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Summary

Interleukin (IL)-5 and eotaxin families regulate the development of eosino-
philic inflammation of asthma in a co-operative manner. The exposure to
airborne lipopolysaccharide (LPS) induces varying degrees of airflow
obstruction and neutrophilic airway inflammation. Production of IL-5 and
eotaxin subfamily chemokines was analysed in response to Dermatophagoides
pteronyssinus allergen (D.p.) according to the presence of specific IgE to D.p.,
and investigated the mechanism underlying their LPS-mediated regulation of
these cytokines in response to the specific allergen. Peripheral blood cells
(PBCs) from asthmatics with (group 1) or without (group 2) specific IgE to
D.p. and from non-asthmatics with (group 3) or without (group 4) were
stimulated with D.p. or LPS. For LPS-mediated inhibition of IL-5 and
eotaxin-2 production, LPS-induced cytokines were added to the D.p.-
stimulated PBCs. IL-5 and eotaxin-2, but not eotaxin-1 and 3, were signifi-
cantly increased by D.p.-stimulated-PBCs from group 1, while only eotaxin-2
was elevated in group 3. Eotaxin-2 production was found in monocytes and
correlated with the level of specific IgE to D.p. LPS treatment resulted in the
decrease in eotaxin-2 and IL-5 production by the D.p.-stimulated PBCs. LPS-
induced IL-10 completely inhibited D.p.-stimulated production of eotaxin-2
and IL-5. The differential responses of the eotaxin family to specific antigens
suggest that the predominant role of eotaxin-2 and LPS may attenuate eosi-
nophilic inflammation by inhibiting IL-5 and eotaxin-2 synthesis through
IL-10 production.
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Introduction

Allergic asthma has been regarded as an atopic disease
involving allergen exposure, allergic (IgE-mediated) sensiti-
zation with a Th2 CD4+ lymphocyte response and subse-
quent interleukin (IL)-5-mediated eosinophilic airways
inflammation, resulting in enhanced bronchial reactivity
and reversible airflow obstruction [1]. In this process,
antigen-sensitized T helper 2 (Th2) cells play a key role in
development of the manifestations through their production
and release of specific cytokines, such as IL-4, IL-5 and IL-13
[2]. The eotaxin subfamily, a member of CC chemokines,
also participates in the development of asthma and other
allergic disorders through the mobilization of inflammatory
cells bearing CCR3, especially eosinophils. The potent effects

of eotaxins on eosinophils in concert with IL-5 are explained
largely by their ability to signal through the CCR3 [3]. Three
members of this family have been identified: eotaxin-1 [4],
eotaxin-2 [5] and eotaxin-3 [6], and the three eotaxins share
the same CCR3 [7,8]. While limited studies have demon-
strated their differential expression and their roles in regu-
lating the kinetics of eosinophil recruitment during allergic
inflammation [9–12], the eotaxins/CCR3 pathway evidently
plays a fundamental role in eosinophil recruitment in
experimental allergic asthma [10,13]. In allergen-sensitized
atopic asthmatic subjects, in vitro allergen stimulation
induces IL-5 production by peripheral blood mononuclear
cells (PBMC) [14]; however, it has not been evaluated
whether the synthesis of eotaxins depends on antigen
sensitization.
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The exposure to airborne lipopolysaccharide (LPS)
induces varying degrees of airflow obstruction and neutro-
phil inflammation and is often associated with an exacerba-
tion of established asthma in children and adults [15,16].
However, emerging evidence suggests that exposure to
endotoxin in early life prevents the development of atopy
and, potentially, allergic asthma [17–19]. The inhibitory
effect of LPS is mediated presumably by the induction of
Th1 cytokines such as interferon (IFN)-ã and IL-12 secretion
[18,20,21] or regulatory cytokines such as IL-10 [22].
However, the effect and mechanisms of LPS on antigen-
sensitized IL-5 and eotaxins production has not yet been
evaluated. In this study, we employed an ex vivo stimulation
of peripheral whole blood cells (PBCs) that were obtained
from four groups of asthmatics and non-asthmatics with or
without specific IgE to mite Dermatophagoides pteronyssinus
(D.p.). The production of cytokines and eotaxin subfamily
chemokines in response to the mite antigen and the mecha-
nism(s) underlying their LPS-mediated regulation were
analysed.

