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Bioluminescent proteins (BLPs) are a class of proteins that widely distributed in many living organisms with various mechanisms of
light emission including bioluminescence and chemiluminescence from luminous organisms. Bioluminescence has been
commonly used in various analytical research methods of cellular processes, such as gene expression analysis, drug discovery,
cellular imaging, and toxicity determination. However, the identification of bioluminescent proteins is challenging as they share
poor sequence similarities among them. In this paper, we briefly reviewed the development of the computational identification
of BLPs and subsequently proposed a novel predicting framework for identifying BLPs based on eXtreme gradient boosting
algorithm (XGBoost) and using sequence-derived features. To train the models, we collected BLP data from bacteria, eukaryote,
and archaea. Then, for getting more effective prediction models, we examined the performances of different feature extraction
methods and their combinations as well as classification algorithms. Finally, based on the optimal model, a novel predictor
named iBLP was constructed to identify BLPs. The robustness of iBLP has been proved by experiments on training and
independent datasets. Comparison with other published method further demonstrated that the proposed method is powerful
and could provide good performance for BLP identification. The webserver and software package for BLP identification are
freely available at http://lin-group.cn/server/iBLP.

1. Introduction

It is common to produce and send out visible lights in some
living organisms, for example, ctenophora, bacteria, annelids,
fungi, fish, insects, algae, and archaea [1]. These phenomena
can be explained with mainly two mechanisms, biolumines-
cence and chemiluminescence, in which the former involves
a series of chemical reactions, and the latter is related to
absorption of light from external sources and its emission
after transformation [2]. In particular, bioluminescent pro-
teins (BLPs) play a critical role in the bioluminescence as they
can convert energy released by a chemical reaction into light
emission within living organisms [3]. Besides, luciferin and
luciferase are two kinds of essential chemicals in the biolumi-
nescence process. In the presence of oxygen, the luciferase,

acting as an enzyme, can catalyze and speed the oxidation
of substrate luciferin to produce light and form unstable
intermediate product named oxyfluorescein. Sometimes
luciferin and luciferase, as well as cofactor such as oxygen,
are combined together in a single unit to be a stable protein
complex, photoprotein, that can be triggered to emission
light when mediated by cofactors such as calcium ions or
ATP [4]. Furthermore, the color of the light emission can
be designed by several factors like the predominant environ-
ment of bioluminescent organisms or the structure of lucif-
erin or the amino acid sequence of the luciferase or the
presence of accessory proteins such as yellow fluorescent
proteins (YFPs) and green fluorescent proteins (GFPs) [5].

Bioluminescence serves various known functions, includ-
ing camouflage, finding food, attraction of prey, attraction of
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mates, communication between bioluminescent bacteria
(quorum sensing), and burglar alarm [6, 7]. Bioluminescent
proteins serve as highly sensitive labels and have been widely
used as invaluable biochemical tools with applications in a vari-
ety of fields including gene expression analysis, drug discovery,
the study of protein dynamics andmapping signal transduction
pathways, bioluminescent imaging, toxicity determination,
DNA sequencing studies, and estimatingmetal ions such as cal-
cium [3, 8]. Hence, identification of BLPs could help to discover
many still unknown functions and promise great possibilities
for medical and commercial advances. Despite BLPs can be
investigated throughwet-experimental methods, thesemethods
are usually labor-intensive and time-consuming. Moreover, for
most bioluminescence signals, they are too weak to detect or
they are sensitive to the microenvironment, like D-luciferin,
which presents different colors of light in various pH conditions
[9]. As claimed in previous work [10], identification of BLPs by
traditional alignment-based method like PSI-BLAST is a hard
task due to poor sequence similarities among them. Thus, it is
necessary to develop machine learning methods for identifying
BLPs, which may provide fast and automatic annotations for
candidate BLPs.

Recently, several computational methods have been pro-
posed for predicting BLPs. The first computational method
to predict BLPs is called BLProt developed by Kandaswamy
et al. [10] in 2011, which was developed based on support
vector machine (SVM) and 544 physicochemical properties.
Soon after that, Zhao et al. [11] developed another computa-
tional method, called BLPre, by integrating position-specific
scoring matrix (PSSM) and auto covariance (AC) transfor-
mation into feature vector and using SVM classifier to per-
form the prediction. In 2013, Fan and Li [12] published a
SVM-based model by combining increment of diversity
(ID) with four representative features, namely, dipeptide
composition (DC), reduced amino acid alphabet (RAAA),
pseudo amino acid composition PSSM (PsePSSM), and auto
covariance of averaged chemical shift (acACS), to distinguish
BLPs. Later, in 2014, a novel approach named SCMBLP was
proposed by Huang [13] to estimate the propensity scores of
400 dipeptides and 20 amino acids based on scoring card
method (SCM). In 2015, Nath and Subbiah [14] built a
balanced training dataset by using unsupervised K-Means
clustering algorithm and Synthetic Minority Oversampling
Technique (SMOTE), then applied boosted random forest
for BLP prediction. Zhang et al. [15] proposed a sequence-
based method named PredBLP, which focused on
sequence-derived features and adopted Fisher-Markov selec-
tor together with sequential backward selection strategy to
select the optimal feature subsets. In addition to a universal
model, they designed three lineage-specific classifiers,
namely, bacteria, eukaryote, and archaea.

In summary, these methods mentioned above have
obtained good results and provided important clues in BLP
identification. However, there are still two aspects that need
to be further investigated. First of all, few of them provided
webservers or off-line programs and poorly maintained. Sec-
ond, most of these studies only considered general BLPs,
while the differences between different species of BLPs have
not yet received enough attention.

