
ARTICLE

PRMT5-mediated regulation of developmental
myelination
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Oligodendrocytes (OLs) are the myelin-forming cells of the central nervous system. They are

derived from differentiation of oligodendrocyte progenitors through a process requiring cell

cycle exit and histone modifications. Here we identify the histone arginine methyl-transferase

PRMT5, a molecule catalyzing symmetric methylation of histone H4R3, as critical for

developmental myelination. PRMT5 pharmacological inhibition, CRISPR/cas9 targeting, or

genetic ablation decrease p53-dependent survival and impair differentiation without affecting

proliferation. Conditional ablation of Prmt5 in progenitors results in hypomyelination, reduced

survival and differentiation. Decreased histone H4R3 symmetric methylation is followed by

increased nuclear acetylation of H4K5, and is rescued by pharmacological inhibition of his-

tone acetyltransferases. Data obtained using purified histones further validate the results

obtained in mice and in cultured oligodendrocyte progenitors. Together, these results identify

PRMT5 as critical for oligodendrocyte differentiation and developmental myelination by

modulating the cross-talk between histone arginine methylation and lysine acetylation.
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Brain function is highly specialized and dependent on the
integrated action of several cell types. Oligodendrocytes
(OLs) are the myelin-forming cells of the central nervous

system (CNS) and are responsible for ensuring axonal conduction
and neuronal support1. Their number is tightly regulated and
dependent on differentiation, survival, and proliferation of oli-
godendrocyte progenitor cells (OPCs). Therefore, understanding
the basic processes regulating OL cell number is key for the
advancement in neurobiology.

We and others have previously contributed to elucidating the
molecular mechanisms governing proliferation and differentiation
of OPC2–4. Among the latter, we reported decreased acetylation of
lysine residues on histone tails as an essential event for the dif-
ferentiation of OPCs into OL2,5–9. Based on these and additional
studies10,11, we proposed a mechanism of developmental myeli-
nation driven by de-repression of inhibitory molecules9,12.

Besides modifications of lysine residues, repressive modifica-
tions of nucleosomal histones include the symmetric dimethyla-
tion of arginines (ω-NG, ω-N′G-dimethyl arginine), which is
mediated by class-II protein arginine methyltransferases
(PRMTs) such as PRMT513,14 and PRMT915,16. PRMT5 is
expressed in the brain and enriched in the OL lineage17–19. Its
activity is thought to negatively regulate gene expression due to
methylation of multiple arginine residues on nucleosomal
histone tails20–22. PRMT5 is also expressed at high levels in
proneural gliomas, which are transcriptionally related to
OPCs23,24, and arise from their transformation25,26. PRMT5
levels positively correlate with malignancy and negatively corre-
late with glioma patients’ survival27,28, therefore justifying
the efforts to identify specific pharmacological inhibitors as
potential therapeutic targets27,29–33. Despite several studies
highlighting the importance of PRMT5 in malignancies, the
physiological role of this enzyme in the OL lineage remains
poorly understood.

Previous studies in neural stem cells underlined the importance
of PRMT5 in the regulation of pre-mRNA splicing34. Another
study in a glial cell line suggested this enzyme could affect OL
differentiation by affecting transcription, although the mechanistic
aspects were not elucidated19. Based on this cumulative evidence,
we reasoned that a thorough characterization of PRMT5 in the OL
lineage is timely and may shed some light on a better under-
standing of the regulation of OL cell number in the brain. In this
study, we adopted several strategies to address this key question
including: a detailed characterization of mice with cell-lineage-
specific ablation of Prmt5 in immature oligodendrocyte progeni-
tors or in oligodendrocytes, the use of CRISPR/Cas9 and phar-
macological inhibitors to interfere with PRMT5 function in
primary OPC cultures, transcriptomic analyses, and biochemical
assays using synthetic proteins and modified histone peptides.

Because the study of symmetric arginine methylation relies on
the high quality of reagents, in this study we extensively char-
acterized the specificity of all the commercially available anti-
bodies to study this modification and selected those with the
highest level of discriminatory power from other modifications
(including asymmetric methylation at the same residue). Overall,
this comprehensive study identifies PRMT5 as a key regulator of
the number of myelinating cells in the CNS, by modulating
survival of differentiating progenitors and orchestrating a tight
coordination between symmetric histone arginine methylation
and decreased histone lysine acetylation at the transition between
growth arrest and differentiation.

Results
PRMT5 expression and activity in the oligodendrocyte lineage.
To characterize the expression pattern of Prmt5 in OL lineage

cells, we measured its transcript levels in RNA samples obtained
from cultured primary oligodendrocyte progenitors (OPCs) kept
either in proliferating or differentiating conditions, and compared
with values from the immortalized OliNeu cell line or primary
glioma cells. High levels of Prmt5 were detected in proliferating
OPCs, OliNeu, and glioma cells and lower transcripts in differ-
entiating OPCs (Fig. 1a). At a subcellular level PRMT5 was found
in the cytosol of proliferating OPCs (Fig. 1b) and in the nucleus
of differentiating cells, after growth arrest induced by the with-
drawal of growth factors (Fig. 1c, f). Prmt5 transcripts were high
in the developing spinal cord at postnatal day 1 and then pro-
gressively declined over time (Fig. 1d). In the mouse brain its
protein distribution was mostly cytoplasmic in OLIG2+ OPCs
and nuclear in MBP+ differentiating OLs (Fig. 1e). This nucleo-
cytoplasmic pattern was reminiscent of the dynamic changes in
subcellular localization previously described for cell cycle reg-
ulators at the time of growth arrest35 and suggested that
PRMT5 subcellular distribution is dependent on the proliferative
state of the cells.

Because PRMT5 enzymatic activity is responsible for the
symmetric methylation of arginine (R) residues on histone tails36,
it is important to identify antibodies with the ability to discern
this post-translational modification (PTM) in a very selective and
specific manner (i.e., ascertain that other modifications of amino
acid residues on the histone tails do not interfere with the
specificity of epitope recognition by antibodies37). For this reason,
prior to characterizing the enzymatic marks placed by PRMT5 in
OL lineage cells, we conducted a systematic analysis of all the
commercially available antibodies directed towards recognition of
methylated arginine residues on histone tails (see Methods), using
a modified Histone Peptide Array (Active Motif) (Supplementary
Table 1; Supplementary Fig. 1). The assay included histone
peptides with 384 permutations, including single or multiple
combinations of PTMs on specific amino acid residues
(a comprehensive list of all the PTM modifications can be
accessed by using the link: https://www.activemotif.com/catalog/
668/modified-histone-peptide-array and downloading the excel
file). To study H4R3me2s, we selected the antibody that was able
to recognize the methylated R epitope, regardless of the presence
of PTM on adjacent lysine residues (Epigentek, Supplementary
Fig. 1). Antibody specificity was further assessed by the loss of
signal in cells with CRISPR/Cas9 targeting of Prmt5 (Supple-
mentary Fig. 2).

