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Abstract

Background: RNA-Seq is currently the most widely used tool to analyze whole-transcriptome profiles. There are
numerous commercial kits available to facilitate preparing RNA-Seq libraries; however, it is still not clear how some
of these kits perform in terms of: 1) ribosomal RNA removal; 2) read coverage or recovery of exonic vs. intronic
sequences; 3) identification of differentially expressed genes (DEGs); and 4) detection of long non-coding RNA
(lncRNA). In RNA-Seq analysis, understanding the strengths and limitations of commonly used RNA-Seq library
preparation protocols is important, as this technology remains costly and time-consuming.

Results: In this study, we present a comprehensive evaluation of four RNA-Seq kits. We used three standard input
protocols: Illumina TruSeq Stranded Total RNA and mRNA kits, a modified NuGEN Ovation v2 kit, and the TaKaRa
SMARTer Ultra Low RNA Kit v3. Our evaluation of these kits included quality control measures such as overall
reproducibility, 5′ and 3′ end-bias, and the identification of DEGs, lncRNAs, and alternatively spliced transcripts.
Overall, we found that the two Illumina kits were most similar in terms of recovering DEGs, and the Illumina,
modified NuGEN, and TaKaRa kits allowed identification of a similar set of DEGs. However, we also discovered that
the Illumina, NuGEN and TaKaRa kits each enriched for different sets of genes.

Conclusions: At the manufacturers’ recommended input RNA levels, all the RNA-Seq library preparation protocols
evaluated were suitable for distinguishing between experimental groups, and the TruSeq Stranded mRNA kit was
universally applicable to studies focusing on protein-coding gene profiles. The TruSeq protocols tended to capture
genes with higher expression and GC content, whereas the modified NuGEN protocol tended to capture longer
genes. The SMARTer Ultra Low RNA Kit may be a good choice at the low RNA input level, although it was inferior
to the TruSeq mRNA kit at standard input level in terms of rRNA removal, exonic mapping rates and recovered
DEGs. Therefore, the choice of RNA-Seq library preparation kit can profoundly affect data outcomes. Consequently,
it is a pivotal parameter to consider when designing an RNA-Seq experiment.
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Background
Omics technology, driven by next-generation sequencing
(NGS) coupled with new and increasingly robust bio-
informatics pipelines, has triggered exponential growth
in the accumulation of large biological datasets. The first
NGS study, published in 2005 [1], reported the highly
accurate sequencing of 25 million DNA bases in less

than a day, representing a vast improvement in cost and
throughput over traditional Sanger sequencing methods.
Shortly thereafter, NGS technology was applied to RNA
sequencing (RNA-Seq) [2–5], and since then, the sensi-
tivity, accuracy, reproducibility, and flexibility of RNA-
Seq have made it the gold standard in transcriptomic re-
search. Over the last ten years, approximately 53,700
RNA-Seq datasets have been deposited in the Gene Ex-
pression Omnibus (GEO) database [6]. These RNA-Seq
datasets provide information about the whole transcrip-
tome, including gene fusions, differential expression of
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coding and non-coding genes, and splice variants in dif-
ferent experimental conditions. Increasing evidence con-
firms that changes in the transcriptome are a result of
biological alterations, making RNA-Seq a driving force
behind the exploration of global regulatory networks in
cells, tissues, organisms, and diseases.
RNA-Seq is used primarily to identify differentially

expressed genes (DEGs) in different biological condi-
tions, but it is also used to discover non-coding RNAs
such as microRNAs and long non-coding RNAs
(lncRNAs) [7]. RNA-Seq studies have already shown
that differences in RNA preparation and enrichment
during library preparation can cause fundamental
variations in experimental outcomes. Hence, compre-
hensive evaluation of RNA-Seq library preparation
methods by using different kits has provided a baseline
from which to compare their overall capabilities and to
guide future research applications. Several earlier stud-
ies have already identified potential confounding
factors affecting RNA-Seq performance and analysis
[8–15]. These include two large-scale projects--the
Sequencing Quality Control project of the SEQC/
MAQC-III (MicroArray Quality Control) Consortium,
led by US Food and Drug Administration [8] and the
Association of Biomolecular Resource Facilities (ABRF)
next-generation sequencing (NGS) study [9], and other
studies including the evaluation of three Illumina
RNA-Seq protocols for degraded and low quantity
samples [10], a study of gene qualification on clinical
samples using Illumina TruSeq Stranded Total RNA
and mRNA RNA-Seq protocols [11] and additional
investigations focused on low-input or single-cell se-
quencing [12–15].
The SEQC project evaluated the sensitivity, specificity,

reproducibility, and complexity of gene expression,
DEGs, and splice junction detection from RNA-Seq per-
formed at multiple sites, using the same commercial ref-
erence library and External RNA Controls Consortium
(ERCC) RNA spike-in controls as well as experimental
samples, but using different sequencing platforms and
bioinformatics pipelines [8]. Overall, the SEQC project
found that RNA-Seq data generated from vendor-
prepared libraries were stable across sites but variable
across protocols, implying that data variability likely
originated from differences in library preparation and/or
sequencing platforms. Parameters affecting library prep-
aration include fragmentation time, ribosomal RNA
(rRNA) depletion methods, cDNA synthesis procedures,
library purification methods, ligation efficiency, and
RNA quality. This study [8] also illustrated that for the
most highly expressed genes, DEGs were consistently
identified across sites and platforms and that de novo
splice junction discovery was robust but sensitive to se-
quencing depth.

The ABRF-NGS study evaluated not only the sensitiv-
ity, specificity, reproducibility, and complexity of gene
expression, but also differential gene expression and
splice junction detection among different combinations
of sequencing platforms and library preparation
methods, taking into account size-specific fractionation
and RNA integrity [9]. In general, the results across plat-
forms and library preparation methods were highly cor-
related, but greater read depth was necessary to recover
rare transcripts and splice site junctions present at low
frequency, especially those resulting from putative novel
and complex splicing events. Library preparation influ-
enced the detection of non-polyA tail transcripts, 3′
UTRs, and introns, primarily due to inherent differences
between rRNA reduction methods, i.e., rRNA depletion
and polyA enrichment, with the former method captur-
ing more structural and non-coding RNAs, and the lat-
ter method capturing more full-length mRNAs [9].
More importantly, although gene quantification was ro-
bust, transcriptome coverage was sensitive to the pipe-
lines applied during the analyses; however, surrogate
variable analysis proved useful in making direct compar-
isons across platforms.
Schuierer S. et al. [10] evaluated three Illumina library

preparation kits, representing polyA selection, ribosomal
RNA depletion and exon capture methods, respectively,
on RNA-Seq samples in a wide range of input quantity
and quality. They found ribosomal RNA depletion
method had generally good performance whereas exon
capture method performed the best for highly degraded
RNA samples. Zhao S. et al. [11] evaluated polyA selec-
tion vs. rRNA depletion using clinical samples and rec-
ommended the former over the latter in most cases
where the interest is protein-coding gene quantification.
More recently, increasing interest in investigating rare