In view of the aforementioned description, in this study,
we devoted to develop an ensemble tool to improve the pre-
diction capability of BLPs. First of all, high-quality training
and testing datasets were obtained. Subsequently, four kinds
of feature encoding strategies were used to formulate
sequence samples, including natural vector (NV), composi-
tion/transition /distribution (CTD), g-gap dipeptide compo-
sition (g-gap DC), and pseudo amino acid composition
(PseAAC). Finally, our predictor was constructed based on
eXtreme gradient boosting (XGBoost) classifier which was a
scalable and explainable machine learning system for tree
boosting. And then, based on the proposed model, a webser-
ver named iBLP was established and available at http://lin-
group.cn/server/iBLP, which could provide great assistance
to the related researches. The flowchart of iBLP is shown in
Figure 1.

2. Materials and Methods

2.1. Benchmark Datasets. A reliable data [16–18] is necessary
for a robust model. The benchmark datasets constructed by
Zhang et al. [15] were used in our work. It contained
17,403 BLPs composed of three species, namely, bacteria,
eukaryote, and archaea, which were collected from UniProt
(Jul. 2016). Therefore, four benchmark datasets were gener-
ated corresponding to a general and three species-specific
datasets (bacteria, eukaryote, and archaea). To avoid homol-
ogy bias and remove redundant sequences from the bench-
mark datasets, BLASTClust [19] was utilized to cluster all
these protein sequences by setting the cutoff of sequence
identity at 30%. And then, one protein was randomly picked
from each cluster as the representative. Thus, 863 BLPs were
obtained as positive samples. Among these BLPs, 748 belong
to bacteria, 70 belong to eukaryote, and 45 belong to archaea.
Additionally, 7093 nonredundant non-BLPs were collected
to construct the negative samples that consist of 4919, 1426,
and 748 proteins of bacteria, eukaryote, and archaea, respec-
tively. Moreover, to construct balanced training dataset, 80%
of the positive samples and equal number of negative samples
were randomly picked out for training model. The rest posi-
tive and negative samples were used for independent testing.
As a result, the final four benchmark datasets are constructed
and summarized in Table 1. All data are available at http://
lin-group.cn/server/iBLP/download.html.

2.2. Feature Encoding Schemes

2.2.1. Natural Vector Method (NV). The natural vector
method (NV) was designed by Deng et al. [20] for perform-
ing evolutionary and phylogenetic analysis of biological
sequence groups. Based on the natural vector method, each
protein sequence can be mapped into a 60-dimensional
numeric vector which contains the occurrence frequencies,
the average positions, and the central moments of the twenty
amino acids. This method is alignment free and needs no
parameters. Thus, it has been proven to be a powerful tool
for virus classification, phylogeny, and protein prediction
[21–23]. Its details will be described as follows.
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First, suppose that each BLP (or non-BLP) sequence sam-
ple P with length L can be formulated by

P = S1S2S3 ⋯ Si ⋯ SL, ð1Þ

that is, for the set of 20 amino acids, Si ∈ fA, C,D,⋯,W, Y
g, i = 1, 2, 3⋯ L: And for each of the 20 amino acids k, we
may define

wk :ð Þ: A, C,D,⋯,W, Yf g→ 0, 1f g, ð2Þ

where wkðSiÞ = 1, if Si = k. Otherwise, wkðSiÞ = 0.
Second, the number of amino acid k in the protein

sequence P, defined as nk, can be calculated as follows:

nk = 〠
L

I=1
wk Sið Þ: ð3Þ

Next, let Sjkjjij be the distance from the first amino acid
(regarded as origin) to the i-th amino acid k in the protein
sequence, Tk be the total distance of each set of the 20 amino
acids, and μk be the mean position of the amino acid k.
Therefore, they can be calculated as follows:

S kj j ij j = i ×wk Sið Þ,

Tk = 〠
nk

i=1
S kj j ij j,

μk =
Tk

nk
:

8>>>>>>><
>>>>>>>:

ð4Þ

Let us take the amino acid sequence MCRAACGECFR as
an example. For amino acid A, nA = 2, the total distance of A
is TA = 3 + 4 = 7 since the distances from the first residue to
the two As are 3 and 4, respectively. Then, μA = TA/nA = 7/
2. Similarly, TC = 1 + 5 + 8 = 14 with nC = 3 and μC = TC/nC
= 14/3. The arithmetic mean value of total distance for other
kinds of amino acids can be obtained in the same way.

Protein sequences with the different distribution of each
amino acid might be different even if they have the same
amino acid content and distance measurement. Therefore,
the information about distribution has also been included
in the natural vector. And then, the second-order normalized
central moments Dk

2 can be defined as follows:

1. Datasets collection and preprocessing

BLASTClust
≤ 30%

Benchmark dataset

Independent testing dataset Training dataset

2. Feature encoding

NV

CTD

g-gap DC

PseAAC

Combined hybrid 
feature vectors

3. Model construction and evaluation

10-fold cross validation

Learning XGBoost model 
(Parameter optimization)

Grid search

Model performance

Sn

Sp

Acc

MCC

AUC

Bacteria

Eukaryote

Archaea

Final XGBoost model with best performance 

Webserver: iBLP 

4. Webserver construction

Figure 1: Framework of the proposed predictor iBLP to identify bioluminescent protein.

Table 1: The constructed benchmark datasets for BLP prediction.

