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Knowing the role of MC1R in skin tanning can provide a brand new idea to resolve pigmentary disorders. 𝛼MSH has 13 amino
acids and is themost essential pigmentary melanocortin responsible for melanin synthesis. One could utilize the compound library
to find lead compounds by virtual screening from peptide database and traditional Chinese medicine (TCM) database@Taiwan.
Computational simulation provided a convenient technology to survey potential lead. Ligand-based validation set up the
reliable model for molecular dynamics simulation. Molecular dynamics simulation approved the binding affinity and stability
of the peptides selected by virtual screening. Thus, we concluded that Glu-Glu-Lys-Glu (EEKE), Glu-Gly-Gly-Ser-Val-Glu-Ser
(EGGSVES), and Glu-Glu-Asp-Cys-Lys (EEDCK) were potent lead peptides for MC1R to resolve pigmentary disorders.

1. Introduction

Excessive melanin contributes to skin tanning or darken-
ing. Ultraviolet (UV) radiation leads to skin pigmenta-
tion by manufacturing melanin in the melanocytes located
at the basal layer of epidermis. Expression of the pro-
opiomelanocortin (POMC) gene producing 𝛼-melanocyte
stimulating hormone (𝛼MSH) takes place in keratinocytes.
𝛼MSH recognizing melanocortin 1 receptor (MC1R) located
on the cell membrane of melanocytes starts a series of
signal pathways [1]. The 𝛼MSH/MC1R triggers downstream
signal transduction which is followed by cyclic adenosine
monophosphate (cAMP), protein kinaseA (PKA), and cAMP
responsive element binding protein/cAMP responsive ele-
ment (CREB/CRE) pathway [2]. Microphthalmia-associated
transcription factor (MITF) begins its function in turn. It is
an important protein that controls the activation of following
melanotic genes: tyrosinase and tyrosinase related protein 1
and 2 (Trp1 and Trp2) [3, 4].

MSHs belong to the POMC hormone groups and include
three types of 𝛼, 𝛽, and 𝛾-MSH [5]. Generally speaking,
𝛼MSH is a pituitary peptide hormone derived from adreno-
corticotropic hormone (ACTH) [6].𝛼MSHwhich affects skin
pigmentation mainly produces locally instead of pituitary
origin [7]. 𝛼MSH has 13 amino acids and is the most
essential pigmentary melanocortin responsible for melanin
synthesis or melanogenesis [8]. Its amino acid sequences are
Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val [9].
Synthetic analogs of 𝛼MSH have been developed as use-
ful probes binding to the melanocortin receptor or MC1R
which is overexpressed in melanoma lesions [10, 11]. His6-
Phe7-Arg8-Trp9 (HFRW) is the most common active motif
approved in the literature [12, 13]. Experimental order
exchange of 𝛼MSH had been demonstrated as high-affinity
peptides binding to the MC1R but loss of their agonistic
function [14].

Melanocortin receptors belong to class A or rhodopsin
of the superfamily of 7-transmembrane G protein-coupled
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Figure 1: Sequence alignment between MC1R human and template (2IQP). The identity is 49.8% and the similarity is 72.4%.

receptors (GPCRs) [15–17]. GPCR receives external signal, for
example, hormones and neurotransmitters, vary inmolecular
size from small peptides to large proteins [18]. There are
five known melanocortin receptors, MC1∼5R [19]. They have
similar structure conformation but participate in unique
physiologic functions: pigmentation, adrenal function, car-
diovascular regulation, obesity or energy homeostasis, and
exocrine gland secretion [20, 21]. MC1R is the irreplaceable
target involved in regulating our skin or hair color [22].
The coat color of animals or plumage color of birds is also
regulated by MC1R gene [23, 24]. MC1R has 318 amino
acids; 𝛼MSH is its agonist, and agouti signal protein is its
antagonist. They determine the phenotype of our skin and
hair by producing black, brown eumelanin or yellow, red
pheomelanin [25].