Using these highly specific antibodies, we detected the PRMT5-
dependent H4R3me2s histones in the cytoplasm of proliferating
OPCs and in the nucleus of differentiating oligodendrocyte
lineage cells, both in culture (Fig. 1g, h) and in vivo (Fig. 1i, j).
Importantly, the accumulation of nuclear H4R3me2s in primary
cultured OPCs was detected at time of growth arrest38,39 after 12
h from growth factor withdrawal.

Ablation of Prmt5 results in severe hypomyelination. In order
to test the functional importance of symmetric histone arginine
methylation for myelination, we conditionally ablated Prmt5 in
OPCs, by crossing the Prmt5fl/fl line with the OPC-specific Olig1-
Cre driver line. Immunophenotypic characterization of these mice
was performed by conducting confocal analysis of brain sections,
stained with antibodies specific for the pan-OL lineage marker
OLIG2, for OPC-specific surface receptor (e.g., platelet-derived
growth factor receptor-α (PDGFRα)) and for differentiation
markers (e.g., CC1 or MBP). At postnatal day 14, mutants were
characterized by dramatic hypomyelination (Fig. 2a, c), reduction
of CC1+/OLIG2+ OLs (Fig. 2b, d), and precocious mortality
(Fig. 2e). Ablation of the enzyme at later stages of development,
using the Cnp-Cre driver line to target OLs, did not significantly
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reduce myelin content or affect cell number (Supplementary
Fig. 3).

The decreased number of OLIG2+ cells was first detected
at postnatal day 14 Olig1Cre/+;Prmt5fl/fl mice and not observed
at earlier developmental time points (Fig. 3a, b) and was
not accompanied by a reduction of PDGFRα+ OPCs (Fig. 3c).
Proliferation of OPCs in vivo was not affected by loss of
Prmt5 (Fig. 3d) and this was in contrast with previous reports
on the effect of PRMT5 inhibition in cancer cells40,41. To
further ascertain that PRMT5 did not affect proliferation,
we treated primary cultures of OPCs with GSK591, a
selective inhibitor of PRMT5 (which inhibits symmetric
dimethylation of arginine containing substrates by the PRMT5/

MEP50 complex42) (Fig. 3e). Progenitors were identified by
PDGFRα immunoreactivity and proliferation was measured by
counting the number of cells immunoreactive for both KI67 and
PDGFRα (Fig. 3f, g). Similar to the in vivo condition, inhibition
of PRMT5 enzymatic activity in primary cultured proliferating
OPCs did not reduce proliferation (Fig. 3g). To begin
characterizing the PRMT5-dependent mechanism of OL cell
number regulation, we adopted the CRISPR/Cas9 lentiviral
system, which effectively decreased its protein levels (Supple-
mentary Fig. 4a, b). Cell counts at multiple time points
after PRMT5-CRISPR lentiviral construct infection
revealed reduced numbers compared to EGFP-CRISPR controls
(Supplementary Fig. 4c). Downregulation of PRMT5, using
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Fig. 1 Subcellular localization of PRMT5 and histone H4R3me2s during oligodendrocyte differentiation. a Prmt5 transcripts in proliferating (+GF), arrested
OPC (−GF), OliNeu, or glioma cells. Scatter plots represent the average of three biological replicates, each in triplicate and normalized by the average of
three housekeeping genes (18s, Wdr33, and Pja2). Values are referred as relative to those measured in OPC+GF (one-way ANOVA with Bonferroni’s
multiple comparison test, *p < 0.05). b Confocal images of cells stained for PRMT5 (green), DAPI (blue), and either KI67 (red) and PDGFRα (white) in
proliferating OPCs, or CNP (red) and MBP (white) in differentiating OPCs. Scale bar: 10 μm. c Relative quantification of cytoplasmic or nuclear PRMT5 in
150 PDGFRα+ or CNP+ cells. Values represent means ± sem from four biological replicates (one-way ANOVA, ***p < 0.001). d Prmt5 transcripts in three
biological RNA preparations from mouse spinal cord at indicated time points, normalized as described in a and referred to levels detected at P1 (one-way
ANOVA with Bonferroni’s multiple comparison test, **p < 0.01, ***p < 0.001). e Confocal images of P7 brains stained for PRMT5 (green), OLIG2 (red),
MBP (white), and DAPI (blue). Scale bar: 10 μM. f Quantification of nuclear PRMT5 intensity in OPCs. Scatter plots representing the average pixel intensity
of 600 (for OPC+GF and OPC−GF12 h) and 569 (OPC−GF 48 h) nuclei quantified per condition (technical triplicates of four different biological
preparations). One-way ANOVA, ***p < 0.001. g Confocal image of the PRMT5-specific mark H4R3me2s (green) in PDGFRα+ (white) or MBP+ (white)
cells. DAPI (blue) as nuclear counterstaining. Scale bar: 5 μm. h Scatter plots representing the average pixel intensity of H4R3me2s-stained nuclei.
Quantification of 468 nuclei of cells in proliferating conditions, 543 nuclei in growth-arrested, and 493 in differentiation conditions, each from four different
preparations. One-way ANOVA, ***p < 0.001. i Representative confocal image of P4 mouse brain stained for H4Rme2s (green), OLIG2 (red), and DAPI
(blue). Scale bar: 5 μm. j Scatter plots representing the average pixel intensity of H4R3me2s-stained nuclei of OLIG2+ at the indicated time points. Two
hundred nuclei were quantified at each time point (50 cells/animal and four mice per time point. One-way ANOVA, ***p < 0.001
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this system (Fig. 3h), also did not significantly impact prolifera-
tion of the cells (Fig. 3i, j).

Collectively, these results highlight the role of PRMT5 as a key
modulator of OPCs early development and differentiation, but
not as a regulator of physiological proliferation.

Decreased progenitor survival and differentiation without
PRMT5. The transcriptional consequences of PRMT5 depletion
in OL lineage cells were further evaluated using RNA-sequencing
(RNA-seq) analysis of four biological replicates of PRMT5-
CRISPR and EGFP-CRISPR cells, which revealed similar number
of reads in the four replicates of each group (Supplementary
Table 2). Based on a threshold of fold change >1.5 and false
discovery rate (FDR) q value <0.05, we identified 368 down-
regulated and 370 up-regulated genes in the PRMT5-CRISPR
cells compared to the control group (Fig. 4a and Supplementary
Data 1). When interrogated using the Gene Set Enrichment
Analysis (GSEA) software based on curated datasets (for details
please see Online Methods), we identified downregulation of “OL
signature” genes, and up-regulation of “P53-pathway” genes
(Fig. 4b, c).