Dataset Group
Species

Bacteria Eukaryote Archaea General

Training
Positive 598 56 36 690

Negative 598 56 36 690

Testing
Positive 150 14 9 173

Negative 4321 1370 712 6403
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Dk
2 = 〠

nk

i=1

S kj j ij j − μk

� �2

nk × L
: ð5Þ

The second normalized central moment is the variance of
the distance distribution for each amino acid.

For the sufficiency annotation of protein sequences, the
three groups of parameters, the number of each amino acid,
the mean value of total distance of each amino acid, and
the information of distance distribution, were concatenated
to obtain the final natural vector. As a result, the 60-
dimensional natural vector of a protein sequence P is
obtained and defined as

P = nA, μA,D
A
2 ,⋯, nS, μS,D

Si
2 ,⋯, nY , μY ,D

Y
2

h iT
, ð6Þ

where the symbol }T} is the transpose operator.

2.2.2. Composition/Transition/Distribution (CTD). The com-
position, transition, and distribution (CTD) method was first
proposed for protein folding class prediction by Dubchak
et al. [24] in 1995. These three descriptors composition (C),
transition (T), and distribution (D) could be calculated
according to the following two hypothesis: (i) the sequence
of amino acids could be transformed into a sequence of cer-
tain structural or physicochemical properties of residues;
(ii) according to the main clusters of the amino acid indices
of Tomii and Kanehisa [25], twenty amino acids were divided
into three groups based on each of the 13 different physico-
chemical attributes, including hydrophobicity, normalized
Van der Waals volume, polarity, polarizability, charge, sec-
ondary structures, and solvent accessibility. The groups of
amino acids are listed in Table 2, and the details of grouping
criterion can be seen in the previous study [26]. Therefore,
the three descriptors were used to describe the composition
percentage of each group in the peptide sequence which
could yield three features: the transition probability between
two neighboring amino acids belonging to two different
groups that also contained 3 features; the distribution pattern
of the property along the position of sequence (the first, 25%,
50%, 75%, or 100%), which 5 features were obtained. Finally,
based on the CTD method [27], a sample protein P can be
formulated by ð3 + 3 + 5Þ × 13 = 273 dimensional feature
vector.

2.2.3. g-gap Dipeptide Composition (g-gap DC). The amino
acid composition (AAC) and dipeptide composition (DC)
encoding strategies have been widely used for protein predic-
tion [28–30]. However, they can only express the fraction of
each amino acid type or the adjacent sequence-order infor-
mation within a protein. In fact, the interval residues in pri-
mary sequence might be spatially closer in tertiary
structure, especially in some regular secondary structures,
such as alpha helix and beta sheet, which are two nonadjoin-
ing residues were connected by hydrogen bonds. In other
word, it means that interval residues are more significant
than the adjacent residues in biology. Hence, the g-gap
dipeptide composition (g-gap DC) feature encoding strategy

is proposed to calculate the frequency of amino acid pairs
separated by any g residues.

And then, a protein P can be formulated by

P = f g1 , f
g
2 , f

g
3 ,⋯, f gi ,⋯, f g400

� �T , ð7Þ

where f gi represents for the frequency of the i-th
(i = 1, 2, 3,⋯, 400) g-gap dipeptide and can be calculated by

f gi =
ngi

L − g − 1
, ð8Þ

where ngi denotes the occurrence number of the i-th g-gap
dipeptide and L is the length of protein P. Particularly, when
g = 0, the g-gap DC method is equal to adjoining DC.

2.2.4. Pseudo Amino Acid Composition (PseAAC). The
pseudo amino acid composition (PseAAC), proposed by
Chou [31], is an efficient and widely used method to convert
a protein sequence into a feature vector for developing differ-
ent predictors based on machine learning algorithms [32–
34]. In this work, we adopted the type-II PseAAC to repre-
sent protein samples. This method contains amino acid
dipeptide composition as well as the correlation of physico-
chemical properties between two residues. Accordingly, each
BLP (or non-BLP) sequence sample can be denoted as a 202
+ nλ dimensional vector which is formulated as follows:

P = x1, x2,⋯, x400, x401,⋯, x400+nλ½ �T , ð9Þ

where n is the number of amino acid physicochemical prop-
erties considered, including hydrophobicity, hydrophilicity,
mass, pK1, pK2, pI, rigidity, flexibility, and irreplaceability,
which has been used in [35]; thus, n = 9 here. Since first six
properties have been widely used in protein bioinformatics,
we will briefly discuss the latter three properties: rigidity, flex-
ibility, and irreplaceability. The rigidity and flexibility of
amino acid side chains have been pointed out by Gottfries
et al. [36] that it was a key for forming polypeptides and local
protein domains associated with protein property alterations.
Moreover, the rigidity and flexibility properties of sequences
were used to predict conformation and protein fold changes
and were verified by NMR measurement [37]. Besides, the
degree of difficulty of residues’ replacement is different in
the evolution. Thus, the irreplaceability is a response to
mutational deterioration in the course of the evolution of life
[38]. The original values of nine physicochemical properties
can be accessed at http://lin-group.cn/server/iBLP/
download.html. λ represents the rank of correlation. xu ðu
= 1, 2,⋯, 400 + nλÞ stands for the frequencies for each ele-
ment and can be calculated as follows:

xu =

f u
∑400

i=1 f i + ω∑9λ
j=1φj

, 1 ≤ u ≤ 400ð Þ,

ωφj

∑400
i=1 f i + ω∑9λ

j=1φj

, 401 ≤ u ≤ 400 + 9λð Þ,

8>>>><
>>>>:

ð10Þ
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where f μ represents frequency of the 400 dipeptides, ω is the
weight factor for sequence order effect and its detailed infor-
mation, and φu represents the j-tier sequence correlation fac-
tor of the physicochemical properties between residues.
Given that this method has been commonly used and its
detailed definition of more parameters could be found else-
where [32], we do not reiterate them here.

