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Abstract

Ultraconserved (UCEs) are popular markers for phylogenomic studies. They are relatively simple to collect from
distantly-related organisms, and contain sufficient information to infer relationships at almost all taxonomic levels.
Most studies of UCEs use partitioning to account for variation in rates and patterns of molecular evolution among sites,
for example by estimating an independent model of molecular evolution for each UCE. However, rates and patterns of
molecular evolution vary substantially within as well as between UCEs, suggesting that there may be opportunities to
improve how UCEs are partitioned for phylogenetic inference. We propose and evaluate new partitioning methods for
phylogenomic studies of UCEs: Sliding-Window Site Characteristics (SWSC), and UCE Site Position (UCESP). The first
method uses site characteristics such as entropy, multinomial likelihood, and GC content to generate partitions that
account for heterogeneity in rates and patterns of molecular evolution within each UCE. The second method groups
together nucleotides that are found in similar physical locations within the UCEs. We examined the new methods with
seven published data sets from a variety of taxa. We demonstrate the UCESP method generates partitions that are worse
than other strategies used to partition UCE data sets (e.g., one partition per UCE). The SWSC method, particularly when
based on site entropies, generates partitions that account for within-UCE heterogeneity and leads to large increases in the
model fit. All of the methods, code, and data used in this study, are available from https://github.com/Tagliacollo/
PartitionUCE. Simplified code for implementing the best method, the SWSC-EN, is available from https://github.com/
Tagliacollo/PFinderUCE-SWSC-EN.

Key words: phylogenomics, UCEs, partitioning, partitioning methods, sliding-window site characteristics,
PartitionFinder.

Introduction
Ultraconserved Elements (UCEs) are becoming one of the
most popular DNA markers used for phylogenomic studies
(Crawford et al. 2012; Faircloth et al. 2013, 2015; Jarvis et al.
2014; Meiklejohn et al. 2016). UCEs are highly conserved
regions of DNA found throughout the genomes of many
distant-related species. The functions of UCEs are not
completely understood; however, their frequent proximity
to transcriptional regulators or developmental genes has
led to suggestions that they are directly involved in transcrip-
tional regulation (Woolfe et al. 2005; Pennacchio et al. 2006).
The conserved core regions of UCEs contain little variation,
but the adjacent flanking regions contain more variation, and
numerous studies have demonstrated that this variation is
useful for inferring phylogenetic relationships between indi-
viduals, species, and higher clades (Crawford et al. 2012;
Faircloth et al. 2012, 2015; Smith et al. 2014; Harrington
et al. 2016; Moyle et al. 2016).

The accuracy of phylogenetic inferences often depends on
choosing an appropriate model of molecular evolution, and
many studies have demonstrated that accounting for varia-
tion in rates and patterns of evolution among sites is of

primary importance (Shapiro et al. 2006; Li et al. 2008; Ho
and Lanfear 2010; Lanfear et al. 2012, 2014). There are multiple
methods that account for variation of molecular evolution
among sites (Le et al. 2008; Zhang and Townsend 2009;
Goremykin et al. 2010; Cummins and McInerney 2011;
Soubrier et al. 2012). The simplest and most widely-used in
phylogenomics are the partitioning methods, which rely on
defining groups of sites that have evolved under similar con-
ditions. Specifically, partitioning methods assume a priori that
each group of sites has evolved under the same Markov
model of DNA sequence evolution, but that different groups
may have evolved under different models. Partitioning has
been shown to improve estimates of topologies, branch
lengths, and divergence dates (Lanfear et al. 2014; Kainer
and Lanfear 2015; Hoff et al. 2016).

Most phylogenomic studies of UCE markers use partition-
ing to account for variation in rates and patterns of evolution
across sites. Typically, researchers choose one of two strate-
gies: either they assign all UCEs in the alignment to a single
partition (e.g., Faircloth et al. 2015), or they assign each UCE to
a separate partition (e.g., Faircloth et al. 2013). The former
strategy makes the assumption that every site in the
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alignment has evolved under a common Markov process,
which is inadvisable and has been shown to increase the
risk of inferring unreliable phylogenetic trees (Kainer and
Lanfear 2015). The latter strategy accounts for variation in
rates and patterns of evolution between UCEs, but makes the
assumption that all of the sites within each UCE have evolved
under the same Markov process. Given that the rates of mo-
lecular evolution within each UCE are known to vary predict-
ably, with near-zero variation in the conserved core of the
UCE increasing to large amounts of variation at the edges, it
seems sensible to ask whether it is possible to improve upon
the assumption that all sites within each UCE have evolved
under a single Markov model.

Our focus in this paper is on asking whether it is pos-
sible to estimate partitioning schemes for UCE data sets
which improve upon the assumption that all sites in each
UCE have evolved under a single Markov model. One way
to approach this would be to use a recently-proposed
k-means clustering approach which iteratively divides
alignments into groups comprised of nucleotide sites shar-
ing similar substitution rates (Frandsen et al. 2015).
However, it has recently come to light that this approach
systematically generates a partition comprised of all the
invariant sites in the data set, which can subsequently
mislead phylogenetic inference methods (Baca et al.
2017). We sought instead to develop approaches that
avoid this problem, leverage the known molecular evolu-
tionary patterns of UCEs, and allow us to assess whether it
is better to group all sites in a UCE into a single partition,
or to split each UCE into more than one group of sites.

