effective at reducing severe illness, hospitalizations, and deaths, even if the vaccine supply is limited. A 

major challenge with attaining high population vaccination coverage globally, has been vaccine hesitancy 

in some populations.14 Studies found substantially higher willingness to receive COVID-19 vaccines in 

low- and middle-income countries, including India, relative to most other high-income countries.15 

The trajectory of COVID-19 around the world has been marked by the appearance of multiple variants. 

On Nov 26, 2021, the World Health Organization (WHO) named a new variant of concern B.1.1.529, first 

discovered in South Africa, as the “Omicron” variant. The first case of Omicron (BA.1.1) in India was 

reported on Dec 3, 2021. By the beginning of January 2022, BA.1.1 accounted for 31% of reported 

sequences in the country. The BA.2.12.1 Omicron subvariant soon replaced BA.1.1 and was the dominant 

variant, with more than 90% of reported sequences in India in early 2022, largely due to its high 

transmissibility16–18 and its immune escape potential.19–21 As a result, even settings with high levels of 

immunity experienced Omicron-associated epidemic waves.  

Attempts to understand the trajectory of the COVID-19 pandemic in India, across multiple waves of the 

disease, have spurred the development of a number of compartmental models.12,22–25 Earlier models were 

constructed so as to be appropriate to immunologically naïve populations. However, preexisting levels of 

infection-associated seroprevalence as well as the relatively high population coverage of the vaccination 

program (eg, >80), mandate that current models now accommodate additional complexity. Using 

mathematical models, we aim to answer two specific questions: (1) why did India not see a large increase 

in cases following the reopening of schools in many states? and (2) why did the Omicron-associated third 

epidemic wave not have a significant impact on the population despite higher transmissibility and 

immune escape potential? We use data from the southern Indian state of Andhra Pradesh to address these 

two questions here.  
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METHODS 

 

Model 
Our approach extends the INDSCI-SIM model [insert reference here for PLOS Comp Bio paper once 

published]. Briefly, INDSCI-SIM is an age-stratified, contact-structured nine-compartment 

epidemiological compartmental model that has been used to provide a detailed analysis of the first wave 

of COVID-19 in India. The set of compartments that describes unvaccinated individuals in the model 

presented here is identical to that in the INDSCI-SIM model. In the original INDSCI-SIM model, a small 

number of parameters were chosen to vary with time while others were fixed. Time-dependence was 

extracted using Bayesian methods. To address undercounting, a bias factor, relating actual numbers of 

infected to those detected each day, was also incorporated into the INDSCI-SIM model. The numerical 

values of the constant parameters are shown in Tables 1-3. 

 
In our generalized model (Fig 1), individuals progress to different compartments based on whether they 

are unvaccinated, vaccinated with one dose, or vaccinated with two doses. Unvaccinated individuals 

progress through nine compartments upon infection: Susceptible (S) individuals who are infected move to 

the Exposed (E) compartment from which they can either become Asymptomatic Infected (IA) and then 

Recover (R), or become Pre-symptomatic Infected (IP), meaning that they will eventually exhibit 

symptoms. A certain fraction of Pre-symptomatic Infected individuals become Mildly Infected (IM) 

before recovering, while the remainder become Severely Infected (IS) and are eventually Hospitalized 

(H). A fraction of Hospitalized individuals eventually dies, moving to the Decedent (D) compartment, 

while the remaining recovers.  

 

The progression for vaccinated individuals is similar: individuals who have been Vaccinated but have not 

contracted the disease (V) can nevertheless be infected (ie, breakthrough infection) and move to the 

Vaccinated Exposed compartment (VE), from which they can either move to the Vaccinated 

Asymptomatic (VA) or Vaccinated Symptomatic (VS) compartments. The Vaccinated Asymptomatic, as 

well as a large fraction of the Vaccinated Symptomatic, recover. However, our model allows for a small 

fraction of Vaccinated Symptomatic individuals to die depending on age. A distinction is made between 

individuals who received their vaccine after having contracted the disease (the Recovered Vaccinated; 

RV) and those who contracted the disease after being vaccinated (the Vaccinated Recovered; VR) to 

account for the different levels of protection these trajectories might offer, especially where reinfections 

exist. Separate pathways of compartments exist for both one and two doses of the vaccine. Vaccine 

efficacy is reflected in the differential rates at which vaccinated individuals can get infected compared to 

unvaccinated individuals. Additionally, the fraction of infected individuals who progress to symptomatic 

or severe disease is lower for those in the vaccinated compartments. The parameters governing the disease 

progression are shown in Tables 1-3. We have used parameter values from the INDSCI-SIM model.26 