2.3. eXtreme Gradient Boosting (XGBoost) Algorithm. It is
well known that eXtreme gradient boosting (XGBoost) [39]
is an ensemble learning algorithm based on gradient boosting
and provides state-of-the-art results for many bioinformatics
problems [40–42]. XGBoost is essentially an ensemble
method based on gradient boosted tree. The result of the pre-
diction is the sum of the scores predicted byK trees, as shown
in the formula below:

ŷi = 〠
K

k=1
f k xið Þ, f k ∈ F, ð11Þ

where xi is i-th of the training sample, f kðxiÞ is the score for
the k-th tree, and F is the space of functions containing all
gradient boosted trees. The objective function could be opti-
mized by the following formula:

obj θð Þ = 〠
n

i=1
l yi, ŷið Þ + 〠

K

k=1
Ω f kð Þ, ð12Þ

where the former ∑n
i=1lðyi, ŷiÞ stands for a differentiable loss

function that measures the fitness of model prediction ŷi and
samples of training dataset yi, while the latter∑

K
k=1Ωð f kÞ rep-

resents an regularization item that punishes the complexity
of the model to avoid overfitting. More detailed formulas
can be seen in reference [39].

Compared with the general gradient boosting and other
machine learning algorithms, XGBoost has some unique
advantages. First, XGBoost performs a second-order Taylor
expansion for the objective function and uses the second
derivative to accelerate the convergence speed of the model
while training. Thus, its embedded parallel processing allows
a faster learning. Especially for large-scale datasets, the
improvement of training speed is more beneficial. Second, a
regularization term is added to the objective function to con-
trol the complexity of the tree to obtain a simpler model and
avoid overfitting. Third, XGBoost is of high flexibility and
allows users to define custom optimization objectives and
evaluation criteria. Meanwhile, XGBoost classifier can handle
well from imbalance training data by setting class weight and
taking AUC as evaluation criteria. In summary, XGBoost is a
highly flexible and scalable tree structure enhancement
model in that it can handle sparse data, greatly improve algo-
rithm speed, and reduce computational time and memory for
training large-scale data.

In this study, the predictive model was implemented by a
python package called XGBoost (version 1.1.1), which could
be download from https://pypi.org/project/xgboost/. The
parameters of XGBoost, including general parameters,

booster parameters, and learning task parameters, can be
optimized by grid search method with cross validation in
the model training stage. The selection of XGBoost’s param-
eters will be discussed in detail in Results and Discussions.

2.4. Performance EvaluationMetrics.How to objectively eval-
uate the predictor quality is a key point for developing a pow-
erful predictor and estimating its potential application value
for BLP prediction. Thus, the following metrics [43–46], sen-
sitivity (Sn), specificity (Sp), overall accuracy (Acc), andMat-
thew’s correlation coefficient (MCC), are used in our work
and can be, respectively, calculated as follows:

Sn =
TP

TP + FN
0 ≤ Sn ≤ 1,

Sp =
TN

TN + FP
0 ≤ Sp ≤ 1,

Acc =
TP + TN

TP + FP + TN + FN
0 ≤Acc ≤ 1,

MCC =
TP × TN − FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TN + FNð Þ TP + FNð Þ TN + FPð Þp −1 ≤MCC ≤ 1,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð13Þ

where TP, TN, FP, and FN indicate the true positives (i.e.,
correctly predicted as BLPs), true negatives (i.e., correctly
predicted as non-BLPs), false positives (i.e., incorrectly pre-
dicted as BLPs), and false negatives (i.e., incorrectly predicted
as non-BLPs), respectively. The higher the value of Acc, Sn,
and Sp are, the more robust the predictor is. Moreover, a
value ofMCC = 1 indicates the best possible prediction while
MCC = −1 indicates the worst possible prediction (or antic-
orrelation). MCC = 0 would be expected for a random pre-
diction scheme.

Additionally, the receiver operating characteristic (ROC)
curve [47–49] can present the model behavior of the true
positive rate (TPR = sensitivity) against the false positive rate
(FPR = 1 − specificity) in a visual way. The area under the
ROC (AUC) is also used as performance evaluation metric
in this study which can quantitatively and objectively measure
the performance of the proposed method. A perfect predictor
is proved to have the value of AUC = 1, and the random per-
formance is proved to have the value of AUC = 0:5.

3. Results and Discussion

3.1. Existing Computational Methods for Identifying BLPs.
Recent years, some computational methods have been devel-
oped to identify BLPs and summarized in [8]. Tables 3 and 4
presented a comprehensive review on currently available
dataset and computational tools for BLP identification.
Table 3 showed that the first benchmark dataset D1 for
BLP prediction was established by Kandaswamy et al. [10]
and collected from Pfam database [50]. To avoid potential
overestimation of the prediction performance, the CD-HIT
program [51] was used to remove sequence redundancy from
both positive and negative datasets by setting cutoff values of
40%. Then, Zhao et al. [11], Fan and Li [12], Huang [13], and
Nath and Subbiah [14] also constructed their benchmark
datasets based on the first benchmark dataset by using
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various ways to undersample Kandaswamy’s dataset. More-
over, Zhang et al. [15] built a new benchmark dataset called
D2 based on UniProt database [52] for bacteria, eukaryote,
and archaea species. They used BLASTClust [19] to reduce
sequence redundancy by setting the cutoff value of sequence
identity less than 30%.