This study proposes and evaluates two partitioning meth-
ods for phylogenomic studies of UCEs: UCE Site Position
(UCESP) and Sliding-Window Site Characteristics (SWSC).
The UCESP method groups nucleotide sites across UCEs using
their physical location within the UCE, for example by group-
ing all of the central sites of each UCE into a single partition.
The SWSC method uses proxies of rates and patterns of mo-
lecular evolution [e.g., entropy (EN), multinomial likelihoods
(MUs), GC content] and a sliding-window approach to de-
termine whether a central region of a UCE (which may loosely
correspond to what is often called the ‘core’) evolves in a
different way to the two flanking regions. This approach nat-
urally splits each UCE into three data blocks corresponding to
the underlying structure of these phylogenomic markers (i.e.,
conserved cores and more variable flanks).

Each of these methods conducts partitioning indepen-
dently of estimating phylogenetic trees. One strength of these

methods is their specificity to UCEs, whose use is increasing in
phylogenomics. A key aim of phylogenetic model selection is
to find models that capture the key biological features of the
underlying data with a modest number of parameters
(Kolaczkowski and Thornton 2004; Steel 2005). Here, we
seek to achieve this by leveraging the known biological prop-
erties of UCEs themselves. In this respect, our approach is
similar to biologically inspired models such as codon-based
partitioning, the power of which in largely derived from build-
ing on the known biological properties of protein-coding
DNA sequences.

New Approaches
Partitioning methods are based on the assumption that sites
within a partition have evolved under similar conditions. We
first sought to ascertain whether this is the case for UCEs by
measuring three properties of each site in each UCE: the EN of
a site, which can serve as a rough proxy for the rate of evo-
lution of that site in the absence of a known phylogenetic
tree; the GC content (GC) of a site; and the MU of a site,
which describes the likelihood of observing a particular site
pattern given the observed base frequencies of a particular
UCE. Visualizations of the patterns of EN, GC, and MU with
each of the 1000s of UCEs across seven diverse data sets
(table 1, fig. 1) show that all three properties contain consid-
erable and predictable variation within UCEs. EN and MU are
low in the central region of the UCE and higher in the flanks,
and the GC is high in the central region and lower in the
flanks. Figure 1 shows that this variation can be very large—
for example, in many cases GC content is<20% at the end of
a UCE but >50% in the center.

Commonly-used models of molecular evolution (e.g., GTR
models) can account for variation in rates of molecular evo-
lution among sites within a partition using approximations
such as the gamma distribution, proportion of invariant sites,
and free-rates models. However, all commonly-used models
of molecular evolution assume that the base frequencies (and
thus GC) of all sites in a single partition are drawn from a
single distribution. Large and predictable variation of GC
within UCEs appears to be the rule rather than the exception
(fig. 1). Together with the predictable variation in EN (fig. 1)
this suggests that dividing UCEs up into more than one par-
tition might improve models of molecular evolution by ac-
counting for variation in GC and rates of molecular evolution
among sites in ways that are not possible with standard un-
partitioned Markov models.

Table 1. Data Set Names and References, Clade Names, and Summary Information of the UCE Alignments Used to Evaluate the Two New
Partitioning Methods.

UCE data set Clade (scientific name) Clade (common name) Size (bp) UCEs OTUs GC% References

Branstetter Aculeata Stinging wasps 183747 807 187 46 Branstetter et al. (2017)
Crawford Sauria Diapsids 465241 1143 10 38 Crawford et al. (2012)
Harrington Pleuronectiformes Flatfishes 235232 999 55 44 Harrington et al. (2016)
McCormack Neoaves Birds 539526 1537 33 37 McCormack et al. (2013)
Meiklejohn Phasianidae Gallopheasants 599627 1479 18 43 Meiklejohn et al. (2016)
Moyle Oscines Songbirds 375172 515 106 40 Moyle et al. (2016)
Prebus Temnothorax Acorn ants 1561581 2098 50 44 Prebus (2017)
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FIG. 1. Rates and patterns of evolution vary within UCEs. These plots highlight the predictable and sometimes dramatic variation in rates and
patterns of molecular evolution within UCEs. Each line in each plot represents a single UCE. Each row represents a single data set (see table 1), and
each column represents a metric measured for each site in a UCE. EN denotes the EN of a site, GC denotes the GC content of a site, and MU denotes
the multinomial likelihood of a site. A value of 0 on the X-axis represents the central site of each UCE. Values among neighboring sites in each UCE
are smoothed using the geom_smooth() function of ggplot2.
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We propose two new methods to automatically divide
individual UCEs into multiple partitions based on their char-
acteristic patterns of molecular evolution: SWSC, and UCESP.
These two methods represent pragmatic approaches to po-
tentially improve on treating each UCE as a single partition.
The SWSC uses a sliding-window approach to divide each
UCE into three data blocks. The choice of three data blocks is
motivated by the observed patterns of variation in figure 1: all
three measured site characteristics show that predictable var-
iation focused on the center of each UCE. The SWSC is graph-
ically summarized in figure 2. We describe its algorithm in
detail in the Materials and Methods. The UCESP method
takes a different approach, and groups nucleotides sharing
similar locations in the UCEs into data blocks. In contrast to
the SWSC, which divides the sites of each UCE into three data
blocks, the UCESP places almost every site of a UCE into a
different data block that contains similarly-positioned sites