Among the OL-specific genes, we identified and validated
transcripts whose levels were decreased at least 50% in the
mutants compared to controls and included the G-protein-
coupled receptor Gpr17 and the transcription factors Sox10 and

Myt1 (Fig. 4d, Supplementary Data 1, and Supplementary
Table 3).

Among the P53 target genes, we identified and validated
transcripts whose levels were increased at least 50% in the
mutants compared to controls. They included the E3 ubiquitin
ligase and negative regulator of P53 Mdm243, the growth arrest
gene Cdkn1a and the pro-apoptotic gene Perp (Fig. 4e). Of note,
MDM2 is a negative regulator of P53 and yet the protein levels of
P53 were up-regulated in cells after PRMT5-CRISPR knockdown
(Supplementary Fig. 4a, b). A similar up-regulation of P53 target
genes had been previously detected in neural stem cells lacking
PRMT5 enzymatic activity and attributed to changes in pre-
mRNA splicing of molecules involved in P53 activity (e.g.,
Mdm4)34. For this reason, we analyzed differential splicing events
using MATS 3.0.6 beta44 and identified 215 skipped exon, 35
mutually exclusive exon, 15 alternative 5′ or 12 alternative 3′
splice sites, and 6 retained introns as differentially spliced in the
mutants compared to controls (Supplementary Fig. 5c and
Supplementary Table 4).

This was distinct from what had been previously reported
for neural stem cells34 or OPCs from mutants of other
epigenomic regulators45. For instance, in contrast to neural stem
cells, we did not detect intron-retention events as one of the most
affected category and we reasoned that these differences could be
explained by transcriptomic differences among distinct cell types.
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However, despite the fact that Mdm4 splicing was not
significantly altered in Prmt5-null OPCs, based on its previously
reported role as key regulators of P53 levels in neural stem cells,
we asked whether it could also be affected in OPCs. Assessment
of Mdm4 splice variants in OPCs after CRISPR-PRMT5 revealed
the presence of a weak band corresponding to the smaller isoform
(Mdm4s) in the cells lacking Prmt5 (Supplementary Fig. 5d).
Therefore, the effect of Prmt5 ablation onMdm4 splicing in OPCs
was modest and did not resemble the strong effect detected in
neural stem cells during embryonic development34, suggesting
that the effect of Prmt5 loss of function is highly cell type specific.

To further define whether the up-regulation of P53 and its
target genes induced apoptosis of OPCs, we stained EGFP-
CRISPR and PRMT5-CRISPR primary OPC cultures with
antibodies specific for cleaved caspase-3 as a marker of apoptosis,
and CNP as a marker of OL differentiation (Fig. 4f). Ablation of
Prmt5 resulted in increased number of apoptotic CNP+ cells
(Fig. 4g) and impaired differentiation, as even the

immunoreactive cells did not display the characteristically
branched morphology of mature OLs. Overall, these results
suggested that PRMT5 was necessary not only for OPC survival
but also for their differentiation.

To further characterize the mechanism underlying the P53-
dependent OPC survival after inhibition of PRMT5 activity, we
used ablation of its gene, Trp53, in primary OPCs. We obtained
OPCs from Trp53fl/fl mice, infected them with Cre retroviruses
(recombination was 72%), and used uninfected Trp53fl/fl cells as
controls (Fig. 5a). Because we identified PRMT5 as important for
the transition of OPCs between growth arrest and differentiation,
we analyzed the effect of the PRMT5 pharmacological inhibitor
GSK591 in the presence (to maintain proliferation) or absence of
growth factors (to induce growth arrest). Consistent with the
phenotype detected in Prmt5 mutant mice, GSK591 treatment
had a minor impact on proliferating OPCs, while it profoundly
decreased the number of differentiating cells (Fig. 5b, c).
Interestingly, deletion of Trp53 completely rescued the effect of
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CRISPR) and knockdown (PRMT5-CRISPR) OliNeu cells stained with antibodies specific for OLIG2 (white), KI67 (red), and DAPI (blue). Scale bar: 20 μm.
j Quantification of KI67 immunoreactivity measured in at least 50 OLIG2+ cells from three biological replicates. Scatter plots indicate values relative to the
average of the EGFP-CRISPR group (Student’s t test). n.s. nonsignificant
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the PRMT5 inhibitor on survival (Fig. 5b). However, it rescued
only partially the number of differentiating OPCs (Fig. 5c). To
define whether pharmacological inhibition of PRMT5 induced
apoptosis, we stained differentiated cells with antibodies specific
for CNP and for cleaved caspase-3 (Fig. 5d). Also, in this case, we
detected a profound reduction of the number of cleaved caspase-
3-positive CNP+ cells in differentiating OPCs lacking Trp53, in
response to GSK591 treatment. Importantly, the overall number
of CNP+ cells was not entirely rescued by the absence of P53
(Fig. 5e), thereby suggesting that the effect of PRMT5 inhibitors
on differentiation cannot be entirely explained in terms
of survival.

Together, these results support the concept that PRMT5 is
critical for OPC differentiation and that in its absence cells cannot
properly differentiate and therefore are eliminated via a P53-
dependent mechanism of apoptosis.

Histone arginine methylation and lysine acetylation cross-talk.
To address the potential mechanisms underlying the defective
differentiation of OPCs induced by loss of PRMT5 activity, we

then conducted an exploratory proteomic analysis which revealed
protein categories related to mRNA processing, transport, and
splicing as one of the most representative interacting partners for
PRMT5. Interestingly, we also detected the categories related to
acetyltransferases and regulation of histone lysine acetylation.
Since we had previously shown that decreased bulk of histone
acetylation is crucial for the early stages of OPC differentiation
into OLs2,5–9, we hypothesized the existence of a relationship
between PRMT5-dependent methylation of histone arginine and
acetylation of lysine residues on histone H4. To explore this
relationship, we conducted a series of in vitro reconstitution
experiments using methyl and acetyl donors and purified pro-
teins, including PRMT5/MEP50 protein complex, the histone
substrate H4, and the histone acetyltransferases KAT7, KAT5,
and KAT2a (purchased from SignalChem). Those acetyl-
transferases were selected because they have the ability to acet-
ylate lysines on histone H4 and they are also expressed in the OL
lineage (Supplementary Fig. 6). To understand whether PRMT5-
dependent premethylation of the KATs or of the histone H4
interfered with the ability of the histone acetyltransferases to
acetylate lysine residues on histone H4, we conducted the first
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Fig. 4 Transcriptional consequences of decreased PRMT5 expression, using CRISPR/Cas9. a Volcano plot representing gene expression differences in
OPCs between PRMT5-CRISPR knockdown and EGFP-CRISPR controls. Each gene is represented by a dot with the red dots indicating the differentially
expressed transcripts that are statistically significant (fold change >1.5, FDR q value <0.05). b, c Gene set enrichment analysis (GSEA) identified
b oligodendrocyte-specific genes as downregulated and c P53 targets genes as up-regulated upon PRMT5 knockdown. d, e qRT-PCR validation of
representative genes in each category, including d oligodendrocyte lineage (Gpr17, Myt1, and Sox10) and e P53 targets (Mdm2, Cdkn1a, and Perp) genes.
Transcripts were normalized to the geo-mean of three housekeeping genes (18s, Wdr33, and Pja2). Scatter plots represent average values of three
independent preparations relative to controls. Student’s t test, *p < 0.05, **p < 0.01. f Representative confocal images of control (EGFP-CRISPR) and
knockdown (PRMT5-CRISPR) oligodendrocyte lineage cells cultured in differentiating conditions for 48 h and then stained with antibodies specific for CNP
(red), cleaved CASPASE-3 (c-CASPASE3, green), and DAPI (blue). Scale bar: 10 μm. g Scatter plots represent average number of CNP+ relative to total
DAPI+ cells and average intensity of cleaved CASPASE-3 staining in five wells from three independent biological replicates in the PRMT5-CRISPR (418 total
cells counted) group relative to the EGFP-CRISPR control group (428 total cell counted). Student’s t test, **p < 0.01, ***p < 0.001
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experiment in two steps: premethylation of KATs and H4 fol-
lowed by the addition of acetyl donor groups and additional
histones. Acetylation activity was then assessed by western blot
analysis using residue-specific antibodies (Fig. 6a) and the results
of three independent experiments were quantified (Fig. 6b).