Methods

Subjects

The study subjects comprised four groups: asthmatics with
(group 1) or without (group 2) D.p.-specific IgE, normal
controls with (group 3) or without (group 4). The asthmat-
ics had clinical symptoms and physical characteristics
compatible with the Global Initiative for Asthma (GINA)
guidelines [23]. Asthmatics showed airway reversibility,
as documented by an inhalant bronchodilator-induced
improvement of more than 15% of forced expiratory
volume in 1 second (FEV1) and/or an airway hyper-
responsiveness (AHR) to < 10 mg methacholine/ml [24].
Allergy skin prick tests were performed using 24 commercial
inhalant allergens, which included dust mites (Dermatopha-
goides farinae and D. pteronyssinus, Bencard, West Sussex,
UK) and histamine (1 mg/ml). IgE specific to D.p. was mea-
sured using the CAP system (Pharmacia Diagnostics,
Uppsala, Sweden) and was presented as specific IgE class
(1–6) according to UniCap-specific IgE Unites (kUA/l). All
subjects gave informed consent to participate in the study,
and the protocols were approved by the local ethics com-
mittee of Soonchunhyang University Hospital.

Cell culture and cytokine/chemokine production

Peripheral blood was diluted at a 1 : 1 ratio with tissue
culture medium containing RPMI-1640, 2 mm l-glutamine,
25 mM HEPES, 100 U penicillin/ml and 100 mg
streptomycin/ml (JBI, Daegu, Korea). PBCs were stimulated
with various concentrations of D.p., which was generously
gifted by Professor Hong [25], and LPS (Escherichia coli
0111:B4, L-2630) (Sigma, St. Louis, MO, USA) for different

lengths of time. The culture supernatants were harvested by
centrifugation and were stored at -20°C until assayed. The
potency of the D.p. was measured by specific IgE inhibition
test with the pooled sera of 10 asthmatics having specific IgE
(score > 4), as described previously [26]. Fifty per cent inhi-
bition was obtained by preincubation of the pooled serum
with 10 mg D.p. extract/ml. The endotoxin concentration of
the mixture containing 10 mg D.p./ml was < 0·283 EU/ml
(equivalent to 28·3 pg/ml), as determined by a limulus
amoebocyte lysate kit (Bio-Whittaker, Walkersville, MD,
USA).

Measurement of cytokine and chemokine
concentrations

Cytokine and eotaxin concentrations were determined by
enzyme-linked immunosorbent assay (ELISA), using kits
from R&D Systems (Minneapolis, MN, USA) for eotaxin-2,
and eotaxin-3 and kits from BD Biosciences (San Diego, CA,
USA) for eotaxin-1, IL-5, IFN-g, IL-12 and IL-10. The detec-
tion limits for eotaxin-1, eotaxin-2, eotaxin-3, IL-5, IFN-g,
IL-12 and IL-10 were 6·3, 15·6, 62·5, 3·9, 18·7, 31·3 and
15·6 pg/ml, respectively. All concentrations below these
limits were considered as the detection limit values above for
the statistical analysis. The inter- and intra-assay coefficients
of variance were below 10%.

Immunocytochemical detection of intracellular
eotaxin-2

Peripheral blood leucocytes were isolated from the venous
blood of D.p.-specific IgE-positive asthmatics using a
Percoll gradient solution. A total of 1 ¥ 107 cells were cul-
tured for 72 h in the presence of autologous serum (10%
v/v) and 10 mg D.p./ml, with 3 mM monensin (Sigma,
M5273) added 6 h before the termination of culture. The
cultured cells were cytocentrifuged and fixed with 1%
paraformaldehyde and 0·1% saponin. Eotaxin-2-positive
cells were identified by immunostaining with anti-human
eotaxin-2 (R&D Systems) and biotinylated goat-anti-mouse
IgG (Vector Laboratories, Burlingame, CA, USA). The
negative control was incubated with isotype-matched
antibody. The cells were then counterstained with
Wright–Giemsa.

Inhibition and blocking of cytokine production in
PBCs stimulated with D.p.