cell populations and detailed biological mechanisms has
led to a demand for protocols generating high quality li-
braries from nanogram quantities of total RNA [12, 13]
and even single cells [14, 15]. Dissecting the characteris-
tics of RNA-Seq protocols designed to obtain data from
low-input or degraded samples will benefit studies in-
volving both rare cell populations and fixed clinical sam-
ples. For low-quantity RNA analysis, it has been
established that the NuGEN protocol yields data with
better transcriptome complexity but has less effective
rRNA depletion, while the SMARTer Ultra Low RNA
Kit has better performance on transcriptome annotation
but demonstrates bias with respect to underrepresenting
transcripts with high GC content [12]. cDNA amplifica-
tion can help compensate for extremely small amounts
of starting materials in low quantity RNA-Seq, but
amplification itself may introduce problems, such as du-
plication, that affect library performance [12]. ABRF
evaluated several low-input RNA amplification kits and
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identified certain underlying differences, such as two dis-
tinct categories of genes recovered in the libraries pre-
pared with two distinct rRNA-reduction techniques,
polyA enrichment and rRNA-depletion [13]. The sensi-
tivity of gene detection and accuracy of gene expression
level assessments were consistent across approaches but
divergent across RNA input amounts. The SMARTer
protocol provided a near perfect correlation between ob-
tained values and the actual amount of ERCC standard
included as a spike-in control [13]. Although this prior
study provides insight into the effects of RNA amplifica-
tion, it employed an artificial system using commercial
RNA from TaKaRa mixed with the ERCC control RNAs,
which likely oversimplifies the transcriptome complexity
of real cells, thus necessitating similar work in whole-
cell systems.
The source of data variation among different library

preparation methods remains unclear. Therefore, in the
present study, we carefully compared the results we ob-
tained from several commercial RNA-Seq library prepar-
ation kits with different rRNA depletion and cDNA
synthesis methods to understand the strength of each
protocol. The first goal of our study was to investigate
confounding factors in RNA-Seq library preparation pro-
tocols using three standard input kits: the TruSeq
Stranded Total RNA and mRNA Library Prep Kits from
Illumina, and a modified NuGEN Ovation® RNA-Seq
System. Defining the properties of the data generated
using these protocols may aid users in designing their
future RNA-Seq strategies. The second part of our study
was to thoroughly evaluate the SMARTer Ultra Low
RNA Kit using mouse embryonic stem cells (mESCs).
Our results demonstrated that the TruSeq Stranded
mRNA protocol was the best for transcriptome profiling
and that the TruSeq Stranded Total RNA and mRNA
protocols were comparable, whereas the modified
NuGEN protocol performed less well for whole tran-
scriptome analysis, but might be a better choice for
studies focused on non-coding RNAs. Lastly, although
the results obtained with the SMARTer Ultra Low RNA
Kit were comparable to those of the TruSeq Stranded
mRNA kit for most metrics and for identification of
DEGs, the absolute expression levels were only moder-
ately correlated. We conclude that each RNA-Seq proto-
col has individual strengths for particular individual
applications that need to be considered for a successful
RNA-Seq experiment.

Results
Experimental design and RNA-Seq data quality metrics
Figure 1 outlines the experimental design we used for
testing the three standard input protocols (Illumina Tru-
Seq Stranded Total RNA, Illumina TruSeq Stranded
mRNA, and modified NuGEN Ovation v2) (Fig. 1a), the

ultra-low input protocol (TaKaRa SMARTer Ultra Low
RNA Kit) (Fig. 1b), the data analysis flow, and data qual-
ity evaluation metrics (Fig. 1c). The RNA-Seq datasets
used in the current study were generated during two
research-based projects. The first study assessed six
xenograft tumors, three from the control group (bio-
logical replicates) and three from the experimental group
(biological replicates) to test all three standard input
protocols (Fig. 1a). Because one of the xenograft tumors
from the control group was used up, a different tumor
(from a different mouse) had to be used for the libraries
prepared with the TruSeq Total RNA protocol (100 ng)
and the TruSeq mRNA protocol (100 ng). The second
study assessed three mESC cell lines (biological repli-
cates) from Zbtb24 knockout (1lox/1lox) clones com-
pared with three wild-type (2lox/+) clones (biological
replicates) using the TaKaRa SMARTer Ultra Low RNA
protocol directly on cells with no RNA preparation step.
When RNA was isolated, all total RNA samples had
RNA integrity (RIN) numbers > 8.90.
We used the manufacturer-recommended optimal in-

put amounts (1 μg for both the Illumina TruSeq
Stranded Total RNA and the Illumina TruSeq Stranded
mRNA protocols; and 100 ng for the modified NuGEN
Ovation v2; hereafter, “standard protocol”) (Fig. 1a). In
addition, we also compared all three of these protocols
with 100 ng input RNA (Fig. 1a and in the Additional file
Figures). As described in a recent study, and as shown in
Fig. 1a, the Illumina TruSeq Stranded Total RNA proto-
col uses Ribo-Zero to remove rRNA, whereas the Tru-
Seq Stranded mRNA protocol enriches mRNA through
polyA selection [11]. In contrast, as shown in Fig. 1a,
the modified NuGEN Ovation v2 protocol synthesizes
cDNA directly from total RNA with a combination of
random primers and oligo [15], and followed by cDNA
fragmentation on Covaris. On the other hand, both Tru-
Seq protocols use divalent cations under elevated
temperature to fragment purified RNAs. For the TaKaRa
SMARTer Ultra Low RNA Kit, we used total RNA from
100 mESCs cells and 1000 mESCs cells or approximately
1 and 10 ng RNA, respectively. To check whether this
modified ultra-low input protocol was capable of gener-
ating quality data, we compared the mESC dataset de-
rived from the TaKaRa SMARTer cDNA synthesis step
combined with Nextera library preparation, to the high-
quality datasets obtained using the TruSeq Stranded
mRNA protocol with 2 μg total RNA as the input level.
The data analysis flow and the data quality metrics

used in this study to evaluate RNA-Seq protocols are
diagrammed in Fig. 1c and detailed below.

Mapping statistics (standard input protocols)
The high abundance of rRNA in cells creates an important
problem in RNA-Seq experiments. rRNA contamination
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of samples wastes reagents and decreases the recovery of
other RNA species of interest. Therefore, we wanted to
determine the efficacy of each protocol in removing
rRNA. We found that for the libraries created with the
modified NuGEN, TruSeq Stranded Total RNA, and Tru-
Seq Stranded mRNA protocols, ~ 17, 5, and 1% of frag-
ments, respectively, could be mapped to rRNA genes
(Fig. 2a and Additional file 1: Figure S1A), indicating that
in our conditions, the modified NuGEN protocol was in-
ferior to the other two protocols in reducing rRNA con-
tamination. After removing the rRNA reads, we mapped
the remaining reads to the whole mouse genome using
TopHat. The percentages of fragments with at least one
end mapped to the genome were ~ 98% for both TruSeq
protocols, and ~ 90% for the modified NuGEN proto-
col (Fig. 2b and Additional file 1: Figure S1B). The
percentages of fragments with both ends mapped
were > 93%, for both TruSeq Stranded Total RNA and
TruSeq Stranded mRNA libraries, and ~ 60% for the
modified NuGEN library (Fig. 2b and Additional file 1:
Figure S1B). The percentages of fragments mapped to
multiple locations of the genome accounted for ~ 12–
20%, ~ 3–5%, and ~ 2% of total non-rRNA fragments
from the samples prepared with the TruSeq Stranded
Total RNA, TruSeq Stranded mRNA, and modified
NuGEN protocols, respectively (Fig. 2c and Additional
file 1: Figure S1C).