 

The population is divided into age bands grouped into 10-year intervals: 0-9, 10-19, 20-29, 30-39, 40-49, 

50-59, 60-69, 70-79, and 80+ years. Contacts between different age bands are differential, reflecting the 

social structure of the population. An age-specific contact matrix is used to account for the impact of non-

pharmaceutical interventions, including lockdowns and school closures. The contact matrix 𝐶𝑖𝑗 ultimately 

governs the force of infection on each age-band 𝑖 due to the age-band 𝑗.  

 

The parameter 𝛽, which governs the force of infection for every susceptible individual, is assumed to be 

the same for all individuals, independent of their vaccination status. The value of 𝛽 was obtained from 

simulations of the INDSCI-SIM model, where it is estimated using a Bayesian approach to match daily 

reported cases and deaths of Andhra Pradesh. This approach gives us a likely value of 𝛽, as well as a 

confidence interval. Our simulations are run for a range of 𝛽 within this interval, providing a band of 

potential disease trajectories. In addition, this quantity is further modulated by the relative intensity of 
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contacts between susceptible and different kinds of infectious individuals whose effect is simply specified 

here through factors of 𝜖. These values are obtained from the INDSCI-SIM simulations, and are held 

constant throughout the Delta wave. At the onset of Omicron, these values are reset to 1, indicating that 

both asymptomatic and symptomatic individuals are equally likely to infect susceptible individuals during 

the Omicron wave.  

 

To estimate the undercounting of daily cases, a bias factor of 11 and 22 is used for Andhra Pradesh before 

and after the Omicron wave, respectively. The first factor is taken from the INDSCI-SIM predictions for 

July 2021, while the second is an assumption based on the reduced levels of testing in the Omicron wave, 

where a good fraction of the population chose to remain untested or their test results were not reported, as 

home-based rapid antigen tests were more accessible to much of the population.27–29 

 

Initial conditions 

We begin all simulations of our model from Aug 1, 2021. The initial conditions for our simulation were 

obtained by running the INDSCI-SIM model from March 1, 2020, to Aug 1, 2021. Values in each 

compartment were then used as the initial condition for our vaccination model. India’s vaccination drive 

began on Jan16, 2021. From March 1, 2020 individuals above older than 60 years and individuals older 

than 45 years with comorbidities were eligible for vaccination, and on the 1st of April, this was relaxed to 

include all individuals above the age of 45. On the 1st of May, all individuals above the age of 18 were 

eligible for vaccination. Since the original INDSCI-SIM model did not implement vaccinations, it was 

necessary to estimate the number of individuals who had been vaccinated with either one or two doses. 

These numbers are obtained from covid19india.org. 

 

The INDSCI-SIM simulation provides a background infection-induced seropositivity of roughly 64%, 

close to the actual seropositivity measured in the serosurvey conducted from June to July 2021.30 When 

we use the term “seropositivity” in this paper to refer to our initial condition on Aug 1, 2021, we refer to 

the population prevalence of antibodies induced by infection, rather than both from infection and 

vaccination, a reasonable approximation at low levels of vaccination.  

 

In order to study the effect of different initial seropositivity levels, we also conducted simulations in 

which we adjusted the number of individuals in the susceptible and recovered compartments so that the 

total number of recovered matched the infection-induced seropositivity levels for which we aimed. For 

example, for seropositivity levels lower than 64%, an appropriate number of individuals was transferred 

from the recovered to the susceptible compartment, while the inverse was done for seropositivity levels 

greater than 64%.  

 

A constant fraction of the susceptible and recovered individuals, based on the vaccine coverage in our 

study region, were transferred from the Susceptible compartment to the Vaccinated (V1, V2) and 

Recovered Vaccinated (RV1, RV2) compartments, representing the fraction of people who had received 

vaccines by the simulation start date. These numbers were then divided among the first (V1, RV1) and 

second dose (V2, RV2) vaccine compartments based on the details of the vaccine coverage by the date of 

the simulation’s start. For example, 30% of the population of the state of Andhra Pradesh was vaccinated 

with at least one dose, and 10% with the second dose, by the Aug 1, 2021. Thus, we move 20% of all 

susceptible individuals to the V1 compartment and 10% to the V2 compartment. This is repeated for 

individuals in the recovered compartment, moving them to the RV1 and RV2 compartments, respectively. 