Acetylation of lysine residue K5 in histone H4 by the
acetyltransferases KAT7, KAT5, and KAT2a was reduced only
if the histone H4 had been previously methylated on the arginine
residue R3 by pre-incubation with PRMT5 (lanes 3, 6, and 9 of
Fig. 6a, b). As expected, the pre-incubation of the individual
KATs with PRMT5 in the absence of methyl donors did not affect
the levels of histone acetylation (as in lanes 1, 4, and 7 of
Fig. 6a, b), although a modest reduction of acetylation could be
detected if PRMT5 was pre-incubated with KAT5 or KAT7 in the
presence of a methyl donor (lanes 2 and 4 in Fig. 6a, b).

Together, these results support the concept that histone lysine
acetylation was inhibited by the deposition of H4R3me2s by
PRMT5, and not consequent to competition between PRMT5 and
the KATs for H4. The mild decrease of histone acetylation
detected for KAT5 and KAT7, but not KAT2, also suggests the

existence of an additional cross-talk between specific KATs and
PRMT5.

To further address whether the inhibitory relationship between
arginine methylation and lysine acetylation on histone H4 was
reciprocal, we conducted an in vitro sequential enzymatic assay.
An ordered acetylation–methylation reaction was obtained by
incubating H4, KAT, and Acetyl-coA, to allow lysine acetylation,
followed by the addition of PRMT5 and SAM to induce arginine
methylation (lanes 1, 2, and 3 in Fig. 6c). Conversely, an ordered
methylation–acetylation reaction was obtained by incubating
PRMT5 with the methyl-donor SAM and the substrate histone
H4 to allow methylation, followed by the addition of KAT and
acetyl-coA to induce acetylation (lanes 4, 5, and 6 in Fig. 6c). This
experiment was repeated three times and the results quantified
(Fig. 6d). While the deposition of acetyl marks on lysine residues
by KATs did not prevent symmetric methylation of arginine
residues (lane 3 in Fig. 6c, d), the deposition of methyl marks on
arginine residues by PRMT5 impaired the ability of acetyltrans-
ferases to recognize and acetylate lysine residues (lane 6 in
Fig. 6c, d).
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Together, these data suggested that PRMT5 has the capacity to
decrease the overall output of KATs and predicted that Prmt5 loss
of function would drive a decrease of H4R3me2s marks followed
by an increase of histone acetylation in OPCs. Consistent with
this hypothesis, decreased levels of H4R3me2s (Supplementary
Fig. 7a) and increased levels of H4K5Ac (Supplementary
Fig. 7a–c) were detected in OL lineage cells after PRMT5-
CRISPR knockdown compared to EGFP-CRISPR controls and
also in cells treated with the pharmacological inhibitor GSK591
(Supplementary Fig. 7d, e).

However, these data did not allow to determine whether the
events occurred at the same time or in a sequential fashion. To
further explore the temporal relationship between the H4R3me2s
and H4K5Ac marks, we performed a time course ex vivo, in
primary cultured OPCs treated with the inhibitor and in vivo in
brain sections from Prmt5 mutant mice (Fig. 7). Primary OPCs
cultured in chemically defined medium in the absence of growth
factor exit from the cell cycle and differentiate. Using this
paradigm, we treated OPCs with low concentrations of
pharmacological inhibitor GSK591. This induced a significant
decrease of H4R3me2s, which occurred within 24 h of GSK591
treatment and persisted over time (Fig. 7a). To further define the
effect of Prmt5 loss of function on histone acetylation and OPC

differentiation, we performed the same experiment and showed
that increased H4K5 acetylation could only be detected after 48 h
of inhibitor treatment (Fig. 7d). Analysis of Prmt5 mutant mice
showed a similar kinetics, with reduced histone arginine
methylation detected as early as postnatal day 4 (Fig. 7b, c),
followed by increased acetylation, observed at postnatal day 7
(Fig. 7e, f). This is also consistent with the observation that
H4R3me2s is mostly cytosolic at postnatal day 4 and nuclear at
postnatal day 7 (Fig. 1j).

Thus, the in vivo data in mutant mice, the ex vivo data in
primary cultures OPCs, and the in vitro data using purified
proteins all consistently showed that the deposition of the
R3me2s interferes with acetylation of neighboring lysine residues.

Rescue of phenotype by histone acetyltransferase inhibitors.
The inability of OPCs to differentiate in the absence of PRMT5
enzymatic function and the inverse relationship between histone
arginine methylation and acetylation was reminiscent of previous
data on impaired OPC differentiation caused by treatment with
HDAC inhibitors5–8 and led to the hypothesis that KAT inhibi-
tors could rescue the phenotype caused by Prmt5 loss of function.
To test this hypothesis, we performed an ex vivo rescue
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experiment and asked whether inhibitors of KAT activity (i.e.,
Butyrolactone-346 and NU-905647) rescued the phenotype
induced by lack of PRMT5 activity. OPCs were treated with the
PRMT5 inhibitor GSK591, in the absence or presence of the KAT
inhibitors. In addition, we included the histone deacetylase
inhibitor Trichostatin A (TSA), to further determine whether the
effect detected with GSK591 was similar to that previously
reported5–9. Differentiation was assessed by staining differ-
entiating OPCs with antibodies for CNP or MBP and assessing
immunoreactivity and morphological complexity, while histone
acetylation on lysine residues was determined by staining with
antibodies specific for acetylated H4K5 (Fig. 8a, b). Treatment
with TSA mimicked the effect of GSK591, thereby supporting the
concept that the PRMT5 effect on OL differentiation is the likely
consequence of increased histone acetylation. Consistently,
addition of the KAT inhibitors to OPCs treated with the PRMT5
inhibitor prevented the increase of H4K5 acetylation and rescued
the differentiation phenotype, as shown by their morphology
(Fig. 8a), the number of cells immunoreactive for OL differ-
entiation markers (Fig. 8b), and their pattern of gene expression
(Fig. 8c, d). By rescuing differentiation, the KAT activity inhibi-
tors had also a significant protective effect that was detected as
decreased expression of P53-responsive genes (Supplementary
Fig. 9).