Read coverage over transcripts (standard input protocols)
Positional signal bias in RNA-Seq data can lead to in-
accurate transcript quantification. Therefore, we ex-
amined the read coverage over transcripts longer than

Fig. 1 Experimental design and RNA-Seq data quality metrics. a Flow
chart outlining the experimental design for comparing the three
standard input RNA-Seq library preparation protocols. Six xenograft
tumors, 3 from the control group and 3 from the experimental group,
were used for all three protocols. Similar amounts of tumor tissue from
control and experimental groups were used to isolate total RNA.
Separate Illumina Stranded Total RNA and mRNA libraries were
prepared using 100 ng and 1 μg RNA. The modified NuGEN Ovation v2
protocol library was prepared with 100 ng RNA. Images of the mice
and vials were created by the Research Graphics department at MD
Anderson Science Park (©MD Anderson), and the pipettes were taken
from https://all-free-download.com/free-vectors/ b Flow chart outlining
the ultra-low input protocol. Cells from 3 independently derived
Zbtb24 wild-type (2lox/+) mESC control lines and 3 independently
derived Zbtb24 knockout (1lox/1lox) mESC experimental lines were
lysed directly in reaction buffer without isolating total RNA. One
hundred cells (~ 1 ng RNA, 18 PCR cycles) and 1000 cells (~ 10 ng RNA,
10 PCR cycles) were used to make cDNA for the TaKaRa SMARTer Low
Input RNA-Seq kit v3 protocol. One hundred-fifty pg of TaKaRa
SMARTer-generated cDNA was then used to prepare the Nextera
libraries. c A diagram depicting the data analysis flow and the data
quality metrics used in this study to evaluate RNA-Seq protocols. The
analysis steps are on the left and the data quality metrics that were
derived from each analysis step are on the right
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1000 bps and found excessive enrichment of fragments at
the 3′-end and depletion of signal at the 5′-end for
samples prepared with the modified NuGEN protocol
(Fig. 2d and Additional file 1: Figure S1D). Reads from
the TruSeq Stranded Total RNA and TruSeq Stranded
mRNA protocols were more evenly distributed along
the entire length of the transcript (Fig. 2d and
Additional file 1: Figure S1D). Closer examination of
each nucleotide within 1000 bps of the 5′- and 3′-
ends confirmed that the modified NuGEN protocol
failed to capture the RNA signal towards the 5′-end
(Additional file 2: Figure S2A, C), and also suggested
that the TruSeq Stranded mRNA protocol missed the
signal within 200 bp of the 3′-end, compared to the
TruSeq Stranded Total RNA protocol (Additional file 2:
Figure S2B, D).

Representation of the transcriptome (standard input
protocols)
To assess how well the entire transcriptome was repre-
sented within the libraries generated by the three RNA-
Seq protocols, we first investigated the composition of
uniquely mapped fragments in exonic, intronic, and inter-
genic regions (Fig. 3a and Additional file 3: Figure S3A).
We found that for the TruSeq Stranded Total RNA and
mRNA protocols, respectively, approximately 67–84% and
88–91% of the fragments were from exonic regions; 14–
28 and < 10% were from intronic regions; and the
remaining 3–5% were from intergenic regions. For the
modified NuGEN protocol, only 35–45% of the fragments
were from exonic regions; 47–56% were from intronic re-
gions; and less than 10% were from intergenic regions.
Since only the TruSeq protocols are strand-specific, as

Fig. 2 Mapping statistics and read coverage over transcripts for all the libraries prepared with standard input protocols. a The rRNA mapping rate
was calculated as the percentage of fragments that were mappable to rRNA sequences. b The non-rRNA mapping rate was calculated from all
the non-rRNA fragments as the percentage of fragments with both ends or one end mapped to the genome. c Multiple alignment rates were
determined from non-rRNA fragments that were mapped to multiple locations of the genome. d Read-bias was assessed using the read
coverage over transcripts. Each transcript was subdivided evenly into 1000 bins and the read coverage was averaged over all the transcripts
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Fig. 3 (See legend on next page.)
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expected, the majority of the fragments in exonic and in-
tronic regions were from the sense strand of the genes,
whereas for the NuGEN libraries about half of the frag-
ments were from the sense strand and the other half were
from the antisense strand of the genes.
To evaluate the capability of the RNA-Seq protocols

for detecting coding genes and lncRNAs, we performed
saturation analysis to count the number of coding genes
and lncRNAs detected at increasing sequencing depth.
For coding genes, the saturation curves from the TruSeq
Stranded Total RNA and mRNA libraries looked very
similar and were superior to those from the NuGEN li-
braries (Fig. 3b and Additional file 3: Figure S3B). For
lncRNAs, the modified NuGEN protocol outperformed
both the TruSeq Stranded Total RNA and mRNA proto-
cols, yielding more lncRNAs at the same sequencing
depth (Fig. 3c Additional file 3: Figure S3C). However, for
lncRNAs, none of the libraries were close to saturation at
the sequencing depth used for our experiments. To
examine the sequencing depth required to reach sat-
uration for lncRNA detection, we repeated our satur-
ation analysis after pooling samples from the same
RNA-Seq protocol together. Our analysis showed that
the modified NuGEN protocol still exceeded the other
two protocols in lncRNA recovery, even when se-
quencing depth approached saturation (Fig. 3d and
Additional file 3: Figure S3D).
Another important application of RNA-Seq is to iden-

tify alternatively spliced variants, which frequently occur
in mammalian genes [16]. In this regard, we conducted
saturation analysis comparing the number of reads to
the number of detected splice sites (Fig. 3e and Add-
itional file 3: Figure S3E). We recovered the lowest num-
ber of splice junctions using the modified NuGEN
protocol and the highest number with the TruSeq
Stranded mRNA protocol.

Concordance of expression quantification (standard input
protocols)
Spearman’s rank correlation coefficients between sam-
ples based on count per million (cpm) fragments
mapped to exons values were calculated to assess the
concordance of the three standard RNA-Seq protocols
on expression quantification. The correlation coeffi-
cients were greater than 0.97 between samples

prepared using the same protocol, regardless of
whether the samples were biological replicates of the
same condition or from different conditions. The cor-
relation coefficients between samples prepared using
different protocols were lower: 0.93–0.97 between the
TruSeq Stranded Total RNA and mRNA protocols,
0.80–0.87 between the TruSeq Stranded Total RNA
and modified NuGEN protocols, and 0.77–0.82
between the TruSeq Stranded mRNA and modified
NuGEN protocols (Fig. 4a and Additional file 4:
Figure S4A). Unsupervised clustering demonstrated
that the whole transcriptome expression profiles ob-
tained from TruSeq Stranded Total RNA and mRNA
libraries were more similar to each other than either
was to the NuGEN libraries (Fig. 4b and Additional
file 4: Figure S4B). Principal component analysis
(PCA) recapitulated the clustering analysis: the
NuGEN libraries were separated from the TruSeq li-
braries in the first component, whereas the TruSeq
Stranded Total RNA and mRNA libraries were separated
in the second component (Fig. 4c and Additional file 4:
Figure S4C). Further investigation revealed the TruSeq
protocols tended to capture genes with higher expression
and GC content, whereas the modified NuGEN protocol
tended to capture longer genes (Additional file 7: Figure
S7B-C). Comparing the TruSeq mRNA protocol to the
TruSeq Total RNA protocol, showed that the TruSeq
mRNA protocol preferentially recovered genes with
higher GC content and shorter length (Additional file 7:
Figure S7A). To exclude the possibility that these differ-
ences stemmed from batch effects, such as different set of
libraries being prepared at different times, we in-
cluded additional technical replicates, prepared at dif-
ferent times, for the TruSeq Stranded Total RNA and
mRNA protocols (1 μg). Unsupervised clustering sug-
gested that the distance between technical replicates
of the same protocol was closer than the distance be-
tween samples prepared with different protocols
(Additional file 5: Figure S5A). The technical replicate
libraries generated using the same protocol clustered
together and were separated from those of different
protocols in PCA (Additional file 5: Figure S5B).
Taken together, these results demonstrate that the
variability among these library preparation protocols
was not primarily due to batch effects.