We ignore the number of individuals who were infected at the time of vaccination, as we expect this 

number to be very low.  

 

Reopening schools 

Our simulation, like the INDSCI-SIM model, uses contact matrices to model the contacts between 

individuals of different age-bands.31 In our simulations, we consider all individuals below the age of 20 to 
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be children. This age-band (technically 0-18, but we ignore this minor discrepancy) is not eligible to 

receive vaccines. The remaining population is considered to be adult. The contact matrix method allows 

us to model the effects of social structures such as those arising from household and work contacts. This 

method can therefore also be used to model the effects of non-pharmaceutical interventions like 

lockdowns and restrictions on public transport. In particular, these contact matrices (Table 4) can be used 

to model the reopening of schools, by introducing more contacts between the children, as well as between 

children and adults. 

 

We use contact matrices that are a weighted average over the contributions from different types of 

“locations” (eg, home, workplace, school).26,31 The weights may vary with time, appropriate to the 

interventions implemented at that point in time, and are described in Table 4.  

 

In the INDSCI-SIM simulation, which we use to obtain the initial conditions for the hybrid-immunity 

model, we assume that schools are closed, and that physical interactions due to public transport and social 

gatherings are minimized. As a result, the contribution to the contact matrices of household contacts is 1 

and work contacts is 0.5. Both school and public gathering contacts were assumed to be 0. In the hybrid 

immunity model proposed in this paper, we allow for the existence of many more interactions. We 

assume the existence of “other” physical interactions like public transport and social gatherings, and add a 

contribution of 0.5 to the contact matrices for the first fifteen days, while keeping schools closed. Home 

and work contact contributions were left unchanged. These choices can of course be varied to represent 

other intervention scenarios. 

 

Reopening schools was modeled by gradually increasing the corresponding values of the contact matrices 

in intervals of 20 days. School interactions were thus ramped up from 0% to 50% over roughly 120 days, 

which corresponds to Dec 15, 2021. This coincides with the onset of the Omicron wave in India, and 

therefore, we further assume all schools to be closed from Dec 15, 2021 until the end of the simulation in 

March 2022.  

 

Emergence of Omicron variant 

The Omicron variant of concern was first detected in South Africa, before spreading to more than 90 

countries. To describe the epidemiology of the Omicron variant, we calibrated our model with data from 

South Africa (See Supplementary Material), using daily reported cases to estimate its growth rate.  

 

We simulated the growth of cases associated with the Omicron variant in South Africa from Nov 15, 

2021. Given that by then, the total vaccinated population in South Africa was 27% and 22% for the first 

and second doses, respectively, we use this input in our calculations. We initially assume a seropositivity 

of 60% and assume that the effects of a prior infection can be taken to be equivalent to that of a single 

vaccination, 20% of the population from the recovered compartment were moved to the V1 compartment 

from where they can be infected. 

 

The weight factors multiplying the home and work contact matrices were taken to be 1, while the weight 

factors of schools and “other” were taken to be 0.5, assuming that no strict restrictions were implemented 

in South Africa during the Omicron wave. The population was vaccinated at a low vaccination rate. All 

parameters for the unvaccinated except 𝛽 are the same as used in the INDSCI-SIM model. We have 

chosen a value of 𝛽 such that the increase in number of daily cases matches the reported daily cases. To 

account for case-undercounting, a bias factor of 15 is used to best fit the South African data for cases and 

deaths accounting for the fact that many symptomatic patients chose not to be tested. This factor was 

further optimized to fit the Indian data, based on the expected seroprevalence and the test positivity. 
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Vaccine allocation 

The rate at which individuals receive the first vaccine dose depends only on the number of individuals 

eligible for a first dose. The same is true for the second dose. Additionally, any excess first doses are used 

to vaccinate the individuals eligible for second doses. The same process is repeated for the second dose, 

with any excess doses being used to vaccinate eligible unvaccinated people. This process ensured that all 

available vaccines were used, whenever possible. The details of our calculations can be found in the 

Supplementary Material. 

 

We study the possible outcomes for different background seroprevalence levels of 20%, 40%, and 80% in 

order to assess the importance of hybrid immunity. 

