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Lysozyme promotes renal fibrosis through the  
JAK/STAT3 signal pathway in diabetic nephropathy
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A b s t r a c t

Introduction: Diabetic nephropathy (DN) is a leading cause of kidney failure. 
Lysozyme (LYZ) is an essential component of innate immunity and exhibits 
antibacterial properties. However, LYZ has been reported to induce nephrop-
athy, implying a possible association between impaired renal function and 
lysozyme expression.
Material and methods: Bioinformatics analysis was used to predict the 
hub gene associated with DN, and the differential expression of the hub 
gene was confirmed using a mouse model. A mouse model of streptozoto-
cin (STZ)-induced diabetic nephropathy was established to investigate the 
correlation between DN and LYZ expression, and the functionality of LYZ 
was verified through knockdown and overexpression experiments conduct-
ed in vivo. Immunohistochemistry (IHC) was utilized to assess fibrosis-relat-
ed markers and cytokines, while Masson staining was performed to assess 
renal fibrosis. Fibroblast proliferation was assessed using the Cell Counting 
Kit-8 (CCK-8) assay. The role of the JAK pathway was confirmed using the 
JAK inhibitor AG490, and Western blot was used to investigate the underly-
ing mechanisms. 
Results: Mechanistically, 25 mM glucose promotes the expression of LYZ 
in fibroblastic cells, and LYZ may in turn promote the proliferation of renal 
interstitial fibroblasts. Western blot shows that glucose can activate STAT3 
in an LYZ-dependent manner, and the JAK inhibitor AG490 can partially sup-
press LYZ-induced STAT3 activation. Furthermore, in vivo observations have 
revealed that overexpression of LYZ is associated with the senescent pheno-
type of renal tubular epithelial cells (RTECs).
Conclusions: Lysozyme promotes kidney fibrosis via the JAK/STAT3 signaling 
pathway in diabetic nephropathy, and glucose may promote fibroblast prolif-
eration by promoting LYZ auto-secretion.

Key words: diabetic nephropathy, JAK, STAT3, lysozyme, renal fibrosis.

Introduction

Diabetic nephropathy (DN) is the leading cause of kidney failure [1, 2] 
and is commonly observed as a  complication of type 1 diabetes (T1D). 
Among the many complications of diabetes, diabetic nephropathy is a ma-
jor complication affecting the quality of life, and other complications include 
erectile dysfunction, saliva secretion disorders, etc. [3–5]. It results in injury 
and damage to the renal glomeruli. It is important to note that up to 40% 
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of patients with diabetes mellitus will eventually 
develop diabetic kidney diseases. The underlying 
mechanism for the development of DN remains un-
clear; however, several studies have suggested that 
increased blood flow and intra-capillary pressure 
contribute to kidney failure [6]. Some studies have 
shown that hyperglycemia, a characteristic feature 
of diabetes, promotes the production of matrix and 
induces apoptosis of mesangial cells [7, 8]. 

Lysozyme (LYZ) is an integral component of the 
innate immune system and is known for its anti-
bacterial properties. It is produced by various cell 
types, with higher expression observed in mucus 
and saliva [9, 10]. The LYZ gene encodes human 
lysozyme. While its classical function is antibac-
terial [11], lysozyme has also been reported to 
exhibit immunosuppressive effects by suppress-
ing the high mobility group box1 and regulating 
the tumor necrosis factor (TNF) pathway [12, 13]. 
Furthermore, lysozyme has also demonstrated 
a strong ability to bind with nucleic acid [14]. Sa-
liva is the main mode of lysozyme secretion, and 
insufficient saliva secretion is one of the common 
oral complications of end-stage renal disease 
[15]. The role of lysozyme in diabetic nephropathy, 
however, remains poorly defined.

JAKs belong to the tyrosine kinase family. The 
STAT signaling pathway is a  downstream sig-
naling pathway activated by JAKs [16]. Elevated 
glucose has been reported to promote activation 
of the JAK/STAT3 signaling pathway. This activa-
tion contributes to the increased expression of 
transforming growth factor-β (TGF-β), collagen IV 
extracellular matrix proteins, and fibronectin in-
duced by glucose [17–19]. Administration of the 
JAK2 inhibitor AG-490 in the DN model has been 
reported to attenuate blood pressure and reduce 
the level of protein in the urine [20]. Proliferation 
of fibroblasts and synthesis of the extracellular 
matrix are major contributors to the progression 
of interstitial fibrosis. Hyperglycemia in the envi-
ronment can activate fibroblasts, leading to their 
proliferation and matrix production. However, 
the mechanism of fibroblast activation has yet to 
be addressed [21, 22]. In this study, we propose 
a novel mechanism of glucose-induced fibroblast 
activation and suggest a  potential preventive 
strategy for DN.