(See figure on previous page.)
Fig. 3 Representation of the transcriptome for all the libraries prepared with standard protocols. a Composition of the uniquely mapped
fragments, shown as the percentage of fragments in exonic, intronic, and intergenic regions. According to the direction of transcription, exonic
and intronic regions were further divided into sense and antisense. b Saturation analysis showing the percentage of coding genes recovered
(calculated as the genes with more than 10 fragments) at increasing sequencing depth. c-d Saturation analysis showing the percentage of
lncRNAs recovered (calculated as the lncRNAs with more than 10 fragments) at increasing sequencing depth. In C, the six libraries created using
each of three protocols (18 libraries total) are plotted individually. In D, the six libraries from the same protocol were pooled. e Saturation analysis
showing the number of splice junctions recovered at increasing sequencing depth
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Fig. 4 (See legend on next page.)

Chao et al. BMC Genomics          (2019) 20:571 Page 8 of 20



Concordance of DEGs recovered with standard input
protocols
PCA demonstrated that all protocols could distinguish
between samples representing different biological condi-
tions (Fig. 5a and Additional file 6: Figure S6A). Three
hundred ninety-four DEGs were detected across all three
RNA-Seq library preparation protocols, accounting for
41, 38, and 28% of the total DEGs detected when using
the TruSeq Stranded Total RNA, TruSeq Stranded
mRNA, and modified NuGEN protocols, respectively
(Fig. 5b). The pairwise scatter plots of log2 ratio values
between DEGs from control and experimental mouse
tumor tissues showed that the TruSeq Stranded Total
RNA and mRNA results were more highly correlated
with each other (Spearman’s correlation coefficient =
0.99) than either was with the modified NuGEN proto-
col (Spearman’s correlation coefficient = 0.80 and 0.79,
respectively) (Fig. 5c and Additional file 6: Figure S6B).
That is, the TruSeq Total RNA and mRNA protocols
yielded more shared DEGs than either did with the
modified NuGEN protocol (Fig. 5c and Additional file 6:
Figure S6B). To evaluate how accurate the DEG calls
were, we performed qPCR for 288 genes that RNA-Seq
data indicated were differentially expressed, and com-
pared the log2 ratio values for these genes as derived
from the various RNA-Seq library preparation protocols
and qPCR (manuscript in preparation). The DEGs re-
covered with the TruSeq Total RNA and mRNA proto-
cols had correlation coefficients of 0.78 and 0.76 vs.
qPCR, whereas the modified NuGEN protocol had a
correlation coefficient of 0.62 (Fig. 5d). In short, the li-
braries produced by all three standard protocols were
sufficient to detect DEGs. However, independent valid-
ation of DEGs by qPCR indicated that the differential
expression results from the TruSeq Stranded Total RNA
and mRNA protocols might be more accurate than those
from the modified NuGEN protocol.

Mapping statistics, read coverage bias and transcriptome
representation (ultra-low protocol)
Increasing numbers of omics studies are being designed
to investigate minor cell subpopulations, rare cell types,
and even single cells. Effectively executing low-input
RNA-Seq is essential to achieve these goals. To deter-
mine the applicability of the TaKaRa SMARTer Ultra

Low RNA Kit v3 with low-level RNA input--100 or 1000
mESCs from each of three Zbtb24 knockout (1lox/1lox)
clones (biological replicates) and three wild-type (2lox/
+) clones (biological replicates), we evaluated its per-
formance by comparing it to that of the TruSeq
Stranded mRNA protocol using 2 μg of total RNA, as a
“gold standard” that represents overall robustness with
regard to rRNA contamination, mRNA species represen-
tation, identification of DEGs, and overall reproducibil-
ity. The SMARTer kit protocol resulted in libraries with
higher levels of rRNA contamination at both the 100 (~
1 ng RNA) and 1000 cell (~ 10 ng RNA) levels than did
the TruSeq Stranded mRNA protocol using standard in-
put RNA amounts (Fig. 6a). The percentage of fragments
with both ends mapped to the genome was 91–92% for
the TruSeq Stranded mRNA protocol and 60–65% for
the SMARTer protocol using either 100 or 1000 cells
(Fig. 6b). The coverage of fragments over transcripts
suggested the SMARTer protocol libraries were biased
toward the 3′-end of transcripts compared to the Tru-
Seq Stranded mRNA protocol libraries (Fig. 6c). For li-
braries from the SMARTer protocol with 100 and 1000
cells, around 90% of the fragments were from exonic re-
gions, ~ 6% were from intronic regions, and ~ 4% were
from intergenic regions, which was comparable to librar-
ies from the TruSeq Stranded mRNA protocol (Fig. 6d).
Since the SMARTer protocol is not strand-specific, half
of the fragments were from the sense strand and the
other half were from the antisense strand of the genes
(Fig. 6d). For coding genes, the saturation curves for
libraries from the SMARTer protocol with 100 and
1000 cells were very similar and were slightly less ro-
bust than those from the TruSeq Stranded mRNA
protocol (Fig. 6e). The SMARTer protocol outper-
formed the TruSeq Stranded mRNA protocol in
recovering more lncRNAs at the same sequencing
depth (Fig. 6f ). However, at the same sequencing
depth, the number of splice junctions detected in li-
braries from the SMARTer protocol was lower than
in libraries from the TruSeq Stranded mRNA protocol
(Fig. 6g). Overall, low-input RNA samples subjected
to the SMARTer protocol, when compared to the
TruSeq Stranded mRNA protocol, produced data with
greater rRNA contamination but similar rates of exon
detection. Furthermore, we recovered fewer coding

(See figure on previous page.)
Fig. 4 Concordance of expression quantification between the libraries prepared with standard input protocols. a Scatter plots in a smoothed
color density representation (top-right panel) and Spearman’s rank correlation coefficients (bottom-left panel) for all pairs of libraries using
log2(cpm + 1) values. b Unsupervised clustering of all the libraries using log2(cpm + 1) values. Euclidean distance with complete linkage was used
to cluster the libraries. c Principal component analysis (PCA) of all the libraries, using log2(cpm + 1) values. The values for each gene across all the
libraries were centered to zero and scaled to have unit variance before being analyzed. Circles and triangles represent control and experimental
libraries, respectively (NuGEN, red; TruSeq mRNA, green; TrueSeq Total RNA, blue). For all analyses in Fig. 4, genes represented by fewer than 10
fragments in all the libraries were excluded
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genes and splice junctions but more lncRNAs from li-
braries generated with the SMARTer Ultra Low RNA
Kit. Overall, the kit performed well on these low-
input samples, but as anticipated, did not capture the
range of expression recovered with a kit using more
input RNA.