Together, these data highlight the importance of the PRMT5-
mediated cross-talk between histone methylation and acetylation
and the role it plays in OL differentiation. In conclusion, this
study reveals a biologically significant role for PRMT5 in OL
biology, by unveiling the existence of an important cross-talk
between symmetric arginine methylation and lysine acetylation
on histone tails regulating differentiation and survival of the
OPCs.

Discussion
OLs, the myelin-forming cells of the CNS, differentiate from
progenitor cells, and the epigenetic and transcriptional changes
defining this transition have been the subject of extensive inves-
tigation48. Despite general agreement on the role of histone
deacetylation for the early stages of differentiation2,5–7,9,49, the
events preceding this important hallmark of differentiation have
not been thoroughly characterized. Here we focus on PRMT5, an
enzyme which is expressed at high levels in OL lineage cells17,18

and in gliomas28 and characterize the functional significance of a
relatively under-investigated modification of nucleosomal
histones50.

Symmetric methylation of histone arginine residues catalyzed
by PRMT5 emerges as an important negative regulator of histone
acetylation, during the differentiation of OPCs. We and others
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have previously shown that proliferating OPCs are characterized
by high levels of nuclear histone acetylation. This likely reflects
the absence of PRMT5 from the nucleus of these cells and
its localization - together with newly formed histone proteins - in
their cytoplasm 51–54. This cytosolic localization is consistent with
previous reports in ES cells55. As OPCs stop proliferating and exit
from the cell cycle, transcriptional regulators of this transition are
also subject to nucleo-cytoplasmic shuttling: with E2F1 becoming
mostly cytosolic56 and P53 becoming mostly nuclear57. This is

when PRMT5 becomes nuclear and symmetric histone arginine
methylation is detected in the nucleus of differentiating OPCs. It
has been previously suggested that PRMT5-dependent methyla-
tion of specific arginine residues58 on P53 impacts its subcellular
localization and promotes cell cycle exit. Our data do not support
this model in OPCs, as nuclear P53 and high levels of P53 target
gene expression were still detected in OPCs lacking PRMT5
enzymatic activity. In addition, we did not detect any prominent
effect of PRMT5 on proliferating OPCs, and this is in contrast
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Fig. 8 Inhibitors of histone acetyltransferases rescue the effect of PRMT5 loss of activity. a Representative confocal images of OPCs cultured in
differentiating conditions for 24 and 48 h with DMSO, GSK591, GSK591+ KAT inhibitors, KAT inhibitors (Butyrolactone-3, 100 μM and NU-9056, 0.2 μM)
alone, and with the HDAC inhibitor Trichostatin A (TSA, 20 nM). Cells were then stained for CNP (red), MBP (white), H4K5ac (green), and DAPI (blue)
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counted in five wells from three biological replicates. An average number of 367 cells was counted per condition and referred as percentage of the values in
the DMSO treated cells. One-way ANOVA with multiple comparison test, *p < 0.05, **p < 0.01, and ***p < 0.001. c, d qRT-PCR of (c) early (Gpr17, Myt1)
and (d) late (Cnp, Mbp) oligodendrocyte lineage gene transcripts measured in six independent preparations and normalized to the geo-mean of three
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with previous reports of growth arrest consequent to PRMT5
inhibition in tumor cells40,41. The discrepancy between our
results obtained in OPC studied in physiological conditions and
previous reports in cancer cells suggest that the previously
reported direct interaction between PRMT5 and P53 may not be
physiologically relevant for OPCs.

The detection of P53-dependent apoptosis after pharmacolo-
gical inhibition or CRISPR/Cas9 or genetic ablation in mice was
only detected in OPCs kept in differentiating conditions and
resulted in the elimination of those cells that had started to dif-
ferentiate into CNP+ cells. The effect was only minimally
detected in proliferating cells and suggested that the decreased
survival of OLs in the absence of PRMT5 activity was consequent
to the elimination of an aberrantly differentiating cell.

The inverse relationship between symmetric arginine methy-
lation and histone acetylation reported in this study is of parti-
cular importance, given the well-documented role of histone
deacetylation in OPC differentiation2,5–9. We report here that
PRMT5-mediated deposition of R3me2s mark on histone H4
precludes the acetylation of lysine K5 acetylation, thereby sug-
gesting a mechanism of epigenetic repression due to decreased
histone acetylation. Our model suggests that PRMT5 activity
blocks re-acetylation of the histones once OPC differentiation
starts, and therefore shifts the dynamic equilibrium of histone
acetylation towards the deacetylated state. This is of great rele-
vance, especially when considering the fact that H4K5Ac has been
mostly related to transcriptional activation and shown to interfere
with chromatin compaction in yeasts59. A dramatic reduction of
H4R3me2s was detected in the nucleus of differentiating OPCs
treated with pharmacological inhibitors of PRMT5, or after
CRISPR knockdown and in the brain of Prmt5 conditional
knockout mice. Reduced or absent PRMT5 activity was followed
by increased nuclear histone acetylation and therefore suggested
that KATs could continue to acetylate histones even after dif-
ferentiation had ensued. In vitro studies with purified enzymes
and histone proteins further indicated that PRMT5 activity
interfered with the enzymatic activity of the KAT proteins, pos-
sibly by impacting the recognition of lysine residues, as sym-
metric methylation of arginine R3 on histone H4 prevented
further acetylation of lysine K5, while the reverse was not true.

In conclusion, this manuscript identifies a unique function of
PRMT5 in differentiating OPCs: orchestrating the cross-talk
between histone symmetric arginine methylation and prevent re-
acetylation of critical lysine residues in cells which require histone
deacetylation and chromatin compaction to achieve a fully dif-
ferentiated state. This interpretation was further supported by the
similar effect of HDAC inhibitors and PRMT5 inhibitors on OPC
differentiation and by the rescue of differentiation using KAT
inhibitors. Impaired cross-talk in cells lacking PRMT5 induced a
heterochronic acetylation of lysine residues in cells starting a
differentiation program and this led to elimination by a P53-
dependent mechanism of apoptosis. This function is selective for
OPC in physiological conditions, as highlighted by the severe
effects on developmental myelination detected in mice with OL
lineage-specific ablation of Prmt5.