 

RESULTS 

Figure 2 shows the daily number of cases, aggregated over all age-bands for Andhra Pradesh, along with 

the three other scenarios involving different background seroprevalence levels. The results for adults and 

children can be found in the Supplementary Material. 

 

Figure 2A shows that the absence of a noticeable rise in the daily number of cases or deaths, in both older 

and younger age-bands when schools were reopened, can be explained by the fact that the background 

seroprevalence was sufficiently high.  

 

For example, had the seroprevalence been lower (eg, 20%) we would have expected to see a sharp rise in 

cases with a high peak around the end of September 2021, as can be seen in the Figure 2B. Our 

simulations indicate that this peak would have affected children, who were unvaccinated, much more than 

adults. For example, in the case where the seropositivity was 20%, it was found that the height of the 

school reopening peak relative to the Delta wave’s peak was roughly 2.8 times for children, while it was 

only 1.3 times for adults. If the background seroprevalence had been close to 40%, the height of the 

school reopening peak would have been around 0.9 times the Delta peak for children, while the height 

relative to the Delta peak would have only been 0.3 times for adults. 

 

Once the seroprevalence crosses 60%, the school-reopening-associated epidemic peak is completely 

washed out, indicating that the level of immunity attained through the combination of both vaccination 

and prior infection is sufficient to curtail the spread of the disease. Even when the seroprevalence was 

20%, while a sharp rise in daily cases was observed, these cases were mostly asymptomatic or mild, with 

the number of severe cases remaining quite low in comparison to numbers in the Delta wave. Our 

simulations found these cases to occur mainly among the adult population who had more of a chance of 

severe illness than children. 

 

The introduction of Omicron – modeled by an increase in 𝛽 which was calibrated by the data from South 

Africa – causes an upswing in the number of cases across all age-bands, as expected. As described in the 

Methods section, the possibility of reinfection by Omicron is modeled by moving a constant fraction of 

20% of the recovered individuals to the “single-dose-vaccinated’’ compartment V1. The locations of the 

peak of the Omicron wave in our simulations match actual data reasonably well. However, the duration of 

the wave in our simulations appears to be larger. A larger value of 𝛽 would have allowed us to match the 

observed width. 

 

Figure 3 shows the counterfactual scenario where our simulation was run for a seropositivity of 64% 

(Figure 2A) but without incorporating the effects of vaccination. As can be seen, while this would not 

have affected school reopening, a much higher peak could have been expected during the Omicron wave. 

Both children and adults would have fared similarly during this wave, as is to be expected given that both 

groups are now unvaccinated. This would have resulted in a rise in the number of severe cases (and, 
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consequently, deaths) over all age-bands that would have been much larger than the numbers observed 

during the Delta wave. 

 

DISCUSSION 

We are not aware of other transmission dynamic models, at the time of preparing this manuscript, that 

incorporate hybrid immunity into discussions of the COVID-19 trajectory of India, and to assess its 

specific impact on school reopening and the Omicron case trajectory. The model contains multiple 

interacting time-varying components, all of which are essential to understanding the dynamics of the 

disease across the Delta and Omicron waves. Our model includes a two-dose vaccine and differential 

levels of protection from these doses, across different age-bands. Our results are specific to Andhra 

Pradesh. However, given that other states in India reported similar key model parameters, including 

seroprevalence, our results can be largely generalized to other settings in the country. Some states (eg, 

Kerala) reported lower seroprevalence after the second wave and therefore we would caution against 

extrapolating our findings to such settings.   

 

Our results explain why cases from the Delta wave continued to decline even as schools were reopened 

across the state of Andhra Pradesh. Given that seroprevalence levels in adults and children were largely 

comparable following the second epidemic wave, we conclude that the impact of school reopening on 

case-load was substantially reduced by the fact that a large fraction of the population had already been 

infected. Our simulations indicate that at the levels of seropositivity at which schools were reopened (ie, 

approximately 60%), infection-induced immunity was the primary factor in curtailing the spread of 

SARS-CoV-2. However, it should be noted that vaccination remains important for providing protection to 

those who have not been exposed to the virus that causes COVID-19 and for providing additional 

protection in those who have been exposed. We show, through model calculations at different levels of 

seropositivity, that low seropositivity values would have led to a much more substantial effect on 

infections in school-going children. 