For inhibition studies, various concentrations of IL-10, IL-12
(R&D Systems) and IFN-g (BD Bioscience) were added to
PBCs in the presence of D.p. (10 mg/ml). For blocking, PBCs
were pretreated for 30 min with various concentrations of
mouse anti-human IL-10Ra antibody (R&D Systems) or
mouse anti-human TLR4 antibody (BD Bioscience) and
then for 72 h with D.p. (10 mg/ml) or LPS (10 ng/ml).
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Reverse transcriptase–polymerase chain reaction
(RT–PCR)

PBCs from group 1 were stimulated for 72 h with D.p. in the
presence or absence of LPS and/or various concentrations of
anti-IL-10Ra. PBMCs were then isolated from the cultured
PBCs. Total RNA was extracted and reverse-transcribed by
incubation with 200 U SuperScript RT (Invitrogen Life Tech-
nologies, Grand Island, NY, USA) at 42°C for 50 min. The
resulting cDNA were placed into tubes containing specific
primer pairs for human eotaxin-2, IL-5 or glyceraldehyde-3-
phosphate-dehydrogenase (GAPDH) gene, and were ampli-
fied for 30 cycles (one cycle: 1 min at 95°C, 1 min at 55°C and
1 min at 72°C). The PCR products were resolved by agarose
(1%) gel electrophoresis. The primers used were follows;
eotaxin-2 forward primer 5′-GCTCTGTGGTCATCCCCTC
TCCCTG-3′, reverse primer 5′-GCAGGTGGTTT GGTTC
CAGGATAT-3′; IL-5 forward primer 5′-GAG GATGCTTC
TGCATTTGAGTTTG-3′, reverse primer 5′-GTCAATGT
ATTTCTTTATTAAGGACAAG-3′; GAPDH forward primer
5′-GGCATTGCTCTC AATGACAA-3′, reverse primer
5′-AGGGCCTC TCT CTTGCTCTC-3′.

Statistical analysis

Data were expressed as mean � s.e.m. Statistical analysis
was carried out using the spss program (version 11·0; SPSS
Inc., Chicago, IL, USA). Differences between independent
groups or samples were compared using the non-
parametric Kruskal–Wallis H-test for continuous data. If
differences were found to be significant, the Mann–Whitney
U-test was applied to compare differences between two
samples. The Wilcoxon signed rank test was applied for
time-dependent changes in the parameters. Spearman’s
rank correlation was calculated to assess correlations
between data.

Results

Subject details

Asthmatics (groups 1 and 2) had significantly lower FEV1

and methacholine PC20 values than did non-asthmatics
(groups 3 and 4), while the former exhibited higher blood
eosinophil levels than the latter. Specific and total IgE were
significantly higher in the subjects allergic to D.p. (groups 1
and 3) than in the non-allergic groups (groups 2 and 4)
(Table 1). These findings are consistent with previously
described criteria [27].

Production of cytokines and chemokines by PBCs
in response to D.p.

Throughout this study, a bulk whole blood culture system
was employed in which peripheral blood was diluted at
a 1 : 1 ratio with culture medium and used without
fractionation. To optimize IL-5 and eotaxin subfamilies pro-
duction, PBCs from group 1 (n = 7) were stimulated with
various doses of D.p. for different periods of time. Eotaxin-2
and IL-5 increased continuously until 120 h after stimula-
tion with a dose of 10 mg/ml D.p. and was elevated signifi-
cantly compared with those of unstimulated PBC, whereas
eotaxin-1 was decreased. No significant differences were
found in eotaxin-3 production. Increased IL-5 and eotaxin-2
production by PBCs for 72-h stimulation with D.p. antigen
reached a plateau at a dose of 10 mg/ml D.p and eotaxin-1
was significantly down-regulated upon exposure of PBCs in
a dose-dependent manner to D.p. antigen (Fig. 1a).

Next, we stimulated PBCs from subjects of four groups. To
minimize the effect derived from both different absolute and
relative numbers of leucocytes in each group and in each
individual within the group, the results were expressed as a
fold increase of D.p. stimulation versus D.p. non-stimulation.
PBCs were obtained from four groups (group 1, n = 20;

Table 1. Clinical profiles of the study subjects.