After getting the benchmark datasets, using effective fea-
ture representation to convert sequence samples into numer-
ical vectors is significant for developing a powerful
computational method to predict BLPs. As shown in
Table 4, the sequence-derived features for all existing compu-
tational methods include physicochemical properties (PCP),
amino acid composition (AAC), dipeptide composition
(DC), evolutionary information, and sequence motifs. Addi-
tionally, to exclude information redundancy and improve the
generalization ability of the prediction model, various feature
selection strategies can be applied. Both Kandaswamy et al.
[10] and Nath and Subbiah [14] used ReliefF [53] to choose
useful information to construct their computational tools.
Increment of diversity (ID) [54] is used to measure the sim-
ilarity level of two diversity sources and reduce the dimen-
sion of feature vectors, which was proposed in Fan and Li’s
work [12]. And then, Zhang et al. [15] utilized Fisher-
Markov selector [55] together with sequential backward
selection (SBS) strategy to select optimal feature subset.

Furthermore, the classification algorithm could signifi-
cantly affect the discrimination capability of a prediction
model. It could be seen from Table 4 that SVM was adopted
as the predominant classification algorithm by multiple tools,
including BLPort [10], BLPre [11], Fan’s method [12],
PredBLP [15]. In addition to SVM, other scoring method
and machine learning algorithms were also adopted. For
example, the scoring card method (SCM) was applied in
SCMBLP [13] to perform classification which is a general-
purpose method by calculating propensity scores of 400
dipeptides and 20 amino acids to be the protein with the
investigated function; Nath and Subbiah [14] used an ensem-
ble learning method called Real Adaboosting Random Forest
(RARF) [56] for BLP classification and prediction.

As a result, from Tables 3 and 4, we could draw several
conclusions: (i) most of these methods used different way
to undersample Kandaswamy’s dataset [10], while the poten-
tial bias might produce in the process of sampling. (ii) Six
tools for BLP prediction were listed in Table 4, of which five
studies did not consider species specificity, while there was
only the last one designed a model for bacteria, eukaryote,
and archaea species. (iii) Most of the tools were established
based on SVM classification algorithm except that SCMBLP
[13] and Nath’s method [14]. SVM is more suitable for small
sample dataset and low dimension feature set. Once the data

Table 2: Amino acid physicochemical attributes used in CTD method and the three corresponding groups of amino acids according to each
attribute.

Attributes
Groups

I II III

Hydrophobicity_PRAM900101 RKEDQN GASTPHY CLVIMFW

Hydrophobicity_ARGP820101 QSTNGDE RAHCKMV LYPFIW

Hydrophobicity_ZIMJ680101 QNGSWTDERA HMCKV LPFYI

Hydrophobicity_PONP930101 KPDESNQT GRHA YMFWLCVI

Hydrophobicity_CASG920101 KDEQPSRNTG AHYMLV FIWC

Hydrophobicity_ENGD860101 RDKENQHYP SGTAW CVLIMF

Hydrophobicity_FASG890101 KERSQD NTPG AYHWVMFLIC

Normalized Van der Waals volume GASTPDC NVEQIL MHKFRYW

Polarity LIFWCMVY PATGS HQRKNED

Polarizability GASDT CPNVEQIL KMHFRYW

Charge KR ANCQGHILMFPSTWYV DE

Secondary structure EALMQKRH VIYCWFT GNPSD

Solvent accessibility ALFCGIVW RKQEND MSPTHY

Table 3: The published benchmark dataset for the prediction of BLPs.

Datasets Year
Training set Independent test set

Sequence Identity Reference
BLPs Non-BLPs BLPs Non-BLPs

D1

2011 300 300 141 18202 ≤40% (CD-HIT) [10]

2012 300 300 139 18202 ≤40% (CD-HIT) [11]

2013 199 199 141 137 ≤40% (CD-HIT) [12]

2014 274 274 234 220 ≤40% (CD-HIT) [13]

2015 441 13446 NA NA ≤40% (CD-HIT) [14]

D2 2017 863 7093 690 5674 ≤30% (BlastClust) [15]
∗NA denotes not applied.
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increases, calculation of SVM will be time and memory con-
suming.With the availability of large BLP dataset, it is obvious
that we need to adopt high efficient parallel processing algo-
rithm to speed and improve the ability to predict BLPs. (iv)
Most of the webservers to predict BLPs did not work now.
Among abovementioned predictors, only four works, namely,
BLProt [10], BLPre [11], SCMBLP [13], and PredBLP [15],
that can provide online services. Unfortunately, only the web-
server of PredBLP is still working now. However, the webser-
ver of PredBLP allows users to predict no more than five
protein sequences at a time, which is quite inconvenient to
scholars and researchers to study large-scale BLP data.

It is noteworthy that these above works have found some
important features in BLPs. Huang [13] pointed out that BLPs
have four characteristics based on a series of analysis of infor-
mative physicochemical properties of 20 amino acids, as fol-
lows: (1) high transfer free energy of residues from inside to
the protein surface, (2) high occurrence frequency of residues
in the transmembrane regions of the protein, (3) large hydro-
phobicity scale from the native protein structure, and (4) high
Pearson correlation coefficient (R = 0:921) between the amino
acid compositions of BLPs and integral membrane proteins.
Additionally, they found that top-ranked dipeptides do not
tend to cluster in a certain region, which suggested that biolu-
minescence is a global property of BLP sequences, not occur in
specific segments. Furthermore, Zhang et al. [15] proposed
that BLPs were enriched with charged residues and showed
high preference with A-, R-, P-, and G-related dipeptide com-
pared with the non-BLPs. In a word, these findings have
important guidance for our research about BLPs.