Material and methods

Animal models

Preparation of DN mice model

A  total of 15 seven-week-old C57 mice were 
bred under specific pathogen-free (SPF) condi-
tions. All mice were fasted overnight and then giv-
en a single intraperitoneal injection of 60 mg/kg  
STZ dissolved in 10 mM citrate buffer (pH 4.5).  

Four weeks after STZ administration, FBG was 
measured in tail vein samples using a blood glu-
cose meter (LifeScan, California, USA). Mice with 
FBG levels above 16.7 mM for 3 consecutive days 
were considered DM. DM mice were given regular 
food and tap water for 12 weeks. All DM mice were 
transferred to a  metal metabolic cage and 24-h 
urine samples were accurately collected. A 24-hour  
urinary albumin excretion rate of 30 mg/24 h indi-
cated successful construction of DN. In this study, 
a total of 50 mice were selected to measure blood 
glucose, creatinine, BUN, and urinary ACR every 
weeks. In addition, 3 mice were sacrificed every 
4 weeks, kidney tissue was taken, LYZ-mRNA ex-
pression was measured by qPCR, and renal LYZ 
protein expression content was measured by im-
munohistochemistry.

Preparation of LYZ knockdown and 
overexpression mouse model

Three LYZ knockdown and three overexpressed 
mice were prepared by tail vein injection of  
siRNA of LYZ and LYZ overexpression plasmids af-
ter enrollment. The rest of the mold making meth-
ods were the same as above, and the materials 
were tested after 16 weeks of molding.

Bioinformatics analysis 

The expression levels of LYZ were obtained 
from the GEO (ID: GSE30122) dataset. A t-test was 
used to compare the difference in LYZ expression 
between the DN sample (n = 10) and the healthy 
sample (n = 12). 

Cell culture experiments

In our laboratory, we maintained NRK-49F cells, 
which are derived from a normal rat kidney fibro-
blast cell line. The cells were cultured in 10% fe-
tal bovine serum (FBS)-supplemented Dulbecco’s 
modified Eagle medium (DMEM) (Gibco, USA). The 
renal tubular cells were isolated from embryo mice 
and cultured in 10% fetal bovine serum (FBS)-sup-
plemented Roswell Park Memorial Institute (RPM) 
1640 (Gibco, USA). All these cells were cultured 
under standard conditions.

Immunoblotting

Cells were lysed using a  lysis buffer, and pro-
tein concentration was determined using the bi-
cinchoninic acid (BCA) assay. The protein samples 
were subject to electrophoresis and transferred 
onto PVDF membranes. The PVDF was then incu-
bated with primary antibodies against LYZ, MMP-2,  
TGF-β1, STAT3, and MMP9 (Abcam). As an internal 
control, an anti-GAPDH antibody from CST was 
used for normalization purposes.
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Quantitative real-time PCR

Total RNA samples were extracted using the 
Plus iso RNA kit (Takara Bio Inc., Japan). For the 
detection of mRNA, 1 μg of total RNA was reverse 
transcribed by the Script RT Master kit of choice 
(Takara Bio Inc., Japan). Quantitative real-time PCR 
was carried out with SYBR Green using the ViiA7 
System (AB Applied Biosystems, USA). The follow-
ing primers were used: LYZ F: CTTGTCCTCCTTTCT-
GTTACGG, LYS R: CCCCTGTAGCCATCCATTCC

GAPDH F: GGAGCGAGATCCCTCCAAAAT, GAPDH 
R: GGCTGTTGTCATACTTCTCATGG.

CCK-8 assay 

For the CCK-8 experiment, NRK-49F fibroblast 
cells were plated in 96-well plates in DMEM sup-
plemented with 10% FBS. Cells were divided into 
a group with LYZ knockdown and a group with up-
regulation of LYZ. After cell plating, 200 µl of me-
dium containing the CCK-8 reagent was added to 
each well, and these were treated with or without 
JAK inhibitor. The OD value was assessed at the 
indicated time point according to the instructions 
(0, 24, 48, and 72 h ).