Protein sequence and structure analysis by computa-
tional simulation have become popular technology in recent
decades [26, 27]. We use computational systems biology
or in silico biology to research the protein-molecule or the
protein-ligand interaction [28, 29]. Drug discovery integrates
systems biology and informatics called computer-aided drug
design (CADD) [30, 31]. The advantages of CADD tech-
niques shorten our time to find appropriate drug compound
opposite to traditional biochemistry [32, 33]. Quantitative
structure activity relationship in silico can tell us the proper-
ties between small molecule and target protein [34]. Virtual
screening and validations through structure-based or ligand-
based analysis constitute to CADD procedures [35, 36].
Virtual screening and data analysis utilize docking and
molecular dynamics (MD) simulation [37–39]. How long the

compoundneeds to form stable complex structurewith target
protein can be predicted by MD [40]. Docking and MD
accuracy is relying on a series of statistic or score systems [41].
Ligand-based analysis utilizes mathematical model such as
Bayesian algorithm [42, 43]. We can choose best candidates
from virtual screening and validations as potential effective
drugs [44].

Knowing the role of MC1R in skin tanning can provide a
brand new idea to prevent UV darkening [45]. Clinical appli-
cation of 𝛼MSH analog is significant in managing certain
dermatologic diseases [46]. CADD has been rapidly applied
in small molecular drug design [47–50]. Virtual screening of
compound database becomes the first and convenient way
for CADD [51–56]. Screening peptides for compounds as
a drug is a method to design antimicrobial peptides and
potent peptides for peptide receptors, such as GPCRs [57–
59]. MC1R is a peptide receptor, and peptide design for
its agonist and antagonist can be achieved [60]. Virtual
screening from peptide database and traditional Chinese
medicine (TCM) database@Taiwan in silico saves our time
to filter the functional compounds [61–63]. We attempted
to investigate the lead for MC1R to resolve pigmentary
disorders.

2. Materials and Methods

2.1. Compound Database. To investigate lead peptides of
MC1R from peptide library, we downloaded all the peptides
from PepBank (http://pepbank.mgh.harvard.edu/) to con-
duct MC1R lead peptide screening [64].

http://pepbank.mgh.harvard.edu/


Evidence-Based Complementary and Alternative Medicine 3

General

130 LEU

295 CYS

89 ARG

294 THR

13 ALA

206 LYS

42 THR

180

−180

0𝜓

Glycine

5 GLY

Pre-pro
180

−180

0

180−180 0

𝜓

180

−180

0𝜓

180

−180

0𝜓

247 CYS

𝜙

Proline

251 PRO

180−180 0

𝜙

180−180 0

𝜙

180−180 0

𝜙

General favoured
Glycine favoured
Pre-pro favoured
Proline favoured

General allowed
Glycine allowed
Pre-pro allowed
Proline allowed

Figure 2: Ramachandran plot of MC1R-modeled structure. Number of residues in favored region (∼98.0% expected): 444 (84.7%). Number
of residues in allowed region (∼2.0% expected): 52 (9.9%). Number of residues in disallowed region: 28 (5.3%).

2.2. Data Collection. For the purpose of identifying MC1R
lead peptides, we obtained the structures and corresponding
bioactivities (pIC

50
) of 18 peptides to construct the data set

for ligand-based prediction [65].

2.3. Homology Modeling. The MC1R protein sequence
was acquired from the Uniprot Knowledgebase (Q01726,
MC1R Human). The 3D structure of human MC4R was
acquired from Protein Data Bank (PDB ID: 2IQP). MC1R
sequence and the template structure were aligned by
Discovery Studio (DS) 2.5. The rational MC1R model was
further examined by Ramachandran plot [66].

2.4. Structure-Based Virtual Screening. The ligands from
PepBank and the control ligand, His-Phe-Arg-Trp (HFRW),
were prepared for specified modeling methods. We used
Chemistry at HARvard Molecular Mechanics (CHARMm)
force field to set up the model [67]. Docking and scoring
functions were estimated by LigandFit module in DS 2.5.
We applied the scoring functions including Dock Score,
piecewise linear potentials (-PLP), and potential of mean
force (-PMF) [47, 50].