3.2. Parameter Optimization. As we all know, n-fold cross
validation is a common statistical analysis method in
machine learning to train and test hyperparameters of feature
extraction method and prediction model [57–59]. In our
work, 10-fold cross validation and grid search method were
used to confirm the optimal feature subset as well as the opti-
mal parameters of XGBoost models based on four bench-
mark datasets by the highest AUC values. The reason why

we used AUC values as standard is that compared with sen-
sitivity, specificity, and overall accuracy, it could provide a
more objective evaluation, especially on imbalance bench-
mark dataset [60].

According to the definition in the construction of feature
vector section, the information of BLP primary sequences
were extracted by the integration of NV, CTD, g-gap DC,
and PseAACmethods. In g-gap DC, the choice of the param-
eter g has a significant impact on the model prediction per-
formance, which represents the correlation between any
amino acid and g residue intervals. Additionally, for
PseAAC, λ and ω also play key roles in obtaining an optimal
classification model. λ is the correlation tier of physicochem-
ical properties between two amino acids, which describes the
global pattern sequence-order effect (long-range informa-
tion) along a protein sequence;ω is the weight factor to adjust
the ratio between short-range effect and long-range effect. As
a matter of experience, the g values in g-gap DCmethod were
set in the range from 1 to 9 for each training data and the per-
formances of 9 × 4 = 36 feature subsets were input into
XGBoost models and evaluated by 10-fold cross validation.
The optimal g parameters for four species were determined
by the highest values of AUC on the training dataset, as
shown in Figure 2. It could be seen from Figure 2 that the
highest AUCs of g-gap DC method on general, bacteria,
eukaryote, and archaea training datasets are 0.892 (g = 3),
0.909 (g = 3), 0.891 (g = 6), and 0.933 (g = 1), respectively.

Since the selection of λ cannot exceed the length of the
shortest sequence in the training dataset for PseAAC
method, the λ and ω parameters were chosen through grid
search method, as follows:

1 ≤ λ ≤ 38, with stepΔ = 1, for general, bacteria,

1 ≤ λ ≤ 42, with stepΔ = 1, for eukaryote,

1 ≤ λ ≤ 48, with stepΔ = 1, for archaea,

0:1 ≤ ω ≤ 1, with stepΔ = 0:1, for all species:

8>>>>><
>>>>>:
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Table 4: A comprehensive list of the reviewed methods/tools for the prediction of BLPs.

Toola (year) Species Feature representation
Feature
selection

Classification
algorithm

Work
(yes/no)

BLPort [10] (2011) NA PCP ReliefF SVM No

BLPre (2012) NA PSSM-AC NA SVM No

Fan’s method [12]
(2013)

NA DC+PSSM+acACS+RAAA ID SVM NA

SCMBLP [13] (2014) NA DC NA SCM No

Nath’s method [14]
(2015)

NA
AAC+AAGC+physicochemical n-

grams
ReliefF RARF NA

PredBLP (2017)
Bacteria, eukaryote,

archaea
AAC+dc+MTF+PCP SBS SVM Yes

∗NA: not applied; PCP: physicochemical properties; PSSM-AC: position-specific scoring matrix and auto covariance; DC: dipeptide composition; acACS: auto
covariance average chemical shift; AAC: amino acid composition; AAGC: amino acid property group composition; MTF: sequence motifs; ID: increment of
diversity; SBS: sequential backward selection; SVM: support vector machine; SCM: scoring card method; RARF: Real Adaboosting Random Forest. aThe
URL addresses for accessing the listed and available tools are provided as follows: BLPort: http://www.inb.uni-luebeck.de/tools-demos/bioluminescent%
20protein/BLProt. BLPre: http://59.73.198.144/AFP_PSSM/. SCMBLP: http://iclab.life.nctu.edu.tw/SCMBLP/index.html.PredBLP: http://www.inforstation
.com/webservers/PredBLP/predict.html.
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Similarly, by examining the performances of all feature
subsets for each species, we obtained the optimal parameters
of λ and ω on four training datasets. The optimal parameters
and dimensions of feature space according to Eq. (9) are
shown as follows:

Feature dimension of PseAAC =

562 for general ω = 0:2, λ = 18ð Þ,
499 for bacteria ω = 0:1, λ = 11ð Þ,
490 for eukaryote ω = 1, λ = 10ð Þ,
661 for archaea ω = 0:2, λ = 29ð Þ:

8>>>>><
>>>>>:

ð15Þ

Meanwhile, the prediction models were trained and
learned with the series of parameter choices and combination
of XGBoost classifiers. A great deal of prior knowledge can be
utilized to improve the learning process [42]; thus, the
parameters which are commonly adjusted to improve the
model’s performance, such as n_estimators, max_depth,
and learning_rate, are taken into account firstly. As a result,
a set of best parameters was obtained by grid search method
based on 10-fold cross validation. Therefore, the final tuning
results of XGBoost models were n estimator = 280, max
depth = 12, learning rate = 0:1, and gamma = 0. Moreover,
default values are adopted for other parameters.