 

Next, we showed that the impact of the Omicron trajectory was reduced in India for two reasons: the high 

background seropositivity from infection and the high vaccine coverage, in addition to the overall reduced 

severity of disease caused by this variant. While we chose conservative values for the extent of 

reinfections as well as for break-through infections, our model can easily account for larger numbers if 

other, more aggressively immune-evading variants, were to emerge. 

 

We draw multiple lessons from this work. At large background seropositivity levels, especially if 

background prior infection levels in children are comparable to those in adults, schools can and should be 

reopened. This should have only a marginal impact on cases. Further, our model suggests that increased 

immune evasion leading to an effectively larger susceptible population can lead to cases increasing 

sharply, indicating that the immune escape potential of new variants should be carefully tracked. Finally, 

given that variants of the original Omicron strain appear to be dominant across the world currently, the 

development of new vaccines that target Omicron variants should be a priority. 

 

Our study has limitations. First, our model is calibrated against reported numbers of daily infections. We 

attempt to account for underreporting using bias factors from the INDSCI-SIM model and an assumption 

based on reduced testing and reporting during the Omicron wave. Otherwise, we do not account for time-

varying undercounting of reported cases. This is particularly evident in the calibration of beta (i.e., force 

of infection) from South African data shown in Supplementary Material A3. Anecdotal and newspaper 

reports suggest that due to the relative mildness of the disease associated with the Omicron variant, those 

infected may have chosen to not get tested. Additionally, certain variables in our model are not known 

empirically, most notably rates between compartment among vaccinated individuals (ie, either one or two 

doses). We made reasonable estimates for these rates in the absence of widely accepted values. Such 

values may also vary between sub-variants of Omicron variants and we do not explicitly account for this. 
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Since we are using a compartmental model, we implicitly assume our population is homogeneously 

mixed. This is partially addressed by using age-dependent contact matrices; however, network and agent-

based models may provide more detailed insights into the effects of heterogeneous mixing. Last, we have 

chosen to not include a third-dose for our vaccine, since very few third doses were distributed during our 

period of study (ie, March 1, 2021 to March 1, 2022). While booster doses were administered beginning 

Jan 10, 2022, these were only administered to individuals older than 60 years with comorbidities and 

frontline workers. It was only after April 8, 2022 that booster doses became available to all eligible adults. 

Future models could be updated to account for third doses. 

 

We conclude that Andhra Pradesh did not see a large rise in cases among the unvaccinated individuals, 

who were predominantly children as they were not yet eligible for vaccines, after schools began 

reopening because of high background levels of seropositivity. To further address this claim, we 

experimented with various counterfactual scenarios to show that a rise in cases would have been expected 

with lower levels of prior seropositivity. Our discussion of the Omicron wave illustrates that even with its 

higher transmissibility, the impact of this variant was blunted by high levels of hybrid immunity. We 

verify this through the construction of a number of counterfactual scenarios where we can alter the 

balance of infection- and vaccination-induced seroprevalence. 
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TABLES 

 

Table 1: Transition rates and branching parameters for disease progression 

 

Parameter 

Value 

 

𝑑𝑎𝑦
−1

 

Description Reference 

𝛽 

Delta wave 

𝑑𝑎𝑦
−1

 

[0.075, 0.097] 

Omicron wave 

𝑑𝑎𝑦
−1

 

1.74 × [0.075,0.097] 

Rate at which infected 

individuals can infect the 

susceptible population 

Delta: INDSCI-SIM (on 

Aug 1, 2021).  

Omicron: value 

calibrated from South 

African data (see 

Supplementary Material) 

𝛾 0.5 𝑑𝑎𝑦
−1

 

Exposed individuals become 

asymptomatic or pre-

symptomatic after an average 

of 1 𝛾⁄ = 2 days 

INDSCI-SIM 

𝜆𝐴 0.1428 𝑑𝑎𝑦
−1

 

Asymptomatic individuals 

recover after an average of 

1 𝜆𝐴⁄ = 7 days 

𝜆𝑃 0.5 𝑑𝑎𝑦
−1

 

Pre-symptomatic individuals 

develop symptoms after an 

average of 1 𝜆𝑃⁄ = 2 days 

𝜆ℑ 0.1428 𝑑𝑎𝑦
−1

 

Mildly infected individuals 

recover after an average of 

1 𝜆ℑ⁄ = 7 days 

𝜆𝐼𝑆 0.1736 𝑑𝑎𝑦
−1

 

Severely infected individuals 

are hospitalized after an 

average of 1 𝜆𝐼𝑆⁄ = 6 days 

𝜌 0.068 𝑑𝑎𝑦
−1

 

Hospitalized individuals either 

recover or die after an average 

of 1 𝜌⁄ = 15 days 

𝛼𝑖 See Table 2 

Fraction of exposed individuals 

who move to the asymptomatic 

compartments. These fractions 

are age-stratified (as indicated 

by the index 𝑖). 