2.5. Ligand-Based Validation. Bayesian network constructed
the property of descriptors by integrating the data of training
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Figure 3: Scaffold of top 3 candidate peptides: (a) EEKE, (b) EGGSVES, (c) EEDCK, and the control: (d) HFRW.
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Figure 4: Docking poses of (a) EEKE, (b) EGGSVES, (c) EEDCK, and (d) HFRW. Purple sphere: Residues involved in hydrogen bond (H-
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Figure 6: Ligand and complex rootmean square deviation (RMSD).
Although each ligand alone had larger deviation, the corresponding
ligand-protein complex was relatively stable.
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Figure 7: Ligand and C-alpha gyrate. Only EGGSVES had larger
gyrate value after 8 ns, other peptides or the complexes were stable
in contrast.

set and test set. The data of descriptors and pIC
50

were
discretized to reduce bias distribution [68]. They were dis-
cretized into a maximum of three categories. The training
set was defined as linear regression analysis for every pIC

50

category after data discretization [69].WeusedBanjo package
and Bayes Net Toolbox (BNT) package for simulation in our
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study. The 18 ligands were randomly divided into 13 training
sets and 5 test sets for further validation.

2.6. Molecular Dynamics (MD) Simulation. We used Simula-
tion module in DS 2.5 for MD simulation. The cytoplasmic
status was simulated with transferable intermolecular poten-
tial 3P (TIP3P) water at 0.9% NaCl concentration. Selected
protein-ligand complexes from docking were conducted
under minimization, heating, equilibration, and production.
The minimization phase included 500 steps of deepest
descent and 500 steps of conjugated gradient. The heating
time from 50K to 310K was 50 ps. The equilibration time
at 310 K was 150 ps. The production time with constant tem-
perature dynamics method was 10 ns. The temperature decay
time was 0.4 ps. The Analyze Trajectory module was used to
analyze total energy, root mean square deviations (RMSD),
gyrate, mean square deviation (MSD), and solvent accessible
surface (SAS) for each ligand and protein-ligand complex.We
also illustrated cluster analysis to observe structure features
during MD. Illustration of disordered protein was shown to
exclude disordered residues [70, 71]. We used LigandPath
module to estimate the possible pathway for each ligand. A
surface probe was set at 6 Å, and minimum clearance was set
at 3 Å.

3. Results

3.1. Homology Modeling. The overall identity of sequence
alignment between MC1R and template was 49.8%. The
overall similarity was 72.4% (Figure 1). Ramachandran plot
of MC1R-modeled structure indicated that 84.7% of residues
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The control ligand had larger SAS value compared with other
ligands, but its corresponding complex was almost consistent to
other complexes.

were in the favored region, 9.9% were in the allowed region,
and only 5.3% were in the disallowed region (Figure 2).

3.2. Structure-Based Virtual Screening. Dock score, BNT,
-PLP1, -PLP2, and -PMF for the top 10 peptides ranked
by Dock score were listed in Table 1. Integrating these
data, we selected 3 following peptides: Glu-Glu-Lys-Glu
(EEKE), andGlu-Gly-Gly-Ser-Val-Glu-Ser (EGGSVES), Glu-
Glu-Asp-Cys-Lys (EEDCK) as candidates for further inves-
tigation (Figure 3). Docking poses of EEKE, EGGSVES,
EEDCK,and the control (HFRW)withMC1Rwere illustrated
in Figure 4. EEKE formed H-bond with Ala88 and Arg89
and formed charge interaction with Arg89 (Figure 4(a)).
EGGSVES formed H-bond with Ala88 and Arg89 and
formed charge interaction with Arg89 (Figure 4(b)). EEDCK
formed charge interaction with Arg89 (Figure 4(c)). The
control formed H-bond with Ala88 and Arg89 (Figure 4(d)).

3.3. Ligand-Based Validation. We illustrated the correlation
of observed and predicted activities using the BNT model.
The 𝑅2 value of 0.999 indicated that it is a highly reliable
model (Figure 5).