3.3. Performance Evaluation on Different Features and
Combinations. Through optimizing parameters, we have
obtained pretrained models based on a general and three
species-specific training datasets. In this section, we will
investigate which features could produce the best perfor-
mance on the identification of BLPs. Thus, we examined
the prediction performances of 4 kinds of encoding features,
namely, NV, CTD, g-gap DC, and PseAAC, using 10-fold
cross validation. Moreover, to extract the feature information

of protein sequences more comprehensively and realize the
complementarity between different feature information, the
method of feature fusion was adopted. Table 5 recorded the
details of prediction results of 4 kinds of individual feature
and their combinations based on four training datasets by
calculating the average values of 10 experiments. It was found
that the promising prediction results have been obtained by
four kinds of individual feature in which PseAAC encoding
feature given out the highest AUC values of 0.900 and
0.925 for general and bacteria species, while for eukaryote
and archaea species, g-gap DCmethod produced best perfor-
mance of the highest AUC values of 0.891 and 0.838, respec-
tively. Generally, the feature fusion might produce better
prediction performance when comparing with individual
features. As expected, the combination of four kinds of fea-
tures for identifying BLPs achieved the best performance
with AUC = 0:920 in general model. Although compared
with individual feature, the predictive performances of com-
bination of four features were increased slightly for other
three species-specific models; they did not achieve the best
predictive performance. It is well-known that noise or redun-
dant information could reduce the model’s performance,
robust, and efficiency. Therefore, the phenomena about pre-
dictive performance decrease were maybe derived from
information redundancy. Hence, it is necessary to explore
which feature combination can produce better prediction
results. As shown in Table 5, the combination of CTD, g-
gap DC, and PseAAC encoding features could produce the
highest AUC value of 0.936 in bacteria. For eukaryote, the
combination of CTD and g-gap DC encoding features
achieved the highest AUC value of 0.924. Best performance
of the highest AUC value of 0.969 was obtained by the com-
bination of NV, CTD, and g-gap DC in archaea. These results
indicated that the four coding features we used were effect,
and further, the combination of different kinds of features
could produce a promising result.

3.4. Cross-Species Validation. As stated in above section, we
found that the combinations of various encoding features
on general and three species-specific training datasets could
produce different prediction results. It might imply that BLPs
in different species have different attributes within encoding
features. These inner attributes can be used to further
improve the prediction performance by considering
species-specific scheme. What is more, it is required to iden-
tify BLPs in more other species in addition to the species
mentioned in this study. However, it may be hard due to lack
of data in other species to train the models. Thus, it is neces-
sary to demonstrate whether a model trained with the data
from one species or all species (bacteria, eukaryote, and
archaea in this study) could recognize the BLPs in other spe-
cies. To address this confusion, we trained one general and
three species-specific models using the four BLPs’ training
data and validated these models on the independent BLP data
of other species. The predictive overall accuracies of cross-
species validation were shown in Figure 3. The models in col-
umns were tested on the other datasets in rows. As shown in
Figure 3, it is obvious that the best accuracy (100.0%) was
always obtained by the model built based on the data from

0.6

0.7

0.8

0.9

1

A
U

C

General
Bacteria

Eukaryote
Archaea

2 3 4 5 6 7 8 9
g

(3,0.892)

(3,0.909)
(1,0.933)

(6,0.891)

Figure 2: The AUCs corresponding to different g values on four
species-specific training datasets. The peaks of AUC values of
general, bacteria, eukaryote, and archaea training datasets are
marked by red cubes, respectively, in 10-fold cross validation.
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itself. And it could be found in Figure 3 that the model con-
structed on general dataset achieved good results, but the
models based on three specific-species datasets did not pro-
duce the desired results, which get Acc values of 89.1%,
66.3%, and 70.5% for bacteria, eukaryote, and archaea data-
sets, respectively. Thus, it can be concluded that the general-
ization ability of the model based on species-specific datasets
is not strong. Moreover, the Acc values of 83.3% and 70.8%
tested on archaea data are acceptable. However, it is not suit-
able for archaea to construct prediction model to predict bac-
teria and eukaryote data because the Acc values are only
68.7% and 58.9%, respectively. These experimental results
indicate that the species-specific scheme and the species-
specific models we established are reliable.

3.5. Comparison with Other Classification Algorithms. With
the optimal feature combinations on four datasets, we would
like to explore whether the performance of XGBoost classifier
is superior to other classification algorithms based on tree
model. Hence, we focus on three tree-based algorithms, i.e.,
decision tree, random forest, and AdaBoost. Decision tree
(DT) is a nonparametric supervised machine learning
method which is commonly used in data mining and classifi-
cation [61, 62]. The goal of DT is to create a tree model that
predicts the value of a target variable by learning simple deci-
sion rules inferred from the data features [63]. Random forest
(RF) is an ensemble learning method of a large number of
decision trees based on bagging. Each tree in the ensemble
is trained on a subset of training instances and features that
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Figure 3: The heat map showing the cross-species prediction accuracies. Once a general or species-specific model was established on its own
training dataset in columns, it was validated on the data from the all or same species as well as the independent data from the all or other three
species in rows.