Western blot

To extract the protein in the cells, a strong RIPA 
lysing reagent (Millipore, USA) containing 1% 
PMSF (Millipore, USA) was utilized. Protein con-
centration for each sample was determined us-
ing the BCA method. Subsequently, 30 μg of pro-
tein from each sample was then electrophoresed 
on an SDS-PAGE gel (Mellon, Dalian, China) and 
transferred to PVDF membranes (Merck, USA). To 
minimize nonspecific binding, membranes were 
incubated with 5% BSA (Merck, USA) for 2 h. The 
primary antibodies, including LYZ (1 : 500; Cat No. 
15013-1-AP, Proteintech, Wuhan, China), fibronec-
tin (1 : 2000; Cat No. 15613-1-AP, Proteintech, Wu-
han, China), collagen I (1 : 1000; Cat No. 14695-
1-AP, Proteintech, Wuhan, China), collagen III  
(1 : 500; Cat No. 22734-1-AP, Proteintech, Wuhan, 
China), α-SMA (1 : 5000; Cat No. 55135-1-AP, Pro-
teintech, Wuhan, China), PCNA (1 : 2000; Cat No. 
10205-2-AP, Proteintech, Wuhan, China), MMP 9 
(1 : 500; Cat No. 10375-2-AP, Proteintech, Wuhan, 
China), MMP 2 (1 : 500; Cat No. 10373-2-AP, Pro-
teintech, Wuhan, China), STAT3 (1 : 1000; Cat No. 
10253-2-AP, Proteintech, Wuhan, China), p-STAT3 
(1 : 1000; Cat No. sc-135649, Santa Cruz Biotech-
nology, Shanghai, China), TGF-β1 (1 : 1000; Cat 
No. 21898-1-AP, Proteintech, Wuhan, China) and  
GAPDH (1 : 2000; Cat No. 60004-1-Ig, Protein-
tech, Wuhan, China) were added and incubated 
with the PVDF membranes at 4°C overnight. After 
washing with TBST three times, secondary anti-
bodies were added and incubated for 2 h, and the 

protein signals on the membranes were detected 
using the ECL reagent (Yeasen, Shanghai, China). 
GAPDH was set as a  loading control to calculate 
the expression level of the target proteins.

Enzyme-linked immunosorbent assay 
(ELISA)

Blood samples were collected using blood col-
lection tubes containing anticoagulants or centri-
fuge tubes, and specimens were centrifuged at 
4°C 1000×g for 15 min after collection. The super-
natant fluid was collected for use. LYZ expression 
levels in plasma were measured as per the ELISA 
kit instructions (Invitrogen, USA).

Masson staining

Paraffin sections of embedded mouse kidney 
tissues were routinely dewaxed to water following 
the instructions provided in the kit (Leagene Bio-
technology Co., Ltd., Anhui, China). The following 
staining steps were performed: The sections were 
stained with prepared Weigert iron hematoxylin 
for 5–10 min. Acidic ethanol fractionation solution 
was applied for 5–15 s. The sections were washed 
with water. Masson blue staining solution was ap-
plied for 3–5 min, and the sections were rinsed 
with distilled water for 1 min. Then the sections 
were treated with Lichon red magenta staining 
solution for 5–10 min, phosphomolybdic acid 
solution for 1–2 min, weak acid working solution 
for 1 min, stained in aniline blue staining solution 
for 1–2 min, washed with weak acid working solu-
tion for 1 min, dehydrated with ethanol, transpar-
ent with xylene, and sealed with neutral gum.

Statistical analysis

Data from replicate experiments are present-
ed as the mean ± standard deviation (SD). Cal-
culations were performed using GraphPad Prism 
5 software (GraphPad, San Diego, CA, USA). 
A  threshold for statistical significance level was 
established at p < 0.05, and one-way analysis of 
variance (ANOVA) was used to identify significant 
differences between the groups.