3.4. Molecular Dynamics (MD) Simulation. We analyzedMD
trajectories which were generated by Gromacs. Root mean
square deviation (RMSD) showed the deviation from the
starting structure of each ligand or complex to the end
of MD. EGGSVES had larger deviation after 8 ns, but the

corresponding ligand-protein complex was relatively stable
in the same period. Other peptides were stable during 10 ns
MD in contrast (Figure 6). gyrate, or radius of gyration,
measured the distance of the atoms relative to the center of
eachmass. gyrate indicated the compact degree of each ligand
or complex. Interestingly, EGGSVES had larger gyrate value
after 8 ns, but the corresponding complex was also relatively
stable.Other peptideswere stable during 10 nsMD in contrast
(Figure 7). Mean square deviation (MSD) measured the
movement of atoms from their initial positions to the end
of MD. MSD indicated the trend of each ligand or complex
during MD. All the ligands and complexes had different
line graphs, but the long-term trends could be predictable
(Figure 8). Solvent accessible surface (SAS) measured the
surface area of each ligand or complex in contact with the
water. Although the control ligand had larger SAS value
compared with other ligands, but the corresponding complex
was almost consistent to other complexes (Figure 9). In
addition, total energy of each ligand or complex means the
total energy of atoms during MD. The total energy would
fluctuate, but overall trend was consistent (Figure 10). We
performed cluster analysis with RMSD values to identify the
representative structure of the complex. The cluster analy-
sis could identify two adjacent structure features for each
complex during 5–10 nsMD. EEDCK ligand-protein complex
had fluctuated structure features, indicated the complex had
undergone many tiny changes (Figure 11). Most residues of
MC1R-modeled structure were not in the disordered region
(Figure 12). Different ligand pathways for EEKE, EGGSVES,
and the control bound with MC1R were illustrated. EEDCK
was not shown due to out of the criteria mentioned in
materials and methods (Figure 13).

4. Discussion

4.1. Compound Database. MC1R is a peptide receptor, so we
utilized the PepBank which was established byMassachusetts
General Hospital, Harvard University, to conduct MC1R
lead peptide screening. The PepBank database has contained
nearly 20000 bioactive peptides. It is a useful and convenient
peptide database.

4.2. HomologyModeling. Thehigh percentage of identity and
similarity of sequence alignment between MC1R (Q01726)
and template (2IQP) indicated that the sequence alignment
was reasonable. The high percentage of residues in the
favored and allowed region indicated that theMC1R-modeled
structure was reliable.

4.3. Structure-Based Virtual Screening. His-Phe-Arg-Trp
(HFRW) is the most common key motif for MC1R. We
originally expected the outcome peptide sequence from
virtual screening should be similar to the control (HFRW).
However, Dock score, BNT, -PLP1, -PLP2, and-PMF of the
top 10 candidates were almost better than the control. The
top 3 candidates which we selected were EEKE, EGGSVES,
and EEDCK. Their sequences were quite different from the
control. We could speculate that these candidates at least
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Figure 10: Total energy of (a) EEKE, (b) EGGSVES, (c) EEDCK, and (d) the control (HFRW).

Table 1: Top 10 candidates of scoring function from PepBank database screening.

Name Dock score BNT -PLP1 -PLP2 -PMF
EEKE 345.464 7.963191 37.91 36.24 32.59
EGGSVES 338.21 6.979679 32.61 40.4 41.39
EEDCK 337.005 9.512784 24.46 26.69 26.37
GEGEGSGG 335.016 9.346013 42.84 51.79 29.34
SEEEAA 322.144 12.351714 58.12 67.98 24.42
DSGVETS 316.584 8.611215 13.43 19.48 31.47
EGEVGLG 315.171 5.676182 28.59 30.23 22.78
EAGVDAA 315.157 7.491065 24.74 25.56 30.21
DTAGQE 311.701 6.382156 33.58 29.06 34.39
EEKE 311.503 8.708929 44.54 48.58 27.17
His-Phe-Arg-Trp (HFRW)∗ 97.949 3.431413 32.8 26.9 28.15
∗Control.
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had similar function as the control and might have better
affinity for MC1R. Comparing the docking poses of the top
3 candidates and the control with MC1R had the common
finding. All of EEKE, EGGSVES, and the control formed
H-bond with Ala88 and Arg89. All of EEKE, EGGSVES, and
EEDCK formed charge interaction with Arg89. We could
conclude that Ala88 and Arg89 were key residues for the top
3 candidates and the control.