Consistent with the possibility that the PRMT5-dependent
effect on OPC differentiation was consequent to its enzymatic
activity on histone arginine residues, which in turn prevented re-
acetylation during differentiation, we showed that pharmacolo-
gical inhibitors of KAT histone acetyltransferases were sufficient
to overcome the differentiation block and rescue both survival
and differentiation.

Together, these data suggest a critical role for PRMT5 in
modulating the levels of histone acetylation in OPCs at the critical
temporal window of exit from the cell cycle and onset of differ-
entiation. This also explains why later ablation of PRMT5 (once

the cells have started to differentiate) does not result in a hypo-
myelinating phenotype and may explain why a decline of PRMT5
levels at later stages of development is compatible with physio-
logical function.

Methods
Primary OPC cultures. Primary mouse OPCs were isolated from the brain of
C57BL/6 mice at postnatal day 7 through immunopanning with a rat anti-mouse
CD140a antibody, recognizing PDGFRα, as previously described2 and were cul-
tured in SATO medium (Dulbecco's modified Eagle's medium (DMEM), 10 mg/ml
bovine serum albumin (BSA), 10 mg/ml apotransferrin, 1.6 mg/ml putrescine, 6 ng/
ml progesterone, 4 μg/ml selenium, 5 mg/ml insulin, 1 mM sodium pyruvate, 2 mM
L-glutamine, 100 U/ml penicillin, 100 g/ml streptomycin, B27 Supplement, 5 mg/ml
N-acetyl-cysteine, Trace Element B, 10 μg/ml biotin, 50 mM forskolin) supple-
mented with PDGF-AA (10 ng/ml) and basic fibroblast growth factor (bFGF) (20
ng/ml). The growth factors were removed and T3 (60 nM) was added to induce
differentiation. Trp53fl/fl OPCs were cultured as described above and then infected
with an X-IRES-CRE retrovirus to obtain Trp53−/− OPCs.

OPCs were treated with or without the PRMT5 inhibitor (GSK591, 10 nM, 100
nM, 1 μM). For the rescue experiment, the KAT inhibitors (Butyrolactone-3, 100
μM and NU-9056, 0.2 μM) were added after 30 min of incubation with 10 nM
GSK591. Control cultures were treated with dimethyl sulfoxide (DMSO). GSK591
was obtained from the Structural Genomics Consortium (SGC), while
Butyrolactone-3 and NU-9056 were purchased from Cayman Chemicals and
Tocris Bioscience, respectively.

OliNeu cell line. The OPC cell line OliNeu (a gift by Jackie Trotter)60 was cultured
in the ODM medium (DMEM, 100 g/ml BSA, 100 g/ml apotransferrin, 16 g/ml
putrescine, 0.06 ng/ml progesterone, 40 ng/ml sodium selenite, 5 g/ml insulin, 1
mM sodium pyruvate, 2 mM L-glutamine, 100 U/ml penicillin, 100 g/ml strepto-
mycin) supplemented with 1% horse serum on plates coated with poly-D-lysine.

Primary tumor cell lines. Primary tumor cell lines (the JF line for proneural
glioma cells expressing wild-type Trp53 and the dfYB line for Trp53-null proneural
glioma cells) and Tp53fl/fl mice were provided by Dr. Peter Canoll’s laboratory at
Columbia Presbyterian Medical Center. The tumor cell lines were derived as
described previously25,26,61. Briefly, a retrovirus encoding the cDNA for an OPC
mitogen (PDGFB) and the cDNA for the CRE recombinase was injected into the
subcortical white matter of adult transgenic mice harboring floxed tumor sup-
pressor genes (i.e., Pten in the JF line and Pten and Trp53 in the dfYB line).
Overexpression of the PDGF-BB mitogen, combined with the deletion of the tumor
suppressor gene(s) was reported to be sufficient to the formation of brain tumors
with the histopathologic and molecular features of proneural glioblastomas25,26.
Cells derived from tumor tissues were cultured in medium containing DMEM (1
mM sodium pyruvate, 2 mM L-glutamine), FBS, N2 Supplement, PDGF-AA (10
ng/ml), bFGF (20 ng/ml), and antibiotic–antimycotic solution.

Generation of the lenti-CRISPR/Cas9 knockdown system in 293T cells. The
lenti-CRISPR-v2 vector was obtained from Addgene, which was a gift from Feng
Zhang (Addgene plasmid # 52961). The single guide RNA (sgRNA) targets were
obtained via the online program generated by Feng Zhang’s laboratory (http://
crispr.mit.edu/). The sgRNA target sequence of PRMT5-CRISPR-2
(GAATTGCGTCCCCGAAATAG) falls on the exon 1 of the mouse Prmt5 gene,
while that of PRMT5-CRISPR-3 (CCCGCGTTTCAAGAGGGAGT) falls on the
exon 2. Two sgRNAs targeting the DNA sequence of the EGFP gene
(GGGCGAGGAGCTGTTCACCG for EGFP-CRISPR-1 and GAGCTGGACGGC
GACGTAAA for EGFP-CRISPR-2) were also cloned into the same vector,
respectively, as used as control. The cloning was performed according to the
Addgene guideline and the original paper62. The 293T cells were cultured in the
293T medium (DMEM, 1 mM sodium pyruvate, 2 mM L-glutamine) supplemented
with 10% FBS. The lenti-CRISPR viruses were produced by transfecting the lenti-
CRISPR/Cas9 plasmids along with two packing plasmids (psPAX2 and pMD2.G
which were acquired from Addgene). For each 10-cm dish of 293T cells, 10 μg of
the lenti-CRISPR/Cas9 plasmids, 6 μg of the psPAX2 plasmid, and 2 μg of the
pMD2.G plasmids were transfected into the 293T cells using polyethylenimine.
Tissue culture media were refreshed 15 h after transfection and media containing
viruses were harvested 45 h after transfection. Viruses were concentrated using the
Lenti-X™ concentrator kit (Clontech).

Prmt5 knockdown in cells. One million primary mouse OPCs or 0.5 million of
OliNeu cells were split into each 10-cm dish a day before virus infection. Virus
infection was performed by adding the concentrated virus into the tissue culture
medium of the cells to be infected, supplemented with polybrene (2 μg/ml for
primary OPCs or 4 μg/ml for OliNeu). Virus-containing media were replaced by
fresh ones 8 h after infection. Puromycin (0.2 μg/ml for primary OPC or 1 μg/ml
for OliNeu and glioma cells) was added to the medium 2 days after infection to
select the infected cells. Infected cells were harvested 6 days after infection for
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experimental analysis. The experiment was independently replicated by two
investigators in the lab.