INDSCI-SIM (on Aug 1, 

2021) 

𝛼𝑣1𝑖 0.989 
Fraction of vaccinated exposed 

(single and two-shot) 
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𝛼𝑣2𝑖 0.999 

individuals who move to the 

asymptomatic compartments. 

These fractions are the same for 

all ages, although this can be 

simply generalized. 

µ𝑖 See Table 2 
Fraction of pre-symptomatic 

individuals who develop mild 

symptoms. 

INDSCI-SIM (on Aug 1, 

2021) 

𝛿𝑖 See Table 2 

Rate at which individuals 

transition from the hospitalized 

compartment to the dead 

compartment. 𝛿𝑖 takes different 

values for the Delta and 

Omicron waves. 

Delta: INDSCI-SIM (on 

Aug 1, 2021).  

 

Omicron: Value of 𝛿𝑖 is 

reset to the original value 

used INDSCI-SIM on 

March 2021. 

𝜂𝑣1𝑖 
𝜌 × 𝛿𝑖
10

 

Rate at which individuals move 

from the symptomatic 

vaccinated compartments to the 

dead compartments. This 

number is assumed to be 

(𝜌 × 𝛿𝑖) 10⁄  and 

(𝜌 × 𝛿𝑖) 50⁄  for the first and 

second-shot vaccine cases 

respectively, for each age-band. 

 

𝜂𝑣2𝑖 
𝜌 × 𝛿𝑖
50
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Table 2: Age-stratified branching parameters for disease progression 

 

Age 

band 
𝛼𝑖 µ𝑖 

𝛿𝑖 
 

(Delta wave) 

𝛿𝑖 
 

(Omicron wave) 

0-9 0.5 0.999 0.00308 0.0185 

10-19 0.45 0.997 0.00311 0.0187 

20-29 0.4 0.988 0.00238 0.0143 

30-39 0.35 0.968 0.00276 0.0166 

40-49 0.3 0.951 0.00566 0.034 

50-59 0.25 0.898 0.00833 0.05 

60-69 0.2 0.834 0.0161 0.097 

70-79 0.15 0.757 0.035 0.21 

80+ 0.1 0.727 0.0366 0.22 
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Table 3: Contact parameters that modulate the interactions between susceptible and infected individuals 

 

Contact intensity 

parameter 

Value 

 

(Delta wave) 

Value 

 

(Omicron wave) 
Description 

𝜖𝐼𝐴 0.410 1 
Relative intensity of contacts for 

asymptomatic individuals. 

𝜖𝐼𝑆 0.383 1 
Relative intensity of contacts for 

severely infected individuals 

𝜖𝐼𝑃 0.383 1 
Relative intensity of contacts for pre-

symptomatic 

𝜖𝐼𝑀 0.383 1 
Relative intensity of contacts for 

mildly infected 

 

 

 

 

Table 4: Weights used for age-specific contact matrices 

 

Model Home School Work Others 

INDSCI-SIM model 

(from March 1, 2020 to July 31, 2021) 
1 0 0.5 0 

Hybrid immunity model 

(Before school open, Aug 1, 2021 to Aug 15, 2021) 
1 0 0.5 0.5 

Hybrid immunity model 

(After school open, Aug 16, 2021 to Dec 15, 2021) 
1 0 to 0.5 0.5 0.5 

Hybrid immunity model 

(Omicron, South Africa) 
1 0.5 1 0.5 

Hybrid immunity model 

(Omicron, Andhra Pradesh & district, from Dec 16, 2021) 
1 0 0.5 0.5 

 

 

 

Weights used to create the contact matrices that simulate social contacts and mixing within the 

population. Four different locations (Home, School, Work, and Others) were used to address the contacts 

between different age groups. At home all age groups have contacts with each other with equal weights. 