Results

LYZ was overexpressed in DN renal  
and serum samples

For the analysis of the most significantly differ-
entially expressed gene within DN, we analyzed 
the mRNA expression levels in the GEO public data-
base (Access ID: GSE30122) using bioinformatics, 
and we observed that the expression of LYZ was 
most differentially expressed between DN patients 
and healthy volunteers (4-fold, p < 0.05) (Figure  
1 A). Additionally, the LYZ mRNA expression levels 
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Figure 1. LYZ is overexpressed in DN renal and serum samples. A – Volcano plot showing differential gene ex-
pression between the DN kidney sample and the healthy kidney sample in the dataset GSE30122. B – LYZ mRNA 
expression level in each sample

Data represent the mean ± SD of triplicates. P-value was calculated by a  two-sided Student’s t-test. *P < 0.05, **p < 0.01,  
***p < 0.001.

were significantly upregulated in DN patients com-
pared to healthy volunteers (Figure 1 B).

LYZ expression was upregulated in the 
model of STZ-induced DN

To study the correlation between DN and LYZ, 
we used the STZ-induced DN mouse model. The 
results showed a  progressive increase in fasting 
blood, blood urea nitrogen, urinary albumin to 
creatinine ratio and serum creatinine following 
induction with STZ, suggesting the successful es-
tablishment of the STZ-induced DN model. The 
effects of the STZ-induced DN became more pro-
nounced over time (Figure 2 A). There was a grad-
ual up-regulation of LYZ mRNA expression levels 
in the kidney (Figure 2 B). LYZ protein expression 
levels were verified using immunohistochemistry 
(Figure 2 C). Western blot also showed a graded 
increase (Figure 2 E). We quantified the proportion 
of LYZ-positive RTEC (Figure 2 D), and the propor-

tion of LYZ-positive RTEC gradually increased. Fur-
thermore, we also observed that the expression 
of LYZ was positively correlated with the TIF score. 
This suggests that the level of LYZ expression is 
up-regulated in the DN model and correlates with 
kidney fibrosis. 

Enhanced expression of LYZ and renal 
fibrosis were correlated

To further investigate the relationship between 
LYZ and renal fibrosis, we injected the kidney with 
the siRNA of LYZ and the overexpression plasmid 
of LYZ. In the STZ-induced DN model mice, up-reg-
ulation of LYZ or knockdown of LYZ did not result in 
significant changes in fasting glucose (Figure 3 A).  
However, we observed that the upregulation of 
LYZ in the kidney led to significant increases in 
serum creatinine, urinary albumin to creatinine 
ratio, and urea nitrogen, whereas the knockdown 
of LYZ resulted in significant decreases in these 
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Figure 2. LYZ expression was upregulated in the 
model of STZ-induced DN. A  – Fasting glucose, 
serum creatinine, blood urea nitrogen (BUN) and 
urinary albumin to creatinine ratio (ACR) in each 
group. *P < 0.05 versus the control group. B – Re-
sults of PCR analysis. LYZ mRNA expression in kid-
ney tissue derived from each of the groups

Data represent the mean ± SD of triplicates. The p-value 
was calculated by a two-sided Student’s t-test. *P < 0.05, 
**p < 0.01, ***p < 0.001.
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Figure 2. Cont. C – Representative immunostaining micrographs showing tubular LYZ expression. D – Percentage 
of LYZ-positive renal tubular epithelial cells (RTECs) was quantified. E – Western blot analysis of LYZ expression in 
each group. F – Different groups (n = 3 for each group) were used to quantify relative levels of GAPDH. We quanti-
fied the percentage of RTECs that were positive based on tubulointerstitial fibrosis (TIF) scores

Data represent the mean ± SD of triplicates. The p-value was calculated by a two-sided Student’s t-test. *P < 0.05, **p < 0.01, 
***p < 0.001.
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Figure 3. Enhanced expression of LYZ and renal fibrosis were correlated. A – Fasting glucose, B – serum creatinine, 
C – blood urea nitrogen (BUN), D – urinary albumin to creatinine ratio (ACR) in each group (n = 3 for each group).  
E – Masson’s trichrome stain showed renal fibrosis with blue color

Data represent the mean ± SD of triplicates. P-value was calculated by a  two-tailed Student’s t-test. *P < 0.05, **p < 0.01,  
***p < 0.001.
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Figure 3. Cont. F – A  representative immunostaining micrograph shows the expression of the fibrotic markers 
a-smooth muscle actin (α-SMA), collagen I, and fibronectin expression in different groups (n = 3 for each group). 
G – Western blot analysis of the expression of α-SMA, collagen I, and fibronectin in different groups