Asthma Normal control

Group 1 Group 2 Group 3 Group 4

Subject (M/F) 20 (10/10) 12 (7/5) 7 (5/2) 10 (4/6)

Age (years) 30·9 � 2·6 33·83 � 1·2 29·71 � 2·4 32·0 � 3·6

Current smoker (%) 38 33·3 32·5 30

FEV1%, predicted 81·1 � 2·2†‡ 97·2 � 4·8 101·7 � 4·2 107·8 � 6·3

Methacholine PC20 (mg/ml) 2·1 � 1·4†‡ 2·7 � 1·1§¶ > 25 > 25

Blood eosinophil (%) 5·1 � 0·7†‡ 6·2 � 1·5¶ 2·1 � 0·2 1·7 � 0·4

Skin test to D.p. (%) 100*‡ 0 ££ 100** 0

Total IgE (U/ml) 571·5 � 127·6*‡¶ 203·9 � 76·4¶ 185·1 � 37·6** 22·8 � 6·2

Specific IgE, to D.p. antigen 3·7 � 0·2*†‡ 0 � 0§ 2·7 � 0·3** 0 � 0

Specific IgE is presented as specific IgE class (grades 1–6) according to Unicap-specific IgE Unites (kUA/l). Values are the means � s.e.m. P-values

were obtained using the Mann–Whitney U-test or the c2 test. The following symbols represent significant differences (P < 0·05) between two groups:

*between groups 1 and 2, †between groups 1 and 3, ‡between groups 1 and 4, §between groups 2 and 3, ¶between groups 2 and 4 and **between groups

3 and 4.
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Fig. 1. (a) Time kinetics and dose–responses of IL-5 and eotaxin family chemokine production by D.p.-stimulated PBCs. PBCs were prepared from

group 1 (n = 7) and were stimulated with various concentrations of D.p. for different lengths of time. Data are expressed as the means � SEM. The

statistical analysis was carried out using the Wilcoxon signed rank test. *P < 0.05, **P < 0.01. (b) Production of IL-5 and eotaxin subfamilies by

D.p.-stimulated PBCs. PBCs were stimulated with either medium or 10 mg D.p./ml for 72 h. Groups 1, 2, 3, and 4 included 20, 12, 7, and 10

individual samples, respectively. The amounts of cytokines were expressed as a fold increase in which cytokine levels in the presence of D.p. were

divided by those in its absence. *P < 0.05, **P < 0.01 vs. cytokine levels in the absence of D.p. (c) Inhibition of D.p.-induced production of eotaxin-2

and IL-5 by LPS. PBCs from group 1 (n = 7) were treated with increasing concentrations of LPS in the presence of D.p. (10 mg/ml) for 72 h, and the

eotaxin-2 and IL-5 levels in the culture supernatants were determined. *P < 0.05, **P < 0.01 vs. D.p.-induced production of eotaxin-2 and IL-5.

Cytokine production was determined by ELISA. (d) Percoll gradient-isolated leukocytes from group 1 were stimulated with medium (panels 1, 2) or

D.p. antigen (panels 3, 4), cytospin, and either incubated with anti-human eotaxin-2 antibody (panels 1, 3) or stained with Wright-Giemsa solution

(panels 2, 4). Bar =10 mm.
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group 2, n = 12; group 3, n = 7; and group 4, n = 10) and
were stimulated with D.p. (10 mg/ml) for 72 h. The signifi-
cantly increased production of IL-5 was observed only in
group 1, while eotaxin-2 was elevated in groups 1 and 3
(Fig. 1b). In contrast, eotaxin-1 production decreased sig-
nificantly in groups 1 and 3. Eotaxin-3 was not changed in
the four groups (Fig. 1b). Eotaxin-2 production in groups 1
and 3 correlated strongly with the respective levels of specific

serum IgE to D.p. (r = 0·528, P = 0·017 for group 1 and
r = 0·810, P = 0·027 for group 3) (Fig. 2). Immunocy-
tochemical and Wright–Giemsa staining of PBCs from
group 1 showed that monocytes were the eotaxin-2-
producing cells (Fig. 1d).