from almost every other UCE. This approach is motivated
by the relatively predictable variation in the three measured
site characteristics within UCEs and across diverse data sets
(table 1, fig. 1). The UCESP is graphically summarized in
figure 3. We describe its algorithm in detail in the Materials
and Methods.

Both the SWSC and UCESP methods group together pu-
tatively similar sites into data blocks, but neither asks whether
any of the resulting data blocks are similar to one another and
so both risk over-partitioning the data. For this reason we use
PartitionFinder 2 (Lanfear et al. 2016) to estimate optimal
partitioning schemes by grouping together similar data blocks
from the output of the SWSC and UCESP. Given the optimal
partitioning scheme for each of the evaluated new method,
we then define the best method for each data set as the one
that results in the partitioning scheme with the best (i.e.,
lowest) AICc score.

FIG. 2. SWSC method for partitioning UCEs. Schematic diagrams illustrating major steps of the SWSC algorithm. This diagram includes three
hypothetical alignments: UCE-1 (green), UCE-2 (yellow), and UCE-3 (blue). The alignments include the same patterns of molecular evolution (i.e.,
EN, GC, and MU rates) as seen in the UCE markers. Note the alignments are comprised of conserved cores and variable flanking regions. The SWSC
algorithm includes three steps. First, it proposes all combinations of three-window models in the alignments. It delimitates windows by locating all
conceivable pairs of nucleotide sites in the alignments. Second, it estimates site-wise molecular evolution and nucleotide proportions/counts
across the alignments. We used three alternatives properties of UCEs: (1) EN (SWSC-EN), (2) GC content (SWSC-GC), and (3) MUs (SWSC-MU).
See further details in the New Approaches section. Third, it calculates the SSE statistics across windows and sums them up to obtain the sum of
SSEs for every three data block model. The SWSC algorithm selects the best models by minimizing the squared residuals among three windows. The
diagrams illustrate the best three-window models as indicated by the SWSC-GC, SWSC-EN, and SWSC-MU, respectively. The vertical bars delimit
the three data blocks. The windows (i.e., size of the data blocks) are indicated by the pair of numbers in parenthesis.
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Results

Visual Inspection of the Properties of UCEs
We measured three properties of UCE sites: the EN of a site,
the GC content (GC) of a site, and the MU of a site. We
observed that EN and MU are lower at the center of each
UCE and higher at the edges, and that this pattern is re-
versed for GC (figure 1). Figure 1 also shows that the abso-
lute values of EN, GC, and MU can vary substantially
between data sets, as expected given that each data set
represents a particular taxonomic clade sampled at a par-
ticular phylogenetic depth. For example, the mean EN
varies roughly 6-fold from 0.03 in the gallopheasant data
set (Meiklejohn et al. 2016) to 0.19 in the flatfish data set
(Harrington et al. 2016), and the mean GC content varies
from 37% in the bird data set to 44% in the stinging wasp
data set (table 1).

The SWSC Algorithm Divides UCEs into Data Blocks
That Reflect Site Properties
The SWSC partitioning method uses a site property (i.e., EN,
GC, or MU) to split each UCE into three data blocks (fig. 4). As
expected given our observations in figure 1, the EN and MU
are lower in the central data blocks and higher in the edge
data blocks, and GC shows the opposite pattern (table 2). In a
small proportion of cases (�16% or 910 UCEs across all seven
data sets) a UCE could not be split into three data blocks
because there was no solution that satisfied the criteria that
each data block had to contain at least 50 sites, all four
nucleotides, and at least one variable site (see Materials and
Methods). Most of the UCEs set to single partitions were
smaller than 150 bp and were found in the stinging wasp
data set (table 1, fig. 4).

The SWSC-EN Method Outperforms Other
Approaches
The SWSC approach using site EN to derive data blocks
(SWSC-EN) outperformed all other methods on all seven em-
pirical data sets (table 3, fig. 5). We compared seven ap-
proaches to partitioning UCEs, comprising the new methods
proposed here and three partitioning methods widely used in
phylogenomic studies: (1) SWSC-EN; (2) SWSC-GC; (3) SWSC-
MU; (4) UCESP; (5) Single (i.e., all UCEs treated as one parti-
tion); (6) UCE (i.e., each UCE treated as a partition); (7) and
PF-UCE (i.e., a partitioning scheme estimated by defining each
UCE as an initial data block and optimizing the partitioning
scheme in PartitionFinder). We used PartitionFinder 2 (Lanfear
et al. 2016) to optimize the partitioning schemes for methods
(1)–-(4) and method (7), see Materials and Methods. In all
cases, the SWSC-EN method received the lowest AICc score
by a considerable margin. The closest AICc score to the SWSC-
EN method for a single data set was more than 2,000 points
higher, for the SWSC-MU approach on the Branstetter data set
(table 3). The three standard approaches (Single, UCE, and
PF-UCE) performed a great deal worse than all of the SWSC
methods on all data sets. For example, the smallest difference
between any of the three standard approaches and the SWSC-
EN method was >60,000 AICc units for the Meiklejohn data
set (table 3). The UCESP method performed poorly on all data
sets, achieving the second-worst AICc scores in more than half
of the seven data sets (table 3, fig. 5); that is worse only than
treating the entire alignment as a single partition.