Data represent the mean ± SD of triplicates. P-value was calculated by a  two-tailed Student’s t-test. *P < 0.05, **p < 0.01,  
***p < 0.001.
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parameters (Figures 3 B–D). To examine the ef-
fect of LYZ expression level on renal fibrosis, we 
performed Masson trichrome staining on the kid-
neys. The results showed that knockdown of LYZ 
could partially attenuate STZ-induced renal fibro-
sis, although increased expression of LYZ could 
significantly augment STZ-induced renal fibrosis 
(Figure 3 E). Using immunohistochemistry, we 
further analyzed the fibrosis markers collagen, 
fibronectin, and α-SMA. The results showed that 
the knockdown of LYZ could decrease STZ-induced 
fibrosis, and overexpression of LYZ could enhance 
STZ-induced renal fibrosis (Figure 3 F). Additional-
ly, Western blot analysis confirmed a positive cor-
relation between LYZ expression and DN-induced 
renal fibrosis, consistent with our previous obser-
vations (Figure 3 G).

Based on the above results, we can conclude 
that the level of LYZ expression and DN-induced 
renal fibrosis were positively correlated.

LYZ expression in fibroblast cells is 
enhanced by glucose

We treated NRK-49F kidney mesenchymal 
fibroblasts with glucose to examine the rela-
tionship between the expression levels of glu-
cose and LYZ. The results of ELISA showed that 
glucose induced LYZ expression in a  dose-de-
pendent manner (Figure 4 A), and PCR results 
also demonstrated that glucose promoted LYZ 
mRNA expression in a  dose-dependent manner. 
Western blot further verified that glucose could 
promote the expression of LYZ in NRK-49F cells  
(Figures 4 B, C). To further investigate the function 
of LYZ, we constructed LYZ stable high expression 
NRK-49F cells and LYZ knockdown NRK-49F cells 
(Figures 4 D, E). The PCR and Western blot results 
showed that we successfully constructed NRK-49F 
cells with high LYZ expression and knockdown 
(Figures 4 D, E). To investigate the relationship be-
tween LYZ expression level and fibroblast prolifer-
ation ability, we performed a CCK-8 assay, and the 
results showed that LYZ up-regulation significant-
ly promoted glucose-induced fibroblast prolifera-
tion (p < 0.05), while LYZ knockdown significantly 
inhibited glucose-induced fibroblast proliferation 
(p < 0.05) (Figure 4 F).

The above results showed that glucose could 
induce the expression of LYZ in renal fibroblasts 
and LYZ could promote the proliferation of renal 
fibroblasts.

LYZ promotes fibrosis-related cytokine 
expression in NRK-49F cells via the JAK/
STAT3 signaling axis

To investigate the effect of LYZ on fibrosis-re-
lated cytokine, we examined the expression of fi-

brosis-related cytokine in cell supernatants using 
ELISA, as shown in Figures 5 A, B. LYZ overexpres-
sion enhanced glucose-induced fibrosis-related 
cytokine release, while LYZ knockdown decreased 
glucose-induced fibrosis-related cytokine release 
(Figures 5 A, B). Given that previous studies have 
reported that LYZ can activate the TNFα/IL1β 
pathway and that TNF can activate the JAK/STAT 
signaling pathway, we treated NRK-49F cells with 
the JAK inhibitor AG490 (Figure 5 B). AG490 sig-
nificantly reduced LYZ-induced fibrosis-related cy-
tokine release (Figure 5 B). The mechanism was 
further explored using Western blot, and the re-
sults showed that glucose promoted phosphory-
lation of STAT3, while knockdown of LYZ reduced 
the levels of glucose-induced phosphorylation 
(Figure 5 C), suggesting that glucose-induced 
activation of the JAK/STAT3 pathway may be de-
pendent on the expression of LYZ. AG490, a  JAK 
inhibitor, could significantly reduce LYZ-induced 
STAT3 activation (Figure 5 D), suggesting that the 
activation of STAT3 by LYZ is dependent on the ac-
tivation of JAK.

The above results show that LYZ promotes the 
expression of fibrosis-related cytokines in NRK-
49F cells via the JAK/STAT3 signaling axis.