Concordance of expression quantification and DE
detection (ultra-low protocol)
Spearman’s rank correlation coefficients between the
low-input samples prepared from the same or different
input quantities were very good (0.94–0.99), indicating
high reproducibility with the SMARTer Ultra Low RNA
Kit protocol. However, the coefficients between samples
prepared using the SMARTer and standard TruSeq
Stranded mRNA protocols were lower (0.87–0.91)
(Fig. 7a). PCA showed that the variability among sam-
ples was largely due to differences between the SMAR-
Ter and TruSeq Stranded mRNA libraries, as described
in the first component (Fig. 7b). The transcriptome
profile changes from biological conditions within each
protocol could be explained by the second component
(Fig. 7b). Further investigation showed the SMARTer
protocol tended to allow recovery of genes with higher
expression, lower GC content, and shorter length, com-
pared to the TruSeq mRNA protocol (Additional file 7:
Figure S7D-F). There were 2623 DEGs shared between
the SMARTer libraries generated from either 100 or
1000 cells and the TruSeq Stranded mRNA libraries, ac-
counting for 40, 37, and 23% of the total DEGs detected
in each, respectively, but the majority of DEGs recovered
from the TruSeq Stranded mRNA libraries (4376 genes)
were excluded from the SMARTer libraries (Fig. 7c).
The pairwise scatter plots of log2 ratios between
biological interventions using DEGs showed that the
concordance of DEG detection between the SMARTer
libraries prepared with 100 cells vs. 1000 cells, or be-
tween SMARTer vs. TruSeq Stranded mRNA, was much
lower than that between the standard protocols at nor-
mal input level (Fig. 7d vs. Figure 5c). In summary, the
SMARTer Ultra Low RNA Kit is capable of capturing
the effect of biological conditions, but is not as robust as
the standard input protocol at a normal input level of
2 μg for the TruSeq Stranded mRNA-Seq protocol.

Discussion
Comparing global gene expression in differing biological
contexts is a cornerstone of contemporary biology. As
microarray technology is being supplanted by RNA-Seq
methods for many applications, it is imperative to deter-
mine which library preparation protocols are best suited
for specific needs, for example the recovery of coding vs.
non-coding RNAs and reliable discernment of DEGs.
Here, we have examined three different standard RNA-
Seq library preparation protocols, and one low-input
protocol in terms of overall reproducibility, rRNA con-
tamination, read coverage, 5′- and 3′-end bias, and re-
covery of exonic vs. intronic sequences, lncRNAs, and
DEGs. These protocols were the standard input Illumina
TruSeq Stranded Total RNA, Illumina TruSeq Stranded
mRNA, and modified NuGEN Ovation v2 kits; and the
low input TaKaRa SMARTer Low Input RNA-Seq kit v3,
tested at two different input levels, 100 (~ 1 ng RNA)
and 1000 (~ 10 ng RNA) cells. Although all protocols
yielded reproducible data, overall, the Illumina kits gen-
erally outperformed the modified NuGEN Ovation v2 kit
at standard RNA input levels. The modified NuGEN
protocol was useful for the recovery of lncRNAs and in-
tronic sequences, but also had higher levels of rRNA
contamination.

Undesirable recovery of rRNA
One impediment to the efficient recovery of meaningful
RNA-Seq data is repetitive rRNA. Nearly 80% of RNA in
a cell is rRNA, making it preferable to remove this class
of RNA prior to library construction [17]. RNA-Seq li-
brary preparation protocols depend on one of two
means of reducing rRNA contamination: rRNA deple-
tion and polyA enrichment. For the three standard
protocols and the one ultra-low input protocol we evalu-
ated, the TruSeq Stranded Total RNA and the modified
NuGEN Ovation RNA-Seq System V2 protocols employ
rRNA depletion methods, whereas the TruSeq Stranded
mRNA protocol and SMARTer Ultra-low protocol use
polyA enrichment methods to reduce rRNA contamin-
ation in sequencing libraries. In our present study, the
modified NuGEN protocol libraries averaged 15–20% of
their reads mapping to rRNA, as compared to 1–5% for
the TruSeq protocols (Fig. 2a and Additional file 1:

(See figure on previous page.)
Fig. 5 Concordance of differentially expressed genes (DEGs) recovered from libraries prepared with standard protocols. a Principle component
analysis (PCA) was performed on the libraries prepared with each standard protocol. b Venn diagram showing the number of DEGs recovered
with the three standard protocols. c Pairwise scatter plots of log2 ratio values comparing the DEGs identified in the tumor tissues of control and
experimental mice. The black dots represent genes that were called as differentially expressed in libraries from both protocols, colored dots
represent genes that were called as differentially expressed in the libraries from only one protocol. The Spearman’s rank correlation coefficient is
shown at the top of each plot. The Venn diagram above each plot shows the number of DEGs recovered with the specified protocols. d Scatter
plots of log2 ratio values calculated between tumor tissues of control and experimental mice for each protocol vs. qPCR. Spearman’s rank
correlation coefficient is shown at the top of each plot
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Figure S1A). These results are consistent with those re-
ported by Adiconis et al. (23.2%) [12], but lower than
those reported by Shanker et al. (35%) [13]. However,
our NuGEN rRNA mapping rates were much higher
than those reported by both Sun et al. [18] and Alberti
et al. [19] who had only a 1% rRNA mapping rate for
both their Illumina- and NuGEN-created libraries. While
we cannot explain the differences in rRNA mapping
rates for the NuGEN libraries in these studies, in our
core facility, the NuGEN Ovation v2 kit libraries consist-
ently resulted in a 15–20% rRNA mapping rate, not only
in this study, but also in prior sequencing libraries con-
structed in our facility (data not shown), thus providing
part of the impetus for the current study. We also exam-
ined the rRNA mapping rate in libraries prepared from
two polyA-enrichment protocols, the Illumina TruSeq
Stranded mRNA protocol and the TaKaRa SMARTer
Ultra Low RNA protocol. The SMARTer protocol
yielded a 7–9% rRNA mapping rate, which was inferior
to the TruSeq protocol at standard RNA input levels
(1%) (Fig. 6a). The 7–9% mapping rate yielded by the
SMARTer protocol in our facility was consistent with
that reported by Adiconis et al. [12] and Alberti et al.
[19]. Overall, the protocols we tested were able to re-
move the majority of rRNA. Although the modified
NuGen protocol showed relatively higher rRNA content,
since the existence of rRNA is not expected to introduce
a bias for expression quantification, an increase in se-
quencing depth would be able to compensate.

Overall mapping, end bias and exonic coverage
The TruSeq protocols yielded a ≥ 90% overall mapping
rate for fragments with both ends mapped to the gen-
ome, compared to 60% for the modified NuGEN
protocol (Fig. 2b and Additional file 1: Figure S1B).
This is on par with a prior study showing NuGEN
rRNA-depleted libraries had a 75% alignment rate
and TruSeq PolyA-enrichment mRNA libraries had a
90% alignment rate [18].
To assess whether complete transcripts were evenly

captured by the three standard library preparation proto-
cols, we examined read coverage over the length of the
full transcript. Our results, like those of Acondis [12], in-
dicated that NuGEN libraries displayed augmented 3′-

end signal and depleted 5′-end signal, perhaps due to
using a combination of both oligo[dT] and random
primers during cDNA synthesis [12]. The TruSeq
Stranded mRNA libraries were also somewhat biased, as
reflected by a lack of reads within 200 bps of the 3′-end,
relative to the TruSeq Total RNA libraries (Additional
file 2: Figure S2B, 2D). This may be because of the dif-
ference between the rRNA depletion approaches used by
the TruSeq mRNA and TruSeq total RNA protocols,
resulting in more unmappable reads near the 3′-end in
TruSeq mRNA libraries due to the presence of polyA
tails in these reads.
To determine how well each protocol performed in re-

covering the transcriptome, we examined the compos-
ition of the uniquely mapped fragments from the two
Illumina and the modified NuGEN protocols. Ninety
percent of our reads were mapped to exons using the
TruSeq Stranded mRNA kit, 67–84% using the Total
RNA kit, and 35–46% using the NuGEN kit (Fig. 3a and
Additional file 3: Figure S3A), which is consistent with
similar studies using these kits [9, 11, 13, 18], suggesting
that polyA-enrichment protocols may be superior to
rRNA depletion protocols for studies focusing on exonic
RNA [11, 13, 18]. This is further supported by our find-
ing that, compared to the three standard input proto-
cols, the polyA-based TaKaRa SMARTer Ultra Low
RNA Kit had almost the same exonic coverage as the
TruSeq Stranded mRNA protocol (Fig. 6d). The inverse
was true for the recovery of intronic sequences, with
rRNA-depleted libraries outperforming the polyA-
enrichment libraries. For example, the modified NuGEN
protocol yielded ~ 50% intronic sequences, which was
on par with the results of Shanker et al. (after removing
PCR duplicates) [13], whereas our TruSeq Stranded
Total RNA libraries consisted of 14–28% intronic se-
quences. In contrast, the TruSeq Stranded mRNA librar-
ies contained only 6–8% intronic sequences (Fig. 3a and
Additional file 3: Figure S3A). We also found that the
modified NuGEN kit yielded better lncRNA recovery. In
this case, better lncRNA recovery may be due to differ-
ences in the cDNA synthesis step rather than in the
rRNA depletion step: whereas the TruSeq Stranded
Total RNA protocol uses only random primers for
cDNA synthesis, the modified NuGEN protocol uses a