Comparison of Observed and Shuffled UCE
Alignments
A potential concern with the SWSC and UCESP approaches is
that they may achieve their improvement in AICc scores

FIG. 3. UCESP for partitioning UCE alignments. Diagram illustrating the second new method of proposing partitions using the locations of
nucleotide sites among UCEs. This method relies on the assumption the UCE regions (e.g., cores and flanking regions) have evolved under similar
evolutionary processes. See further details in the New Approaches section. This diagram includes three hypothetical alignments: UCE-1 (green),
UCE-2 (yellow), and UCE-3 (blue). The position of nucleotide sites in the alignments are indicated by the numbers of each site. The UCESP
algorithm includes two steps. First, define the central site of the UCE as site 0 (zero) and sites to the left of this site are labeled with negative
numbers, and sites to the right of this site are labeled with positive numbers. Second, it is to create one data block for each label, by combining all
the sites with the same label into a single data block. Note that there are nine partitions, all sharing the same locations of sites among the UCEs.
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simply by defining a large number of starting subsets for
PartitionFinder. This would define a larger search space of
potential partitioning schemes for a data set, potentially ac-
counting for the improved AICc scores. To assess this possi-
bility, we created 25 permutations of all 7 data sets, in which
we shuffled the sites within each UCE. We then re-ran all of
the SWSC-EN analyses on the permuted alignments. This

compares the observed SWSC-EN solution to one in which
the assignment of sites to data blocks within each UCE is
randomized, while other characteristics of the partitioning
scheme such as the number and size of the starting
subsets are held constant. Across all seven empirical
data sets (table 1), and for all 25 permutations of the
UCE alignments, the shuffled UCE alignments produced

FIG. 4. Best three data blocks for each UCE. Graphical representations of the best three data block for each UCE of each data set (see table 1) as
indicated by the SWSC method. Each line in each plot represents a single UCE split in three data blocks. Black indicates the position of the central
window, which may loosely correspond to what is often called the core region of UCEs, and gray indicates the position of the edge windows, which
may loosely correspond to what is often called the flanking regions of UCEs. Each row of panels represents a single data set (see table 1), and each
column of panels represents a metric measured for each site in a UCE. EN denotes the entropy of a site, GC denotes the GC content of a site, and
MU denotes the multinomial likelihood of a site. UCEs are organized by increasing length. Asterisks (*) indicate UCEs smaller than 150 bp, which
were not split into three data blocks but kept as a single data block (see details in the Materials and Methods: Sliding-Window Site Characteristics).
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Table 2. Means of EN and GC of Each Window and Data Set Produced by the SWSC Method.

Branstetter Crawford Harrington McCormack Meiklejohn Moyle Prebus Overall

SWSC-EN
Left 0.828 0.212 0.278 0.097 0.055 0.140 0.182 0.256
Center 0.236 0.072 0.090 0.031 0.015 0.054 0.122 0.088
Right 0.831 0.145 0.267 0.059 0.036 0.090 0.181 0.230

SWSC-GC
Left 32.91 31.39 40.12 28.42 36.10 33.61 36.58 34.16
Center 43.10 41.02 46.68 34.09 43.38 44.38 48.04 42.96
Right 32.24 30.99 40.47 28.75 36.61 33.5 36.94 34.21

Table 3. AICc Scores, Number of Subsets, and Parameters of Partitioning Schemes Inferred From Seven Partitioning Strategies Across Seven UCE
Data Sets.

Data set Partitioning strategy AICc DAICc Subsets Parameters

Branstetter Single 17672426 2336594 1 380
UCESP 17591017 2255186 158 1950
UCE 17581458 2245627 807 8440
PF2UCE 17575239 2239408 475 5120
SWSC-GC 17415498 279666 1018 10550
SWSC-MU 17338096 22264 948 9850
SWSC-EN 17335832 0 948 9850

Crawford Single 2481257 2100299 1 26
UCESP 2458689 277731 85 866
UCE 2467719 286761 1145 11466
PF-UCE 2456063 275104 222 2236
SWSC-GC 2410728 229770 456 4576
SWSC-MU 2397171 216213 461 4626
SWSC-EN 2380958 0 452 4536

Harrington Single 3833182 2145228 1 116
UCESP 3800797 2112843 114 1246
UCE 3796629 2108675 596 6066
PF-UCE 3793471 2105517 267 2776
SWSC-GC 3736560 248606 513 5236
SWSC-MU 3695067 27112 493 5036
SWSC-EN 3687954 0 493 5036