Prmt5 conditional knockout in mice. All animal experiments were approved by
and performed according to the guidelines set forth by the US Public Health
Service in their policy on Human Care and Use of Laboratory Animals. Mice were
maintained in a pathogen-free environment at the animal facility of Mount Sinai
Medical Center and of the Advanced Science Research Center of College University
of New York (CUNY). All procedures received prior approval from the Institu-
tional Animal Care and Use Committee of each institution. The C57BL/6− Prmt5−

flox mice34 were obtained from Dr. Ernesto Guccione (Institute of Molecular and
Cell Biology, A*STAR Singapore). Olig1-cre line (stock number 011105) was
obtained from the Jackson Laboratory and backcrossed to the C57BL/6 back-
ground. Experimental animals were generated by crossing the homozygous floxed
Prmt5 line (Prmt5fl/fl) with the heterozygous Olig1-cre line. F1 offspring from the
crossbreed that were heterozygously floxed and Cre positive (Olig1cre/+;Prmt5fl/+)
were intercrossed with other F1 offspring that were heterozygously floxed and Cre
negative (Olig1+/+; Prmt5fl/+) to achieve the following experimental genotypes:
conditional knockout (Olig1Cre/+;Prmt5fl/fl), floxed control (Olig1+/+;Prmt5fl/fl),
and Cre control (Olig1cre/+;Prmt5fl/+). Prmt5 conditional knockout mice, hetero-
zygotes, and wild-type littermates were checked daily for growth, clinical signs, and
survival.

Subcellular protein fractionation. Subcellular fractionation of cellular proteins
consisted of: lysis in hypotonic buffer (10 mM HEPES, pH 7.9, 1.5 mM MgCl2, 10
mM KCl) supplemented with 0.5 mM dithiothreitol (DTT), 1 mM phe-
nylmethylsulfonyl fluoride (PMSF), and protease inhibitor cocktail freshly pre-
pared (at 4 °C for 15 min), followed by 0.5% NP40 treatment (for 10 s) to disrupt
the cell membranes. Lysates were then centrifuged at 1500 × g for 10 min at 4 °C to
separate the cytoplasmic components (supernatant) from the nuclei-enriched
fractions (pellets). Volumes (0.11) of 10× cytoplasmic extraction buffer (0.3 M
HEPES, 1.4 M KCl, and 30 mM MgCl2) was added to the supernatant and soni-
cated for 30 s ON/OFF for 5 min at high power in Bioruptor (Diagenode). After
centrifugation at 16,000 × g for 10 min at 4 °C, the soluble fraction was collected as
a cytoplasmic extract. The pellet obtained after the first centrifugation was then
washed twice with hypotonic buffer with 0.5% NP40 (the wash out was also saved
for control in western blot). Washed pellets were further extracted by re-suspension
in a hypertonic buffer (20 mM HEPES, pH 7.9, 1.5 mM MgCl2, 420 mM NaCl, 25%
(v/v) glycerol, and 0.2 mM EDTA) supplemented with 0.5 mM DTT, 1 mM PMSF,
10 μM TSA, phosphatase inhibitor cocktail, protease inhibitor cocktail, and ben-
zonase (Sigma), sonicated and supernatant collected as a nuclear fraction.

Histone extraction and purification. Histones were extracted by using the acid
extraction method63. Cell pellets were incubated in a hypotonic lysis buffer con-
taining 10 mM Tris-HCl, pH 8.0, 1 mMKCl, 1.5 mM MgCl2, 1 mM DTT, 0.4 mM

PMSF, and protease and phosphatase inhibitors for 30 min on rotator at 4 °C.
Nuclei were isolated by spinning down the solution for 10 min at 10,000 x g and
dissolving and incubating pellets for 1.5 h in 0.4 N H2SO4. After centrifugation at
16,000 x g for 10 min, nuclear debris were removed and acid-soluble histones were
then precipitated using trichloroacetic acid and re-suspended in water.

Histone tail peptides arrays and western blot. Characterization of antibodies
against histone PTMs used in the study was performed using a Histone Peptide
Array (Active Motif, 13005). Briefly, the array was blocked in TBST buffer (10 mM
Tris-HCl, pH 8.3, 0.05% Tween-20, 150 mM NaCl) containing 5% non-fat dried
milk at 4 °C overnight. The membrane was washed with TBST for 5 min and
incubated with a primary antibody. After three TBST washes (10 min each at room
temperature), the array was incubated with horseradish peroxidase-conjugated
secondary antibody. The membrane was then submerged in ECL developing
solution (GE Healthcare, RPN2232) and the data were quantified using the array
analyzer software (Active Motif). Western blot was performed after sodium
dodecyl sulfate-polyacrylamide gel electrophoresis separation, followed by wet
transfer of the proteins into a polyvinylidene difluoride membrane and incubated
with primary antibodies. Ponceau S solution (Sigma) was used according to the
manufacturer’s instruction. Peroxidase-conjugated secondary antibodies and the
ECL Prime Wester Blotting Detection Reagent Kit (GE Healthcare, RPN2232) were
then used to develop the membrane. Statistical analysis was performed using one-
way analysis of variance (ANOVA) followed by Bonferroni’s post hoc comparisons
tests. List of the details related to the antibodies used for histone peptide array and
western blot analysis is provided in Supplementary Table 1. The experiment was
independently replicated in the lab by two investigators.

Immunocytochemistry and immunohistochemistry. List of the details related to
the antibodies used for immunocytochemistry and immunohistochemistry is
provided in Supplementary Table 1. Cells for immunocytochemistry were fixed
with 4% paraformaldehyde (PFA) for 20 min at room temperature and then the
membrane was permeabilized with 0.1% (vol/vol) Triton X-100 (Fisher Scientific).
Incubation with blocking solution (5% normal goat serum) was performed at room
temperature for 45 min. Primary antibodies were applied overnight at 4 °C followed

by incubation of appropriate secondary antibodies conjugated with fluorophores.
Confocal images were captured using the Zeiss LSM-800 system. Quantification of
the immunofluorescent intensity was done using ImageJ. At postnatal days 4 and 7
animals were sacrificed and brain tissues were removed and immersion fixed in 4%
PFA for 72 h at 4 °C. At postnatal day 14, mice were anesthetized and perfused with
4% PFA. After tissue processing and paraffin embedding, sections of 5–7 μm were
cut. To perform immunohistochemistry, sections were de-paraffinized, immersed
in 10 mM citrate buffer, pH 6.0, for 10 min in the microwave at 650W, followed by
blocking with 10% normal goat serum, before overnight incubation of primary
antibodies at 4 °C. Appropriate secondary antibodies conjugated with fluorophores
were used the following day to complete the staining. DAPI (4′,6-diamidino-2-
phenylindole) was used as a nuclear counterstain.

Confocal images were captured using the Zeiss LSM-800 system. Quantification
of the immunofluorescent intensity was done using ImageJ. Experiments were
independently replicated in the lab by two or three investigators.