Sn Sp Acc MCC AUC
DT 0.697 0.697 0.697 0.394 0.680
RF 0.810 0.828 0.819 0.638 0.878
AdaBoost 0.740 0.733 0.740 0.480 0.819
XGBoost 0.832 0.867 0.850 0.700 0.920
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0.4
0.6
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(a)

Sn Sp Acc MCC AUC
DT 0.694 0.676 0.685 0.370 0.683
RF 0.799 0.856 0.828 0.657 0.905
AdaBoost 0.776 0.776 0.776 0.552 0.847
XGBoost 0.846 0.888 0.867 0.736 0.936
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(b)

Sn Sp Acc MCC AUC
DT 0.732 0.643 0.688 0.377 0.742
RF 0.714 0.911 0.813 0.637 0.875
AdaBoost 0.804 0.786 0.795 0.589 0.882
XGBoost 0.857 0.840 0.848 0.710 0.924
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Sn Sp Acc MCC AUC
DT 0.611 0.629 0.625 0.250 0.633
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XGBoost 0.925 0.850 0.888 0.808 0.969
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Figure 4: Comparison of different classification algorithms for identifying BLPs on four training datasets by 10-fold cross validation.
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are randomly selected from the given training set. Thus, the
idea of the random forest is to combine multiple weak classi-
fiers, and then, the final decision is made by majority voting
[64]. AdaBoost is a popular and powerful ensemble learning
method based on boosting. It determines the weight of each
sample according to whether the classification of each sample
is correct in each iterative process and the overall accuracy of
the last iterative process. The new training dataset with mod-
ified weights is sent to iteratively train a new weak classifier.
As a result, the final decision classifier of AdaBoost is the
weighted average of weak classifiers obtained from each iter-
ative process [65].

The abovementioned three classification algorithms were
implemented by using Weka (version 3.8.3), which is a col-
lection of machine learning algorithms for data mining tasks
[66]. The default parameter values of three classification
algorithms were used in Weka. Additionally, the predictive
results of XGBoost classifier and the above decision tree, ran-
dom forest, and AdaBoost algorithms on our four training
datasets by 10-fold cross validation were plotted in
Figure 4. As shown in Figure 4, decision tree classification
algorithm performed worst for predicting BLPs, while
XGBoost classifier could always yield best performance on
four datasets. It can be concluded that the XGBoost classifier
is more applicable than other three classification algorithms
to identify BLPs. Therefore, the final models of the four data-
sets were constructed based on XGBoost algorithm.

3.6. Comparison with Published Methods. To further demon-
strate the robust of our method, it is necessary to compare
our method with other published method. Here, the PredBLP
[15] was selected to perform comparison in that the same
benchmark datasets were used. The results of PredBLP’s
method on the same training dataset by using 5-fold cross
validation and independent testing dataset were directly
obtained from their reports. The compared details were listed
in Table 6. As shown in Table 6, although the Acc values of
our method on three species-specific datasets by 5-fold cross
validation are slightly lower than PredBLP’s method, our pre-
dictor produced promising results with the mean AUC =
0:930. Additionally, in independent testing, the AUC values
obtained from our method are significantly improved by
11.9% on four testing datasets averagely. It is noteworthy that
the AUC values obtained by our method are all higher than
PredBLP’s method. Thus, all comparisons suggest that our

proposed method is powerful and reliable for BLP
identification.

3.7. Comparison of Identifying Novel BLPs in UniProt
Database. Additionally, the computational tools should be
used to identify novel and unknown proteins, which can pro-
vide convenient and accurate annotation. To examine the
scalability and robustness of the reviewed predictors, we used
another independent test data that were not applied in above
analysis. Thus, we adopted the BLP data that were deposited
from August 2016 to February 2017 in UniProt database.
These novel BLP data collected by Zhang et al. [15] were
derived from bacteria, eukaryote, and archaea. Then, based
on the same novel BLP data, we compared our method iBLP
and Zhang et al.’s predictor PredBLP [15]. The results of
PredBLP were obtained from their report. As listed in
Table 7, for general, bacteria, and archaea, our proposed
method achieved Acc values of >0.960, which is better than
those for PredBLP. Especially for archaea, our model can
even correctly identify all novel BLPs. However, the result
for eukaryote was unsatisfactory. The limited number of
eukaryote BLPs for species-specific model training could be
the reason that account for this.

4. Conclusions

Bioluminescent proteins (BLPs) are commonly exist in many
living organisms, and identifying BLPs has significant impor-
tance for disease diagnosis and biomedical engineering. In
this study, we proposed a novel predicting framework for
the identification of BLPs by using sequence-derived features.
To improve the prediction performance for BLPs, we exam-
ined the performance of several kinds of features and classi-
fication algorithms. Thus, based on the optimal feature
subsets and XGBoost algorithm, we constructed an online
predictor called iBLP. Given that very few webservers for
BLP identification are still working, our webserver will be
well maintained for two years or more. Besides, a software
package for bioluminescent proteins identification in batch
in users’ local computers was developed and available at
http://lin-group.cn/server/iBLP.

Experiments on benchmark datasets proved the robust-
ness and effectiveness of our method. Moreover, the intrinsic
properties of BLPs against non-BLPs have been analyzed in
previous work, which reflected that it is necessary to distin-
guish various species of BLPs. Our experiments also demon-
strated that BLP sequences have species specificity,
suggesting that one should establish species-specific predic-
tor. However, the benchmark datasets for eukaryote and
archaea are not large enough, which may result in the bias
for accuracy evaluation. In the future, with the accessibility
of more BLP data, we will update the models by training
them on large datasets. Additionally, we will take full consid-
eration of difference of species-specific BLP data to select the
majority of the informative features and establish more pow-
erful and reliable models. We hope that our work can provide
convenience to the experimental scientists to obtain the
desired results rapidly and accurately without repeating the
mathematical details.

Table 7: Comparison of iBLP with other methods on novel BLPs.

Species Number Method Acc

General 3741
PredBLP 0.889

Our method 0.963

Bacteria 3614 PredBLP 0.912

Eukaryote 106
Our method 0.962

PredBLP 0.983

Archaea 21

Our method 0.708

PredBLP 0.993

Our method 1.000
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