McCormack Single 3192533 2137223 1 72
UCESP 3166286 2110976 101 1072
UCE 3162976 2107666 1541 15472
PF-UCE 3147458 292148 318 3242
SWSC-GC 3088673 233363 615 6212
SWSC-MU 3094082 238772 638 6442
SWSC-EN 3055310 0 586 5922

Meiklejohn Single 2339168 2100584 1 42
UCESP 2314874 276290 97 1002
UCE 2316404 277820 1479 14822
PF-UCE 2299674 261091 249 2522
SWSC-GC 2255398 216814 463 4662
SWSC-MU 2254129 215545 471 4742
SWSC-EN 2238583 0 458 4612

Moyle Single 6005672 2230918 1 218
UCESP 5936152 2161398 200 2208
UCE 5937377 2162623 515 5358
PF-UCE 5935114 2160361 271 2918
SWSC-GC 5839663 264910 520 5408
SWSC-MU 5820918 246165 496 5168
SWSC-EN 5774753 0 496 5168

Prebus Single 20339794 2625451 1 106
UCESP 20234314 2519970 178 1876
UCE 20173076 2458732 2098 21076
PF-UCE 20161619 2447276 806 8156
SWSC-GC 19835806 2121462 1141 11506
SWSC-MU 19766846 252503 1138 11476
SWSC-EN 19714343 0 1125 11346

NOTE.—(1) Single: treating all sites as belonging to a single subset; (2) UCE: one subset for each UCE alignment; (3) PF-UCE: each UCE was defined as a data block; (4) SWSC-GC:
data blocks defined by the SWSC-GC algorithm; (5) SWSC-EN: data blocks defined by the SWSC-EN algorithm; (6) SWSC-MU: data blocks defined by the SWSC-MU algorithm;
and (7) UCESP: data blocks defined by the UCESP algorithm. In (3)–(7), the final partitioning scheme was optimized in PartitionFinder 2. Bold: best partitioning scheme.
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FIG. 5. The SWSC partitioning method leads to substantial improve-
ments in model-fit. AICc scores of partitioning schemes derived from
the SWSC outperform UCESP and other methods applied in phylo-
genomics. The plots show the AICc scores (Y-axis) of seven partition-
ing schemes (X-axis). The seven partitioning strategies were: (1)
Single: treating all sites as belonging to a single subset; (2) UCE: one
subset for each UCE alignment; (3) PF-UCE: each UCE was defined as a
data block; (4) SWSC-GC: data blocks defined by the SWSC-GC algo-
rithm; (5) SWSC-EN: data blocks defined by the SWSC-EN algorithm;
(6) SWSC-MU: data blocks defined by the SWSC-MU algorithm; and
(7) UCESP: data blocks defined by the UCESP algorithm. In (3)–(7),
the final partitioning scheme was optimized in PartitionFinder 2. The
AICc scores indicate that the SWSC, particularly the SWSC-EN, pro-
duces partitioning schemes that outperform all other partitioning
strategies investigated here. Surprisingly, the partitioning schemes
derived from the UCESP obtained AICc scores that were worse
than partitioning schemes widely used in phylogenomics (i.e., UCE
and UCE-PF).

FIG. 6. SWSC-EN split UCEs into meaningful partitions. Comparisons
between the AICc scores of empirical data sets (circle) and 25 per-
muted data sets (triangles) of partitioning schemes derived from the
SWSC-EN and optimized in PartitionFinder 2. For each of the ran-
domizations, the sites within each UCE were shuffled and the new
alignments were used with the original data block definitions from
the un-shuffled data as input to PartitionFinder 2. Each panel includes
a data set and 25 AICc scores of partitioning schemes optimized in
PartitionFinder 2. The AICc scores suggest that the SWSC-EN method
improves model-fit and parameter estimates not because it searches
a larger space of possible partitioning schemes, but primarily because
splitting each UCE into three data blocks is uncovering biological
differences in rates and/or patterns of molecular evolution within
each UCE.
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consistently much worse (i.e., higher) AICc scores than the
un-shuffled alignments (fig. 6). This suggests that the im-
provement in AICc score seen in the SWSC-EN method is
not due solely to having an increased number of starting
subsets.

Phylogenetic Inference
We estimated ML tree topologies for each of the seven data
sets (table 1) under each of the seven partitioning schemes
used in this study (i.e., SWSC-EN, SWSC-GC, SWSC-MU,
UCESP, Single, UCE, PF-UCE). The resulting trees are pre-
sented in the Supplementary Material online. For each data
set, we calculated the tree lengths of every tree, and the Path
Difference (PD) between the SWSC-EN topology and all of
the other topologies inferred under the other six partitioning
schemes (table 4).