4.4. Molecular Dynamics (MD) Simulation. RMSD, gyrate,
MSD and, SAS were utilized to analyze the stability of
each ligand or complex. Although some ligands were not
stable during MD, the ligand-protein complexes were stable
relatively. So either of EEKE, EGGSVES, EEDCK, or HFRW
could form stable complex with MC1R.

Further analyzing the figure of ligand RMSD, EEDCK
had the largest average deviation than other candidates.
Interestingly, the deviation of EEKE and EGGSVES exceeded
EEDCK after 9 ns. However, analyzing the figure of complex
RMSD, EEKE had the largest average deviation than other
candidates. Although EGGSVES alone had larger deviation at
8-9 ns, the EGGSVES-MC1R complex did not have substan-
tial change at the same time. It showed that deviation of indi-
vidual ligand did not affect the stability of its corresponding
complex.

Further analyzing the figure of ligand gyrate, EEDCK
still had the largest average value than other candidates.
Although EGGSVES alone had larger fluctuation at 8-9 ns,
the EGGSVES-MC1R complex (c-alpha) did not have sub-
stantial change at the same time. It showed that gyrate of indi-
vidual ligand did not affect the stability of its corresponding
complex, either.

From the additional analysis of the figure of ligand MSD,
EEDCK still had the largest deviation than other candidates.

(a)

(b)

(c)

Figure 13: 3D simulation of ligand pathway for (a) EEKE, (b)
EGGSVES, and (c) the control (HFRW) bound withMC1R. EEDCK
is not shown here.

However, from results of the complex (c-alpha) MSD, EEKE
had the lowest average deviation than other candidates. We
speculated that EEKE-MC1R complex vibrated back and
forth contributing to distinct presentation in complex RMSD
and c-alpha MSD. EGGSVES vibrated in opposite direction
might explain the upward slope in ligand RMSD and the
downward slope in ligand MSD at 8-9 ns.

Further analyzing ligand SAS, the control had the largest
average value than the 3 candidates. The result might be
related to the hydrophobic side chain of the control.

Further analyzing the figure of total energy, EEKE had
the lowest total energy (−1514000 kJ/mol), andEGGSVEShad
the highest total energy (−1437000 kJ/mol). We speculated
that EEKE-MC1R complex only vibrated back and forth
contributing to the lowest total energy.

When individual ligand bound to MC1R, MD was con-
venient to analyze the change of the ligand or the ligand-
protein complex. MD could evaluate whether the ligand or
the complex was stable or not under dynamic condition. MD
might help us understandwhat happened during conjugation
of the ligand and protein. Comparing the figures of RMSD
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and gyrate, EGGSVES had larger change after 8 ns. The
change implied that the structure of EGGSVES underwent
some kind of deviation or even translocation. This change
did not affect the conjugation of EGGSVES with MC1R
because the ligand-protein complex was stable relatively.
Comprehensive assessment of the methods of MD, such as
RMSD, gyrate, MSD, SAS, and total energy, indicated that all
the 3 candidates and the control could form stable complexes
with MC1R [72–81].

5. Conclusion

MC1R is important for skin tanning.𝛼MSH is amelanotropin
which can bind to MC1R. His-Phe-Arg-Trp (HFRW) is a key
motif for conjugating with MC1R. We tried to find potential
peptides that can also bind to MC1R by virtual screening
of peptide database. Glu-Glu-Lys-Glu (EEKE), Glu-Gly-
Gly-Ser-Val-Glu-Ser (EGGSVES), and Glu-Glu-Asp-Cys-Lys
(EEDCK) had better affinity for MC1R. The binding affinity
was further validated by molecular dynamics. Thus, we con-
cluded that EEKE, EGGSVES, and EEDCKwere more potent
lead peptides for MC1R to resolve pigmentary disorders.
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