RNA extraction, RT-PCR, and RNA-seq. Total mRNAs from cells was extracted
by lysing the starting materials with TRIzol® (Thermo, 15596026) followed by RNA
extraction using the RNeasy Mini Kit (Qiagen, 74106). For reverse transcription-
polymerase chain reaction (RT-PCR), cDNA was synthesized with the qScript
cDNA Synthesis Kit (Quantabio, 95047). The RT-PCR forMdm4 was performed in
Ernesto Guccione’s laboratory as previously reported34. Quantitative real-time
reverse transcriptase PCR (qRT-PCR) was performed using the PerfeCTa SYBR
Green FastMix ROX reagent (Quantabio, 95072) and run at the quantitative PCR
core facility at the Icahn School of Medicine at Mount Sinai and at the Epigenetic
Core facility of the Advanced Science Research Center of College University of
New York (CUNY). For RNA analysis, total RNA was used to prepare libraries
using the TruSeq Total RNA Stranded (ribo-gold) Kit (Illumina) and sequenced
using HiSeq 2500 (high output) sequencer (Illumina) in the 2 × 125 bp mode.
Average number of total reads was 61,602,313.25 for EGFP-CRISPR cells (range:
56,743,181–6,6929,862) and 63,379,315.75 for PRMT5-CRISPR cells (range:
59,009,841–68,576,976). Average and total number of reads for each experiment
and single condition are listed in Supplementary Table 2. The sequenced reads
were mapped to mm9 version of the mouse genome from the University of
California Santa Cruz (UCSC) genome database using TopHat version 2.0.1264

with the aligner Bowtie65 with their default parameters and by supplying the gene
model annotations from Ensemble (version NCBIM37.65). Differential expression
analysis was performed by Cuffdiff 2.2.1 with threshold of FDR <0.05. A total of
1890 genes was used to perform the GSEA analysis66 using the curated gene
datasets C2 and C5. From the initial 1890 genes, we identified the top genes (i.e.,
370 up-regulated and 368 downregulated) with a fold change >1.5 (Supplementary
Data 1) in either direction (cutoff log 2 FC < 0.5845 < ). A Volcano plot of gene
expressions (FPKM) was generated using R program. qRT-PCR data were nor-
malized to the geo-mean of three housekeeping genes: 18s, Wdr33, and Pja2.
Validation of the results was performed using qRT-PCR using specific primers
(Supplementary Table 3). RNA extraction and qRT-PCR was independently
replicated in the lab by three investigators. To determine differential splicing events
(Supplementary Table 4), MATS 3.0.6 beta67 was used for counting junction reads
and reads falling into the tested region within ENSEMBL version 65 gene defini-
tions. Four individual preparations for each condition (i.e., four CRISPR-PRMT5
cells and four CRISPR-EGFP control) were analyzed individually, and only sig-
nificant events occurring in at least two replicates were considered. Splicing events
were labeled significant if the sum of the reads supporting a specific event exceeded
10 reads, the P value was <0.05, and the minimum inclusion level difference as
determined by MATS was >0.2. Total events (the sum of the reads supporting a
specific event exceeded 10 reads, the P value was <0.05, and the minimum inclu-
sion level difference as determined by MATS was >0.2).

In vitro biochemistry assays. For the sequential PRMT5 methylation-KAT
acetylation assay and the ordered acetylation–postmethylation/
premethylation–acetylation assay, 800 ng of PRMT5-MEP50, 50 ng of the specified
KAT, 1 μg of histone H4, and 2 μl of 1 mM acetyl-CoA was added to the acetylation
buffer (50 mM Tris, pH 8, 10 mM KCl, 2 mM DTT, 5 mMMgCl2) to a total volume
of 20 μl and incubated at 30 °C as indicated.

PRMT5 and MEP50 were co-expressed in insect cells and the resulting complex
isolated by affinity purification and gel filtration68. Full-length PRMT5 was
expressed as FLAG fusion protein (FLAG-PRMT5). Standard baculovirus
expression using a modified version of the Bac-to-Bac system protocol (Life
Technologies) was used to generate virus for each clone. Fermentations of PRMT5
and MEP50 (at 1:1 ratio) in Sf9 cells were harvested by centrifugation and pellets
were re-suspended in 50 mM Tris, pH 7.5, 300 mM NaCl, 10% (vol/vol) glycerol,
0.1% (wt/vol) Triton X-100, and stirred at 4 °C for 30 min. The homogenate was
clarified by centrifugation and the supernatant was gently shaken with 10 ml of
anti-FLAG resin (Sigma; A2220) for 3 h, followed by an initial wash with 50 mM
Tris, pH 7.5, 500 mM NaCl, 10% (vol/vol) glycerol, 0.1% (wt/vol) Triton X-100,
and two subsequent washes without Triton. The PRMT5:MEP50 complex was
eluted with 0.1 mg/ml of FLAG peptide (Sigma; F3290) in the same buffer,
concentrated, and passed over a size-exclusion chromatography column (16/60
S300; GE LifeSciences) equilibrated in a buffer containing 10 mM HEPES, pH 7.5,
0.15 M NaCl, 10% (vol/vol) glycerol, and 2 mM DTT. Recombinant histone H4 was

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04863-9

12 NATURE COMMUNICATIONS |  (2018) 9:2840 | DOI: 10.1038/s41467-018-04863-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


expressed in bacteria and extracted under denaturing conditions69. Briefly, cells
were grown in 2 TY medium containing 16 g/l Bacto Tryptone, 10 g/l yeast extract,
5 g/l NaCl, 100 mg/l ampicillin, and 25 mg/l chloramphenicol. Expression was
induced at an A600 of 0.8 by the addition of isopropyl-b,D-thiogalactopyranoside to
a concentration of 0.4 mM and the culture was incubated for another 2.5 h.
Bacteria were lysed and the resulting pellet containing the inclusion bodies
dissolved under denaturing conditions, by primary incubation in 1 ml of DMSO for
30 min at 22 °C. A 50 ml volume of a 6 M guanidinium hydrochloride solution,
containing 20 mM sodium acetate (pH 5.2), 1 mM DTT, was added slowly and
unfolding was allowed to proceed for 1 h at 22 °C under gentle mixing. The
dissolved inclusion bodies were subjected to gel filtration and the elution of protein
monitored by absorbance. The resulting histone was dissolved in water and assayed
for purity and concentration via Coomassie staining. KATs were purchased from
SignalChem. Western blots were subsequently carried as described before. The list
of the antibodies used for the assay is provided in Supplementary Table 1.

Data availability. All sequencing and microarray data that support the findings of
this study have been deposited in the National Center for Biotechnology Infor-
mation Gene Expression Omnibus (GEO) and are accessible through the GEO
Series accession number GSE94067. All other relevant data are available from the
corresponding author on request.
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