Inhibitory effect of LPS on D.p.-induced eotaxin-2
and IL-5 production

As eotaxin-2 and IL-5 levels increased following stimulation
with D.p., the production of these two cytokines in response
to LPS was examined. PBCs from group 1 (n = 7) were stimu-
lated with increasing concentrations of LPS in the presence of
D.p. (10 mg/ml). The results showed that eotaxin-2 and IL-5
production declined in a dose-dependent fashion. Eotaxin-2
was inhibited completely (P = 0·01) and IL-5 was inhibited
by 80% (P = 0·01) at 10 ng/ml LPS (Fig. 1c). To examine
whether the inhibitory effect of LPS was mediated through
Toll-like receptor 4 (TLR4), a neutralization antibody to
TLR4 was added to PBC cultures from group 1 (n = 6) in the
presence of D.p. (10 mg/ml) and LPS (10 ng/ml). Eotaxin-2
and IL-5 production were partly restored by neutralization
with anti-TLR4 in a dose-dependent manner (Fig. 3a), sug-
gesting an inhibitory mechanism via TLR4. To identify which
factor(s) mediate the inhibitory effect of LPS on the D.p.-
induced production of eotaxin-2 and IL-5, production of
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cytokines (IL-5, IFN-g, IL-12 and IL-10) and eotaxins was
analysed in group 1 PBCs (n = 7) stimulated with LPS alone.
Among these, IFN-g, IL-12 and IL-10 were significantly
up-regulated upon the exposure of PBCs in a dose-
dependent manner of LPS (Fig. 3b).

LPS inhibits D.p.-induced production of IL-5 and
eotaxin-2 via IL-10 production

The three cytokines induced by LPS were examined indi-
vidually for their inhibitory effect on the production of
eotaxin-2 and IL-5 by D.p.-stimulated PBCs from group 1
(n = 8). IL-10 inhibited eotaxin-2 and IL-5 production
almost completely (Fig. 4a). In contrast, IFN-g significantly
augmented the production of both cytokines, and IL-12 had
no effect. Anti-IL-10Ra suppressed dose-dependently the
inhibitory effect of LPS on D.p.-stimulated IL-5 production
but not eotaxin-2 production (Fig. 4b), suggesting that a
signal transmitted through the IL-10R effectively blocks IL-5
production by D.p.-primed Th2 cells, yet is not effective for
monocyte eotaxin-2 production. RT–PCR analysis showed

that the LPS-mediated inhibition as well as the restoration of
IL-5 mRNA expression by anti-IL-10Ra indeed occurred at
the transcriptional level (Fig. 4c). The neutralization of
eotaxin-2 mRNA expression by anti-IL-10Ra was not
observed, indicating that the inhibitory effects of LPS on
D.p.-induced IL-5 and eotaxin-2 production are regulated
differently.

Discussion

We employed an ex vivo stimulation of peripheral blood cells
(PBCs) that were obtained from four groups of asthmatics
and non-asthmatics with or without specific IgE to mite D.p.
PBC contains lymphocytes, monocytes and other leucocytes.
It also contains an array of protein and non-protein factors
that may influence the availability of the antigen and LPS
used. Thus it functionally represents the in vivo milieu more
accurately than do purified peripheral blood leucocytes or
combinations thereof.

Stimulation of PBCs with D.p. resulted in characteristic
expression patterns of IL-5 and eotaxin subfamily
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chemokines. We identified increased IL-5 and eotaxin-2 pro-
duction in D.p.-stimulated PBCs from the specific IgE-
positive (group 1) and monocytes as a major producer of
eotaxin-2. This result indicates the strict dependence of IL-5
and eotaxin-2 production on sensitization with specific
antigens. IL-5 synthesis was observed only in PBCs from
group 1. This result is in agreement with a previous study in
which allergen-induced IL-5 production by PBMC from sen-
sitized atopic subjects with symptoms, but not subjects
without symptoms, is elevated [14].

CD23, a low-affinity receptor of IgE (FcåRII), is expressed
at a much higher level in monocytes from allergic asthmatics
than in cells from normal individuals [28]. It is therefore
speculated that D.p. may form a complex with circulating
specific IgE to induce eotaxin-2 production through the
engagement of abundant CD23 on monocytes from allergic
subjects. As a result, eotaxin-2 production may be related to
the presence of specific IgE. Our data demonstrate that
eotaxin-1 is down-regulated and eotaxin-2 is up-regulated by
D.p., while eotaxin-3 remains unchanged. This may be due to
different cell sources of each eotaxin. While monocytes are a
major source of eotaxin-2, eotaxin-1 and 3 are produced
mainly by epithelial cells [9]. Limited studies have demon-
strated the differential expression and roles of eotaxin sub-
families in regulating the kinetics of eosinophil recruitment
during allergic inflammation [11,29]. However, experimental
asthma models using eotaxin 1 and/or eotaxin 2 knock-out
mice showed a dominant role of eotaxin-2 in ovalbumin
(OVA)-induced airway eosinophilia [13], in spite of a
co-operative role for eotaxin-1 and eotaxin-2 in recruitment
of eosinophils to the lung tissue. We have shown that poly-
morphism in the gene encoding eotaxin-2, but not eotaxin-1,
is associated with a risk of asthma [30] and correlates with
plasma eotaxin-2 levels [31]. These data, including ours, may
suggest a dominant role of eotaxin-2 among the eotaxin
subfamily in peripheral circulation of atopic asthma.