Overall, tree lengths were similar among all seven parti-
tioning schemes, and the SWSC-EN tree length showed no
clear pattern of difference to the tree lengths from other
partitioning schemes (table 4, fig. 7). The PDs show that the
choice of partitioning scheme influenced the inferred phylo-
genetic tree in four out of seven data sets (table 4). Visual
examination of the differences (see Supplementary Material
online) reveals that most of the observed topological differ-
ences are associated with nodes with low bootstrap support
(< 70, see Supplementary Material online), suggesting that
the choice of partitioning scheme rarely influenced the result-
ing tree topology in ways that would affect biological infer-
ence. However, in at least one case, the SWSC-EN partitioning
scheme led to a strongly-supported and biologically impor-
tant change in the tree topology when compared to trees
estimated with traditional approaches to partitioning. In this
case, the phylogenetic position of the Sclerogibbidae, a family
of wasps analyzed in the study of Branstetter et al. (2017), was
sensitive to the partitioning scheme used. The original study
Branstetter et al. (2017) and two of our analyses using stan-
dard partitioning schemes (i.e., a single partition, or one par-
tition for each UCE) place the Sclerogibbidae together with a
clade comprising the EmbolemidaeþDryinidae, with the
three families forming the sister group to the remaining non-
chrysidoid lineages in the phylogeny [i.e., ((Sclerogibbidae,
(Embolemidae, Dryinidae)), remainder)]. Bootstrap support
for the former grouping varies considerably depending on
the details of the analysis both in the original study (59–
90% support) and in our analyses (52% support using a single
partition, and 100% support using a partition for each UCE).

Table 4. Measurements of TL (the Sum of All Branch Lengths in
Substitutions Per Site) and PD of Each Topology Compared to the
SWSC-EN Topology for Trees Estimated with the Seven Different
Partitioning Schemes Evaluated in this Study.

Partition strategy TL PD

Branstetter
Single 1.081 89.5
UCESP 1.038 514.2
UCE 0.982 91.7
PF-UCE 1.052 80.7
SWSC-GC 1.006 112.2
SWSC-MU 1.005 170.5
SWSC-ENa 1.000 0.0
Crawford
Single 1.289 0.0
UCESP 1.252 0.0
UCE 1.213 0.0
PF-UCE 1.250 0.0
SWSC-GC 0.983 0.0
SWSC-MU 0.807 0.0
SWSC-ENa 1.000 0.0
Harrington
Single 1.141 0.0
UCESP 1.174 0.0
UCE 0.837 0.0
PF-UCE 0.958 0.0
SWSC-GC 0.903 0.0
SWSC-MU 1.028 0.0
SWSC-ENa 1.000 0.0
McCormack
Single 1.540 24.6
UCESP 1.437 28.4
UCE 1.388 25.5
PF-UCE 1.467 0.0
SWSC-GC 1.088 12.7
SWSC-MU 0.961 24.8
SWSC-ENa 1.000 0.0
Meiklejohn
Single 1.580 0.0
UCESP 1.506 0.0
UCE 1.523 0.0
PF-UCE 1.543 0.0
SWSC-GC 1.234 0.0
SWSC-MU 1.389 0.0
SWSC-ENa 1.000 0.0
Moyle
Single 0.973 117.5
UCESP 0.971 85.4
UCE 0.969 20.2
PF-UCE 0.970 112.8
SWSC-GC 0.957 99.8
SWSC-MU 0.941 27.1
SWSC-ENa 1.000 0.0
Prebus
Single 1.021 0.0
UCESP 1.010 23.7
UCE 1.010 0.0
PF-UCE 1.021 11.9

(continued)

Table 4. Continued

Partition strategy TL PD

SWSC-GC 0.980 11.9
SWSC-MU 0.754 16.2
SWSC-ENa 1.000 0.0

NOTE.—To aid comparison of tree lengths, the tree lengths of all trees for a given
data set are scaled such that the tree length of the tree estimated under the SWSC-
EN partitioning scheme is equal to 1.0. Larger PD indicate larger differences between
tree topologies, but they cannot be directly compared between data sets.
aThe tree topology estimated under the partitioning scheme obtained by the
SWSC-EN was used as reference. (1) Single: treating all sites as belonging to a single
subset; (2) UCE: one subset for each UCE alignment; (3) PF-UCE: each UCE was
defined as a data block; (4) SWSC-GC: data blocks defined by the SWSC-GC algo-
rithm; (5) SWSC-EN: data blocks defined by the SWSC-EN algorithm; (6) SWSC-MU:
data blocks defined by the SWSC-MU algorithm; and (7) UCESP: data blocks de-
fined by the UCESP algorithm. In (3)–(7), the final partitioning scheme was opti-
mized in PartitionFinder 2.
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In contrast, the SWSC-EN partitioning scheme places the
Sclerogibbidae as sister to the remaining nonchrysidoid line-
ages, with the other two families as sister to this grouping [i.e.,
((Embolemidae, Dryinidae), (Sclerogibbidae, remainder))],

with 100% bootstrap support for both groupings. Notably,
the same grouping was recovered with 100% bootstrap sup-
port in the original study when they explicitly accounted for
variation among gene trees when estimating the species tree