Overexpression of LYZ associated with 
senescence phenotype in RTECs 

Senescence plays a  crucial role in the devel-
opment of DN. To investigate the relationship 
between LYZ and senescence, we examined the 
expression of the senescence-related markers 
IL-1β and MMP-2 in the kidneys of DN mice in-
duced with STZ using immunohistochemistry. We 
found that STZ induction significantly increased 
the expression of IL-1β and MMP-2 in the kidney, 
and LYZ knockdown suppressed the expression 
of IL-1β and MMP-2 induced by STZ (Figure 6 A). 
Conversely, up-regulation of LYZ significantly in-
creased the proportion of RTEC positive for IL-1β 
and MMP-2 (Figure 6 B). Furthermore, LYZ knock-
down decreased IL-1β and MMP-2 positive RTEC. 
Western blot analysis of kidney tissue provided 
further support for the above findings (Figure 6 C).

In summary, the above results demonstrate 
that LYZ can induce the senescence phenotype in 
RTECs.

Discussion

In this study, we observed a positive correlation 
between LYZ expression levels and interstitial fi-
brosis of the renal tubules. Importantly, renal func-
tion impairment was observed following LYZ over-
expression. Mechanistically, we found that 25 mM 
glucose promoted the expression of LYZ in renal 
mesenchymal fibroblasts. Subsequently, LYZ over-
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Figure 4. LYZ expression in fibroblast cells is en-
hanced by glucose. A  – Cells were cultured with 
several concentrations of glucose (0, 5, 10, 15, 25, 
and 50 mM) for 12 h, 24 h, and 48 h. LYZ expres-
sion level in NRK-49F culture supernatants was 
analyzed by ELISA. B – PCR analysis of LYZ expres-
sion in NRK-49F cells cultured with several concen-
trations of glucose (0, 5, 10, 15, 25, 50 mM) for 
24 h. C – Western blot analysis of LYZ expression 
in NRK-49F cells cultured with several concentra-
tions of glucose (0, 5, 10, 15, 25, 50 mM) for 24 h.  
D – PCR analysis of mRNA expression of LYZ

Data represent the mean ± SD of triplicates. P-value was 
calculated by a  two-tailed Student’s t-test. *P < 0.05,  
**p < 0.01, ***p < 0.001.
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Figure 4. Cont. E – Western blot analysis of LYZ protein expression. F – cck8 assays were performed to evaluate high 
glucose-induced NRK-49F cell viability when LYZ was either knocked down (upper panel) or over-expressed, with or 
without AG490 treatment (lower panel)

Data represent the mean ± SD of triplicates. P-value was calculated by a  two-tailed Student’s t-test. *P < 0.05, **p < 0.01,  
***p < 0.001.
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expression was found to enhance fibrosis-related 
proliferation and cytokine release from these fi-
broblasts. Glucose caused LYZ-dependent activa-
tion of STAT3, and the JAK inhibitor AG490 was 
found to partially inhibit LYZ-induced activation of 
STAT3. In addition, we observed that overexpres-
sion of LYZ was associated with the phenotype of 
senescence of renal tubular epithelial cells (RTECs) 
in vivo. Collectively, our findings suggest that LYZ 
may be a key regulator of renal fibrosis that medi-
ates diabetic nephropathy.

Diabetic nephropathy (DN) is a leading cause of 
renal failure [23–25]. Typically, blood urea nitrogen 
(BUN) or blood tests for serum creatinine and al-
buminuria have been used for DN screening. These 
diagnostic markers are important for monitoring 
renal function and detecting DN at an early stage. 
However, the biopsy remains the gold standard 
technique for diagnosing DN [26]. Since biopsy 
is an invasive technique, further investigation of 

DN-related markers is warranted. Given the need 
for additional DN-related markers, markers such 
as kidney injury molecule-1 and neutrophil gelati-
nase-associated lipocalin have shown promise in 
assessing renal damage and serving as monitoring 
markers for DN [27, 28]. In our study, we performed 
a bioinformatic analysis of mRNA expression levels 
in the GEO public database using bioinformatics, 
which revealed that the expression of LYZ was the 
most differentially expressed gene between DN 
patients and healthy volunteers. LYZ mRNA ex-
pression levels were significantly upregulated in 
DN patients compared to healthy volunteers. 