(See figure on previous page.)
Fig. 6 Mapping statistics, read coverage bias, and transcriptome representation for libraries prepared using the SMARTer Ultra Low RNA Kit. a The
percentage of fragments mapped to rRNA sequences. b Of all the non-rRNA fragments, the percentage of fragments with both ends or one end
mapped to the genome. c The read coverage over transcripts. Each transcript was subdivided evenly into 1000 bins and the read coverage was
averaged over all the transcripts. d Composition of the uniquely mapped fragments, shown as the percentage of fragments in exonic, intronic,
and intergenic regions. According to the direction of transcription, exonic and intronic regions were further divided to sense and antisense. e
Saturation analysis showing the percentage of coding genes recovered at increasing sequencing depth. f Saturation analysis showing the
percentage of lncRNAs recovered at increasing sequencing depth. g Saturation analysis showing the number of splice junctions recovered at
increasing sequencing depth. For the purpose of evaluation, the above analyses also include the libraries prepared with the TruSeq Stranded
mRNA protocol using the same biological conditions
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combination of random and oligo [15] primers, thus
allowing more efficient capture of both coding and non-
coding RNAs with and without polyA-tails [11]. However,
it is also possible that some of the lncRNAs identified in
the rRNA-depleted libraries are merely false signals origin-
ating from intronic reads from other coding genes rather
than lncRNAs [11]. Additionally, it is worth noting that in
our saturation analysis (Fig. 3b, c Additional file 3: Figure
S3B, 3C), the curves reached saturation at ~ 60% coding
genes or ~ 30% lncRNAs, suggesting that achieving in-
creased coverage of coding genes or lncRNAs beyond
these levels by deeper sequencing would be very difficult.

Gene quantification and identification of DEGs
Gene expression quantification in and identification of
DEGs between samples from different biological con-
ditions are two of the primary goals for most RNA-
Seq experiments. In the current study, we identified
960 and 1028 DEGs between experimental and
control tumor tissues using the TruSeq Total RNA
and mRNA protocols (manuscript in preparation), re-
spectively, which was slightly fewer than the 1430
DEGs identified using the modified NuGEN protocol
(Fig. 5b). This contrasts with the work of Sun et al.
who recovered fewer DEGs from NuGEN libraries
than TruSeq PolyA-enrichement libraries [18]. To ex-
plore this difference, we validated our RNA-Seq-
identified DEGs using qRT-PCR. We found that a
greater proportion of DEGs identified using the Tru-
Seq Stranded Total RNA and mRNA libraries were
supported by our qRT-PCR results compared to DEGs
identified using the modified NuGEN protocol librar-
ies. That is, the modified NuGEN protocol may have
resulted in more false-positive DEGs than did the
TruSeq protocols. The comparable performance of
the TruSeq Total and mRNA protocols in our study
contrasts with the results of Zhao, et al., who directly
compared the TruSeq Stranded Total and mRNA pro-
tocols using clinical samples. They found the TruSeq
Stranded mRNA libraries more accurately predicted
gene expression levels than the TruSeq Stranded
Total RNA libraries [11].

Although the SMARTer Ultra Low RNA Kit-generated
libraries were able to capture the effect of biological dif-
ferences between experimental and control samples,
overall, its performance was inferior to that of the Tru-
Seq Stranded mRNA protocol, given both the higher
amount of rRNA recovered and the lower number of
DEGs recovered (Figs. 6 and 7). This may be due to the
very different levels of input RNA used in these two
protocols.

Limitations and future work
There are still some limitations in this study that could
be addressed in future work. For example, this study
didn’t include spike-in RNAs, which could serve as a
sample independent benchmark to further evaluate the
accuracy of DEG detection in libraries prepared by dif-
ferent protocols. Future work could also consider inves-
tigating additional ultralow RNA-Seq protocols and
using standard RNA samples such as Universal Human
Reference RNA (UHRR) for an easier comparison to
other studies. [20]

Conclusions
In summary, all the RNA-Seq library preparation proto-
cols evaluated in this study were suitable for distinguish-
ing between experimental groups when using the
manufacturers’ recommended amount of input RNA.
However, we made some discoveries that might have
been previously overlooked. First, we found that the
TruSeq Stranded mRNA protocol is universally applic-
able to studies focusing on dissecting protein-coding
gene profiles when the amount of input RNA is suffi-
cient, whereas the modified NuGEN protocol might pro-
vide more information in studies designed to understand
lncRNA profiles. Therefore, choosing the appropriate
RNA-Seq library preparation protocol for recovering
specific classes of RNA should be a part of the overall
study design [18]. Second, when dealing with small
amounts of input RNA, the SMARTer Ultra Low RNA
Kit may be a good choice in terms of rRNA removal, ex-
onic mapping rates and recovered DEGs. Third, our sat-
uration analysis indicated that the required sequencing

(See figure on previous page.)
Fig. 7 Concordance of expression quantification and DEG detection using the SMARTer Ultra Low RNA Kit. For the purpose of evaluation, the
libraries prepared from the same biological conditions with the TruSeq Stranded mRNA protocol are also included. a Smoothed color density
representation scatter plots (top, right) and Spearman’s rank correlation coefficients (bottom left) for all library pairs using log2(cpm + 1) values.
100 and 1000 represent the SMARTer Ultra Low RNA Kit using 100 and 1000 cells. b Principal component analysis (PCA) of all libraries using
log2(cpm + 1) values. Red, blue, and green represent libraries prepared with the ultra-low protocol 100 cells, ultra-low protocol 1000 cells, and
TruSeq Stranded mRNA protocol, respectively. Circles and triangles represent control and experimental libraries, respectively. c Venn diagram
showing the number of DEGs recovered with the SMARTer Ultra Low RNA (100 cells and 1000 cells) and the TruSeq Stranded mRNA kits. d
Pairwise scatter plots of log2 ratio values between the biological conditions using the DEGs. The black dots represent genes called as differentially
expressed in libraries prepared with both kits, and the colored dots represent genes called as differentially expressed in libraries from only one kit.
The Spearman’s rank correlation coefficient is shown at the top of each plot. The Venn diagram to the left of each scatter plot shows the number
of DEGs called for the data produced using both or only one of the protocols
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depth depends on the biological question being ad-
dressed by each individual study. Roughly, a minimum
of 20M aligned reads/mate-pairs are required for a pro-
ject designed to detect coding genes and increasing the
sequencing depth to ≥130M reads may be necessary to
thoroughly investigate lncRNAs [21] (note: the needed
sequencing depth may also vary depending on different
biological samples and study designs). Omics technology
and big data will facilitate the development of personal-
ized medicine, but we should understand the outcomes
of the experimental parameters and control for those as
thoroughly as possible.