FIG. 7. Tree lengths (TL) of phylogenetic trees estimated under seven partitioning schemes and across seven data sets. To aid comparison of tree
lengths, the tree lengths of all trees for a given data set are scaled such that the tree length of the tree estimated under the SWSC-EN partitioning
scheme is equal to 1.0. There is no clear trend between TL values and partitioning schemes across the data sets. (1) Single: treating all sites as
belonging to a single subset; (2) UCE: one subset for each UCE alignment; (3) PF-UCE: each UCE was defined as a data block; (4) SWSC-GC: data
blocks defined by the SWSC-GC algorithm; (5) SWSC-EN: data blocks defined by the SWSC-EN algorithm; (6) SWSC-MU: data blocks defined by
the SWSC-MU algorithm; and (7) UCESP: data blocks defined by the UCESP algorithm. In (3)–(7), the final partitioning scheme was optimized in
PartitionFinder 2.
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(Branstetter et al. 2017). It would be premature to suggest
that any of these analyses are definitive, but it may be
prudent to lean towards preferring the relationships sup-
ported by the model that best fits the data, which in the
case of our analyses is the SWSC-EN partitioning scheme.
These results show that on some occasions, the new meth-
ods we propose here may contribute to clarifying phylo-
genetic relationships.

Discussion
Model selection is an important part of phylogenetic infer-
ence (Sullivan and Joyce 2005; Shapiro et al. 2006; Lanfear
et al. 2014). In this study, we focused on selecting
partitioned models of molecular evolution for data set
comprised of UCEs. We first showed that patterns of mo-
lecular evolution within UCEs vary in predictable ways
(fig. 1). Importantly, this variation is likely to violate at least
one key assumption of most commonly-used models of
molecular evolution: that base composition within a UCE
can be adequately modeled as a single vector of base fre-
quencies. This suggests that model violation might limit the
accuracy of inferences made from UCE data sets, as long as
each UCE is assumed to have evolved under a single Markov
model.

We proposed four new approaches to partitioning UCEs,
and showed that an approach based on site entropies to
divide each UCE into three data blocks dramatically im-
proved the fit of the models to the data when compared
to three commonly-used approaches to partitioning in UCE
studies (fig. 5). Phylogenetic trees estimated using partition-
ing schemes from this new method (which we call the
SWSC-EN method) showed some differences in tree length
and tree topology when compared to trees estimated using
standard approaches (table 4, fig. 7). These differences
tended to be relatively minor, but since it is hard to predict
a priori the effect of model choice on tree inference, and
since the models estimated with the SWSC-EN method
have much improved AICc scores, it seems prudent to em-
ploy these new models where appropriate. Indeed, in a sin-
gle case we observed a strongly-supported change in a
topology when comparing the tree estimated using the
SWSC-EN method to trees estimated using more traditional
methods such as treating all data as a single data block, or
assigning each UCE to its own data block. The SWSC-EN
method we describe here can be implemented for any
UCE data set using the scripts we provide on Github at
https://github.com/Tagliacollo/PFinderUCE-SWSC-EN (doi:
10.5281/zenodo.1028743).

Phylogenetics is no longer limited by our ability to se-
quence sufficient loci from a sample (Delsuc et al. 2005;
Posada 2016). Rather, the current challenges have shifted to
finding appropriate ways to model the vast quantities of data
that we have (Kumar et al. 2012). We hope that the new
methods we propose here will help improve the accuracy
of phylogenetic inferences made from UCEs. However, we
note that our approach has many limitations. For example,
our observations (fig. 1) suggest that rates of evolution and

GC content vary in quite predictable ways within each
UCE. Dividing each UCE up into three data blocks provides
a crude but pragmatic way to model this variation within
the current phylogenetic workflow, but it might be more
appropriate to model this variation directly. For example,
the patterns of rates of evolution and GC content within
UCE could be modeled with four additional parameters
added to a standard model from the GTR family: a mini-
mum rate and a maximum GC content that applied to the
center of the UCE, and a maximum rate and a minimum
GC content that applied to the two ends of the UCE. Such
an approach would likely provide a better description of
the observed patterns of variation within each UCE, and
would require fewer parameters than dividing each UCE
up into three separate data blocks.

Conclusion
Partitioning remains a popular method for accounting for
variation in rates of molecular evolution; however, it relies
on the assumptions that predefined groups of sites have
evolved under the same process. We present a new method
that improves phylogenomic estimates of species relation-
ships by improving partitioning schemes of UCE alignments.
This method can be implemented using scripts available from
GitHub at https://github.com/Tagliacollo/PFinderUCE-
SWSC-EN (doi: 10.5281/zenodo.1028743). All of the methods
we describe here can be implemented using scripts available
at https://github.com/Tagliacollo/PartitionUCE (doi: 10.5281/
zenodo.1027526).

Materials and Methods

Empirical Data Sets
We evaluated the performance of the two new partitioning
methods described here using seven empirical UCE data sets
available from the Dryad Digital Repository. The data sets
range from 515 to 2,098 UCEs, from 10 to 187 taxa, and
from 183,747 to 1,561,581 nucleotide sites (table 1). Non-
UCE markers were excluded from one data set (Meiklejohn
et al. 2016). The modified version is available from GitHub
along with all of the other data sets we used for this study at
https://github.com/Tagliacollo/PartitionUCE (doi: 10.5281/
zenodo.1027526).