Blood urea nitrogen testing is the test for 
confirmation of blood urea nitrogen, and higher 
blood urea nitrogen levels are associated with 
renal failure. To establish the STZ-induced DN 
model, we measured fasting blood glucose, blood 
urea nitrogen, urinary albumin-to-creatinine ra-
tio, and serum creatinine levels over time. Our 
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Figure 5. LYZ promotes fibrosis related cytokine expression in NRK-49F cells via the JAK/STAT3 signaling axis.  
A, B – The levels of IL-6, TGF-α/TGF-β1, collagen I/III, and MMP2/MMP9 in LYZ knocked down (A) and LYZ overex-
pressed (B) NRK-49F cell culture supernatants were determined by ELISA assay

Data represent the mean ± SD of triplicates. The p-value was calculated by a two-tailed Student’s t-test. *P < 0.05, **p < 0.01, 
***p < 0.001.
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results indicated a gradual increase in these pa-
rameters following STZ induction, suggesting 
that the STZ-induced DN model was successful-
ly established, and the effect of the STZ-induced 
DN was enhanced over time. Interestingly, in our 
study, LYZ mRNA expression levels in the kidney 
were gradually up-regulated, and there was also 
a gradual increase in LYZ protein expression levels 
verified by immunohistochemistry and Western 
blotting. Moreover, the proportion of LYZ positive 
RTEC gradually increased. These findings further 
supported the correlation between DN and LYZ 
upregulation. 

Lysozymes (LYZ) are expressed by a  variety 
of cells and tissues and are encoded by the LYZ 

genes. Oral ingestion of LYZ has the potential to 
suppress bacterial proliferation, in addition to 
classical antibacterial enzyme activity. LYZ can 
also act as an immunoregulatory agent. Lyso-
zyme has been reported to induce transcriptional 
modulation of genes of the TNF-α/IL-1β pathway 
in monocytes, and the JAK/STAT signal has been 
reported to play a key role in the development of 
DN [29, 30]. In the present study, we observed that 
overexpression of LYZ enhanced glucose-induced 
fibrosis-related cytokine release, and knockdown 
of LYZ decreased glucose-induced fibrosis-relat-
ed cytokine release. AG490 significantly reduced 
cytokine release related to LYZ-induced fibrosis. 
Western blot showed that glucose promoted 
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Figure 5. Cont. C, D – Western blot analysis of IL-6, TGF-α/TGF-β1, collagen I/III, and MMP2/MMP9 in LYZ knocked 
down (C) and LYZ overexpressed (D) NRK-49F cells

Data represent the mean ± SD of triplicates. The p-value was calculated by a two-tailed Student’s t-test. *P < 0.05, **p < 0.01, 
***p < 0.001.
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STAT3 phosphorylation, while LYZ knockdown 
reduced glucose-induced phosphorylation levels. 
Treatment with the JAK inhibitor AG490 could sig-
nificantly reduce the activation of STAT3 induced 
by LYZ. Collectively, our result shows that LYZ can 
promote the release of a fibrosis-related cytokine 
through activation of the JAK/STAT3 pathway.

Renal fibrosis plays a critical role in the develop-
ment of DN. It has been reported that TGF-β1 was 
significantly up-regulated in the glomerulus of DN 
mice, with TGF-β1 activation being a key contrib-
utor to fibrosis [5, 31, 32]. Abnormal activation of 
angiotensin II (Ang II) has also been implicated 
in renal fibrosis associated with DN. In addition, 
glucose can promote the expression of angio-
tensin II and ultimately promote renal fibrosis of 
DN [33]. In our study, Masson trichrome staining 
showed that LYZ knockdown was able to partial-
ly attenuate STZ-induced renal fibrosis, although 
increased expression of LYZ could significantly 
increase STZ-induced renal fibrosis. Moreover, the 
expression of fibrosis markers including collagen, 
fibronectin, and α-SMA was suppressed by LYZ 

knockdown, while overexpression of LYZ promot-
ed STZ-induced renal fibrosis. In vitro, the CCK8 
assay showed that LYZ up-regulation significantly 
promoted glucose-induced fibroblast proliferation 
and that LYZ knockdown significantly inhibited 
glucose-induced fibroblast proliferation. These re-
sults indicated that LYZ expression level positively 
correlated with renal fibrosis and that LYZ could 
promote the proliferation of renal fibroblasts.

In conclusion, our study provides evidence that 
LYZ can serve as a potential marker for monitoring 
the development of DN, and that LYZ promotes re-
nal fibrosis and is associated with the senescent 
phenotype in RTECs. Overall, our findings contrib-
ute to a novel understanding of the mechanism 
underlying glucose-induced fibroblast activation 
and provide insights into potential preventive 
strategies for DN.
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