Methods
Biological samples and RNA isolation
The use of mice in this project has been reviewed and ap-
proved by The University of Texas MD Anderson Cancer
Center (MD Anderson) IACUC committee (ACUF 04–
89-07138, S. Fischer) and (ACUF MODIFICATION
00001124-RN01, T. Chen). C57BL/6 mice were purchased
from The Jackson Laboratory (Bar Harbor, ME). For the
three standard input RNA-Seq library preparation proto-
cols (Illumina TruSeq Stranded Total RNA, TruSeq
Stranded mRNA kit, and the modified NuGEN Ovation
RNA-Seq kits), total RNA was isolated from three xeno-
graft tumors (biological replicates) from control [30% cal-
orie restricted diet [19]] and experimental [(diet-induced
obese (OB)) xenograft mouse models in the C57BL/6 gen-
etic background, respectively. C57BL/6 mice were chosen,
in part, because they are susceptible to obesity when fed a
high-fat diet [22]. We fed the mice with two commercial
diets following previously established guidelines (Research
Diets, Inc., New Brunswick, NJ): a CR diet (D03020702)
for lean C57BL/6 mice (30% CR), and a diet-induced obes-
ity (DIO) diet (D12492; consumed ad libitum) for OB
C57BL/6 mice, 10 mice per group [23]. Mice were hu-
manely euthanized using carbon dioxide and followed by
cervical dislocation, per IACUC approved procedures. A
manuscript describing the details of the mouse obesity/
tumor xenograft study, including transcriptomic profiling
results, is in preparation. For the SMARTer Ultra Low
RNA Kit, designed to evaluate both rare cell populations
and fixed clinical samples, three mESCs cell lines (bio-
logical replicates) from Zbtb24 knockout (1lox/1lox)
clones and three Zbtb24 wild-type (2lox/+) clones were
used as experimental and control samples, respectively.
The mice used for this part of the study were generated
in-house at MD Anderson Science Park. A manuscript de-
scribing the Zbtb24 KO mESCs, including transcriptomic
profiling results, is also in preparation.
Total RNA from mouse xenograft tumor tissues was

isolated using TRIZOL following the manufacturer’s
protocol. Isolated RNA samples were treated with DNase
I followed by purification with a QIAGEN RNeasy Mini

kit (Madison, WI). Total RNA from mESCs was extracted
using the QIAGEN RNeasy Mini kit with on-column
DNase treatment following the manufacturer’s protocol.
Both concentration and quality of all the isolated RNA
samples were measured and checked with an Agilent
Bioanalyzer 2100 and Qubit. All RNA samples had
RNA integrity numbers > 8.90. For the low-cell-input
experiments, 100 cells and 1000 cells (~ 1 and 10 ng
RNA, respectively, according to the SMARTer Ultra
Low RNA kit user manual) were used directly without
isolating total RNA in accordance with manufacturer
recommendations.

TruSeq stranded total RNA and mRNA library
preparations
Libraries were prepared using the Illumina TruSeq
Stranded Total RNA (Cat. # RS-122-2301) or mRNA
(Cat. # RS-122-2101) kit according to the manufacturer’s
protocol starting with 1 μg total RNA. Briefly, rRNA-
depleted RNAs (Total RNA kit) or purified mRNAs
(mRNA kit) were fragmented and converted to cDNA
with reverse transcriptase. The resulting cDNAs were
converted to double stranded cDNAs and subjected to
end-repair, A-tailing, and adapter ligation. The con-
structed libraries were amplified using 8 cycles of PCR.

NuGEN ovation RNA-Seq system v2 modified with SPRI-TE
library construction system
Total RNA (100 ng) was converted to cDNA using the
NuGEN Ovation RNA-Seq System v2 (Cat. # 7102–32)
(NuGEN) following the manufacturer’s protocol
(NuGEN, San Carlos, CA). NuGEN-amplified double-
stranded cDNAs were broken into ~ 180 base pair (bp)
fragments by sonication with a Covaris S220 instrument
(Covaris, Woburn, MA). Fragmented cDNAs were
processed on a SPRI-TE library construction system
(Beckman Coulter, Fullerton, CA). Uniquely indexed
NEXTflex adapters (Bioo Scientific, Austin, TX) were li-
gated onto each sample to allow for multiplexing.
Adapter-ligated libraries were amplified [1 cycle at 98 °C
for 45 s; 15 cycles at 98 °C for 15 s, 65 °C for 30 s, and
72 °C for 30 s; 1 cycle at 72 °C for 1 min; and a hold at
4 °C] using a KAPA library amplification kit (KAPA Bio-
systems, Wilmington, MA) and purified with AMPure
XP beads (Beckman Coulter).

Modified protocol for the SMARTer ultra low RNA and
Nextera DNA library preparation kits
mESC were lysed in the reaction buffer included in the
SMARTer Ultra Low RNA Kit v3 (Cat. # 634849)
(TaKaRa, Japan). cDNA was then synthesized using the
SMARTer Ultra Low RNA Kit followed by library con-
struction using the Nextera DNA Sample Preparation
Kit (Cat. # FC-131-1024) (Illumina, San Diego, CA),
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according to the manufacturers’ protocols. We per-
formed 10 cycles of PCR for 1000 cells (~ 10 ng RNA)
(SMARTer 1000), and 18 cycles of PCR for 100 cells
(~ 1 ng RNA) (SMARTer 100).

Next-generation sequencing
Ten pM of pooled libraries were processed using a cBot
(Illumina) for cluster generation before sequencing on
an Illumina HiSeq 2500 (2 × 76 bp run).

RNA-Seq data analysis
Mapping
Reads were mapped to rRNA sequences (GI numbers:
262231778, 120444901, 120444900, 328447215, 38
176281 and Ensembl IDs: ENSMUST00000082388,
ENSMUST00000082390, ENSMUST00000083988, EN
SMUST00000157970) using Bowtie2 (version 2.1.0)
[24]. Reads that were not mapped to rRNAs were
then mapped to the mouse genome (mm10) using
TopHat (version 2.0.10) [25].

Read coverage over transcripts
The longest transcript from each gene was chosen to
represent the gene. The reads were then mapped to all
the transcript sequences using Bowtie2. Transcripts with
fewer than 200 total fragment counts or shorter than
1000 bps were filtered out leaving at least 12 k tran-
scripts for each sample. Each full-length transcript was
subdivided evenly into 1000 bins. The mean coverage of
fragments over each bin was normalized to the total
coverage over the whole transcript and then averaged
over all the transcripts. Alternatively, the coverage of
fragments over each position of the 1000 bps down-
stream of the 5′-end or upstream of the 3′-end was nor-
malized by the mean coverage of the whole transcript,
and then averaged over all the transcripts.

Discovery of splicing junctions
The number of known splicing junctions (defined as junc-
tions with both 5′- and 3′- splice sites annotated in the
reference gene set) supported by at least one read in each
sample was counted using RSeQC (version 2.6.4) [26].

Saturation plots
Each point in a saturation curve was generated by
randomly selecting the desired number of fragments
and calculating the percentage of genes with more
than 10 fragments over all the genes. For each sam-
ple, this procedure was repeated three times and the
curve represents the average percentage of genes at
each corresponding number of fragments.

Sample clustering
Hierarchical clustering of samples was performed using
the log2(cpm + 1) values of all the genes using the dist
function and Euclidean method in R, as well as the hier-
archical clustering (hclust) function and complete
method in R.