The effect of endotoxin exposure in asthma is still
controversial. The beneficial effects of LPS are thought to be
mediated by enhanced secretion of IFN-g and IL-12 [32,33],
whereas LPS affects asthmatics adversely by enhancing estab-
lished airway inflammation and airway obstruction [16]. In
the present study, we showed that LPS inhibited dose-
dependently the production of IL-5 and eotaxin-2 in
response to specific antigen; thus only IL-10 almost com-
pletely inhibited antigen-induced production of IL-5 and
eotaxin-2 (Figs 1–3). The other novel finding of our study is
that blocking the functioning receptor of IL-10 (IL-10Ra)
restored the inhibitory effect of LPS only on IL-5 production
(Fig. 4). These data suggest that the effect of LPS against the
manifestation of allergic asthma is achieved by reducing
eosinophilic inflammation through the up-regulation of
IL-10 production. In support of this finding, IL-10 has been
shown to exhibit anti-allergic activity in sensitized mice by
preventing IL-5 release and antigen-induced CD4+ T lym-
phocyte and eosinophil accumulation [22].

Systemic administration of endotoxin to healthy subjects
produced a selective induction of Th1, as confirmed by
increased IL-2 production versus decreased IFN-gamma pro-
duction and Th2 chemokine ligands such as CCR4 receptor
[34]. These in vivo data were not in agreement with ours in
terms of different patterns of IFN-gamma production. It
would be interesting to evaluate whether IL-10 production is
elevated in a human endotoxin model, but this has not yet
been attempted. In contrast to systemic administration,
inhalation of endotoxin induced different patterns of reac-
tion in the airways. Inhalation of endotoxin has been recog-
nized as an important factor in the aetiology of occupational
lung diseases, including non-allergic asthma [35]. Eosino-
philic inflammation is generally considered to be the main
feature of allergic asthmatic airways and is presumed to be
crucial in the pathogenesis of allergic asthma [36]. Endot-
oxin in house dust is associated with exacerbations of pre-
existing asthma in children and adults [16,37], and induces
neutrophilic airways inflammation via IL-8 secretion [38].
The switching of eosinophilic inflammation into neutro-
philic inflammation in the acute exacerbation of allergic
asthma is contributed mainly by up-regulation of neutro-
philic chemokines such as IL-8. In addition, down-
regulation of IL-5 and eotaxin may be one mechanism to
reduce the eosinophilic inflammation in the LPS-induced
neutrophilic airway inflammation of asthmatics, as shown in
experimental models [39], although this has not been
revealed in the airways of asthmatics. IL-10 may exert an
inhibitory effect on eotaxin-2 production via another
pathway such as IL-10Rb [40], or an unknown pathway.
Intriguingly, IFN-g treatment enhanced the production of
IL-5 and eotaxin-2 by antigen-stimulated PBCs, while IL-12
had no effect (Fig. 4a). This observation is in line with pre-
vious findings that the suppression of airway eosinophilia
and AHR by LPS [41] or killed mycobacteria [42] is not
attributable to a Th1 shift.

In summary, two important conclusions can be drawn
from our results: first, specific antigen-stimulated whole-
blood cultures from asthmatics and normal controls with or
without specific IgE to D.p. produce unique patterns of IL-5
and eotaxin-2. Secondly, LPS inhibits antigen-induced pro-
duction of IL-5 and eotaxin-2 via IL-10 secretion. The
inhibitory effect of endotoxin may be associated with its
ability to attenuate eosinophilic inflammation or eosinophil-
mediated immune responses.
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