The same is true for the “Others” location, but with half the weight as the Home location. In schools, 

children in the below 20 age-bands have high contact with each other, while teachers (age-bands 20 and 

above) have moderate contact with each other as well as with the children. See Prem et al. and Hazra et 

al. for more details. 
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Figure 1: Schematic of model for unvaccinated, one-dose vaccinated, and two-dose vaccinated individuals 

 
Model compartments are each stratified by 10-year age intervals. S = susceptible, E = exposed, IA = asymptomatic 

infected, IP = pre-symptomatic infected, IM = mildly infected, IS = severely infected, R = recovered, H = 

hospitalized, D = decedent, V = vaccinated, VE = vaccinated exposed, VA = vaccinated asymptomatic, VS = 

vaccinated symptomatic, VR = vaccinated recovered, RV =recovered vaccinated. Transition rates and parameters 

are provided in Tables 1-3. To decrease visual clutter, some compartments are shown twice (as small insets). These 

duplicates correspond to the same single compartment. Dashed lines point to the parameter that is modified by 

contact matrices and contact parameters. Dash-dotted lines indicate vaccination. 
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Figure 2: Effect of infection-induced seropositivity on school reopening 

 
The daily number of cases (left panels) and the daily number of recorded deaths (right panels) for all age-groups, for 

the entire state of Andhra Pradesh, as well as three scenarios that demonstrate a variation in background 

seroprevalence. The top-most panels represent a background seroprevalence of 64%, while the remaining are for 

20%, 40%, and 80% seroprevalence respectively. The black dots represent the recorded daily numbers obtained 

from covid19bharat.org, while the confidence intervals are obtained from the INDSCI-SIM simulation. The initial 

part of the graph follows the INDSCI-SIM prediction until Aug 1, 2021. Schools are gradually opened, as described 

in the Methods section, over a period of 120 days. The numbers are scaled by an appropriate bias factor to account 

for daily undercounting of cases.  

Jo
urn

al 
Pre-

pro
of



Figure 3: Role of vaccination in hybrid immunity 

 
Results of a counterfactual simulation with no vaccination coverage, to demonstrate the effect that the absence of 

vaccination has on the disease trajectory. All panels represent results for a seropositivity of 64%, close to the 

reported value from serosurvey data. The panels on the left show the daily number of cases, while those on the right 

show the daily number of deaths. a. shows the results for all age groups, b. the results for adults (above 20) and c. 

the results for children (below 20). Our simulations indicate that a much higher Omicron peak could have been 

expected if a smaller fraction of the population had been vaccinated, as can be seen by comparing Figures 3a and 2a. 
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RESEARCH IN CONTEXT 

 

Evidence before this study 

We searched the PubMed and preprint archives for articles published from December 1, 2021 to May 31, 

2022 to identify modeling studies that attempted to integrate hybrid immunity (i.e., vaccine- and 

infection-derived immunity) and emerging variants of concern with immune escape potential using the 

search terms "coronavirus", "COVID-19", "SARS-CoV-2", "variant", "VOC", "Alpha", "Iota", "Delta", 

"Gamma", "Omicron", "Alpha", "vaccin*", "immuni*", "hybrid immunity", and "hybrid". We identified 

several studies that demonstrate the protection provided by hybrid immunity and multiple agent-based 

and compartmental models that simulate the trajectory of SARS-CoV-2 infection; however, no published 

modeling studies attempted to integrate hybrid immunity and emerging variants of concern. The available 

evidence suggesting additional protection provided by hybrid immunity, including in the presence of 

variants of concern, supports the inclusion of these factors into transmission models.  

 

Added value of this study 

We constructed a model that incorporates both infections and a vaccination program. We used this model 

to explore the consequences of hybrid immunity in the context of school reopening as well as the 

Omicron variant, in a model Indian state. In our age-stratified compartmental model, we have 

differentiated between individuals who were infected before or after vaccination. We have therefore been 

able to estimate disease trajectories in the context of emerging variants of concern.  

 

Implications of all the available evidence 

The findings of our study support the notion that decreasing prevalence of immunologically naïve 

individuals in many settings is associated with a reduction in the number of reported cases. This remains 

true even as some critical non-pharmaceutical interventions are relaxed, especially reopening of schools. 

Our study also suggests that the decrease in hospitalizations and deaths since the Omicron variant 

emerged is likely due to two factors: increasing levels of hybrid immunity in the population and the 

intrinsic lower severity of disease associated with the Omicron variant relative to previous variants (eg, 

the Delta variant). 
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