Differential expression
The number of fragments in each known gene from
GENCODE Release M4 [27] was enumerated using the
htseq-count script within the HTSeq package (version
0.6.1) [28] with options -m union and -s no/reverse
(“no” for strand-unspecific protocols and “yes” for
strand-specific protocols). Fragments that were mapped
to multiple genes or multiple locations were discarded.
For strand-specific protocols, fragments that were
mapped to the antisense strand of the genes were dis-
carded. Genes represented by fewer than 10 fragments
in all samples were removed before performing differen-
tial expression analysis. Differences in gene expression
between conditions were statistically assessed using the
R/Bioconductor package edgeR (version 3.6.1) [29].
Genes with a false discovery rate (FDR) ≤ 0.05 and
length > 200 bps were called as differentially expressed.
The software used in this study is listed in Table 1.

Box plots of gene expression, GC content and gene length
Between a pair of protocols, the genes with elevated
expression in one protocol compared to the other
protocol were identified by edgeR at FDR < 0.01 and
log2 ratio > 1. Then the gene expression, GC content,
and gene length for the two groups of more highly
expressed genes were plotted in box plots. The gene

Table 1 Software used in this study

software version website reference

Bowtie2 2.1.0 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml Fast gapped-read alignment with Bowtie 2

TopHat 2.0.10 http://ccb.jhu.edu/software/tophat/index.shtml TopHat: discovering splice junctions with RNA-Seq

HTSeq-count 0.6.1 https://htseq.readthedocs.io HTSeq — A Python framework to work with
high-throughput sequencing data

edgeR 3.6.1 https://bioconductor.org/packages/release/bioc/html/edgeR.html edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data

RSeQC 2.6.4 http://rseqc.sourceforge.net RSeQC: quality control of RNA-seq experiments

R 3.1.0 https://www.r-project.org
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expression is the average FPKM (number of fragments
per kilobase per million mapped fragments) value of
all the samples used in the evaluation of the standard
input or ultralow input protocols. The longest tran-
script representing each gene was used to calculate
both gene GC content and length.

Additional files

Additional file 1: Figure S1. Mapping statistics and read coverage over
transcripts for all the libraries prepared from 100 ng RNA with standard
input protocols prepared. A. The rRNA mapping rate was calculated as
the percentage of fragments that were mappable to rRNA sequences. B.
The non-rRNA mapping rate was calculated from all the non-rRNA
fragments as the percentage of fragments with both ends or one end
mapped to the genome. C. Multiple alignment rates were determined
from non-rRNA fragments that were mapped to multiple locations of the
genome. D. Read-bias was assessed using the read coverage over
transcripts. Each transcript was subdivided evenly into 1000 bins and the
read coverage was averaged over all the transcripts. (TIF 2856 kb)

Additional file 2: Figure S2. Read coverage near the 5′- (A and C) and
3′-end (B and D) of the transcripts. The TruSeq Total RNA and mRNA
libraries shown in A and B were prepared from 1 μg RNA and in C and D
were prepared from 100 ng RNA. The read coverage over each position
of the 1000 bps downstream of the 5′-end or upstream of the 3′-end was
normalized to the mean coverage over the whole transcript, and then
averaged over all the transcripts. (TIF 2833 kb)

Additional file 3: Figure S3. Representation of the transcriptome for all
the libraries prepared from 100 ng RNA with standard input protocols. A.
Composition of the uniquely mapped fragments, shown as the
percentage of fragments in exonic, intronic, and intergenic regions.
According to the direction of transcription, exonic and intronic regions
were further divided into sense and antisense. B. Saturation analysis
showing the percentage of coding genes recovered (calculated as the
genes with more than 10 fragments) at increasing sequencing depth.
C-D. Saturation analysis showing the percentage of lncRNAs recovered
(calculated as the lncRNAs with more than 10 fragments) at increasing
sequencing depth. In C, the six libraries created using each of three
protocols (18 libraries total) are plotted individually. In D, the six libraries
from the same protocol were pooled. E. Saturation analysis showing the
number of splice junctions recovered at increasing sequencing depth.
(TIF 3724 kb)

Additional file 4: Figure S4. Concordance of expression quantification
between the libraries prepared from 100 ng RNA with standard input
protocols. A. Scatter plots in a smoothed color density representation
(top-right panel) and Spearman’s rank correlation coefficients (bottom-left
panel) for all pairs of libraries using log2(cpm + 1) values. B. Unsupervised
clustering of all the libraries using log2(cpm + 1) values. Euclidean
distance with complete linkage was used to cluster the libraries. C.
Principal component analysis (PCA) of all the libraries, using log2(cpm + 1)
values. The values for each gene across all the libraries were centered to
zero and scaled to have unit variance before being analyzed. Circles and
triangles represent control and experimental libraries, respectively
(NuGEN, red; TruSeq mRNA, green; TrueSeq Total RNA, blue). For all
analyses in Fig. 4, genes represented by fewer than 10 fragments in all
the libraries were excluded. (TIF 7558 kb)

Additional file 5: Figre S5. Concordance of expression quantification
using standard protocols with additional technical replicates prepared by
the TruSeq Stranded Total RNA and mRNA protocols. A. Unsupervised
clustering of all the libraries using log2(cpm + 1) values. Euclidean
distance with complete linkage was used to cluster the libraries. B.
Principal component analysis (PCA) for all libraries using log2(cpm + 1)
values. Blue, green and red dots represent libraries prepared using the
TruSeq Stranded Total RNA, TruSeq Stranded mRNA, and NuGen
protocols, respectively. The darker colors represent the original libraries
presented in this study, and the lighter colors are technical replicates

prepared at different times. Circles and triangles represent control and
experimental libraries, respectively. (TIF 2607 kb)

Additional file 6: Figure S6. Supplementary to Fig. 5. A. Principle
component analysis (PCA) for the libraries prepared with the TruSeq Total
RNA (100 ng) and the TruSeq mRNA (100 ng) protocols. B. (Left) Venn
diagram showing the number of DEGs recovered using the specified
protocols. The modified NuGEN protocol is not included for the
comparison, because one of the libraries prepared with the TruSeq Total
RNA protocol (100 ng) and the TruSeq mRNA protocol (100 ng) used a
different xenograft tumor from a different mouse. [9] Pairwise scatter
plots of log2 ratios between tumor tissues of control and experimental
mice based on DEGs. The black dots represent genes that were called as
differentially expressed regardless of library preparation method, and
colored dots represent genes that were called as differentially expressed
with only one library preparation method. The Spearman’s rank
correlation coefficient is shown at the top of the plot. (TIF 1431 kb)

Additional file 7: Figure S7. Box plots of gene expression, GC content
and gene length for the genes with elevated expression estimation in
one protocol compared to the other protocol. Top figures are box plots
of gene expression in log2(FPKM+ 1). Middle figures are box plots of GC
content. Bottom figures are box plots of gene length. Panels A-C are for
the standard input methods. Panels D-F are for the SMARTer Ultra Low
RNA Kit. Panel A shows TruSeq mRNA protocol vs. the TruSeq Total RNA
protocol. Panel B shows the TruSeq mRNA protocol vs. the modified
NuGEN protocol. Panel C shows the NuGEN protocol vs. the TruSeq Total
RNA protocol. Panel D shows the SMARTer Ultra Low RNA Kit 100 cells vs.
1000 cells. Panel E shows the TruSeq mRNA protocol vs. the SMARTer
ultra-low protocol (100 cells). Panel F shows the TruSeq mRNA protocol
vs. the SMARTer protocol (1000 cells). (TIF 2445 kb)
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