Visualizing Patterns of Molecular Evolution in UCEs
We measured three properties of molecular evolution of each
site in each UCE of the seven empirical UCE data sets used in
this study (table 1): the EN of a site, the GC content of a site;
and the MU of a site. We calculate the entropy (H) of each site
using the following formula:

Hi ¼ �
X4

j¼1

pjlog2pj

 !
; (1)

where j¼ 1, 2, 3, and 4 corresponds to nucleotide A, C, G, and
T, and pj corresponds to the proportion of a nucleotide j at
site i. The Hi varies between 0 and 2, where 0 indicates
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invariant sites and 2 indicates sites with an equal frequency of
all four nucleotides.

We calculate the GC content as the ratio of the sum of the
counts of G and C to the sum of the counts of all four
nucleotides, ignoring gaps and ambiguous nucleotides.
Finally, we calculate the multinomial likelihood (M) using
the following formula:

Mi ¼ pjþ� � � þ p4

� �N

¼
X

bjþ���þb4¼N

N

b1; . . . ; b4

� � Y4

j¼1

p
bj

j ; (2)

where

N

bj; . . . ; b4

� �
¼ N!

bj!; . . . ; b4!
; (3)

where N corresponds to the number of species, j¼ 1, 2, 3, and
4 corresponds to nucleotides A, C, G, and T, respectively, pj

represents the proportion of nucleotide j at site i, and bj

represents the counts of nucleotides in the alignment of
the UCE.

New Methods for Automated Partitioning of UCEs
In what follows, we use the word ‘data block’ to refer to a
user- or algorithmically defined set of sites that are assumed
to have evolved in similar ways. We refer to a ‘subset’ as a
group of one or more data blocks, and we refer to a ‘parti-
tioning scheme’ as a group of subsets in which each site in the
alignment is included only once.

The new partitioning methods, the SWSC and UCESP,
were developed specifically for phylogenomic studies of
UCE markers. The SWSC uses a sliding-window approach
to divide each UCE into three data blocks, which can then
be combined across UCEs using standard algorithms in
PartitionFinder 2 (Lanfear et al. 2016). The UCESP takes a
different approach, and groups nucleotide sites sharing similar
locations in the alignments into partitions. We implemented
both methods using Python scripts that are available on
GitHub at https://github.com/Tagliacollo/PartitionUCE (doi:
10.5281/zenodo.1027526).

Both methods require the following input: a concatenated
nexus alignment comprised of UCE markers and including
nexus-formatted character sets (charsets) that define the
location of each UCE in the alignment. The methods ex-
port PartitionFinder configuration files including data
blocks defined by the individual methods. We avoid de-
fining data blocks with fewer than 50 nucleotide sites that
do not contain all four nucleotides, or have no variable
sites. These conditions avoid the creation of very small
data blocks, which can provide unreliable parameter esti-
mates and thus mislead algorithms such as PartitionFinder
2 (Lanfear et al. 2016). The occurrence of all four nucleo-
tide bases and at least one variable site in each data block
was necessary to ensure that RAxML (Stamatakis et al.
2008) could analyze that data block. Example input
files can be found in the ‘raw_data’ folder available on

GitHub at https://github.com/Tagliacollo/PartitionUCE
(doi: 10.5281/zenodo.1027526).

Sliding-Window Site Characteristics (SWSC)
The SWSC is graphically summarized in figure 2, and includes
the following four steps which we describe in more detail
below:

(1) Calculate a metric (i.e., EN, GC content, or MU) for
each UCE site.

(2) Define all valid ways of dividing the UCE into three
contiguous groups of sites.

(3) Calculate the total sum of squared errors (SSE) for each
of the splits defined in (2).

(4) Select the split from (3) with the smallest SSE.

Step 1 involves simply calculating a metric for each site of
the UCE, as described in the New Approaches section: the EN
of a site, which can serve as a rough proxy for the rate of
evolution of that site; the GC content (GC); and the MU of a
site, which describes the likelihood of observing a particular
site pattern given the observed base frequencies of a partic-
ular UCE.

Step 2 of the SWSC algorithm is to propose all valid ways of
dividing a UCE into three contiguous groups of sites, which
we hereafter refer to as a split. We do this by first listing all
possible splits for a single UCE. The number of such splits is
large, and is defined by N

2

� �
, where N is the number of sites in

the UCE, and the 2 refers to the positions of the two cuts
required to split a single UCE into three contiguous parts.
Given the list of all possible splits, we then reject splits that do
not meet the following conditions: (1) all three sections de-
fined by the split must contain at least 50 bases; (2) all three
sections of the split must have at least one variable site; (3) all
three sections of the split must contain at least one of each of
the four nucleotide bases (see above). This results in a set of all
valid splits for a single UCE.

Step 3 of the SWSC algorithm is to calculate the SSE for
each of the splits defined in step 2. To do this, we first
calculate for each valid split the SSE within each of the
three contiguous groups sites, by summing the absolute
differences of the metric at each site and the mean of the
metric for that group of sites (e.g., the sum of the absolute
differences between the GC content of each site and the
mean GC content for the window). We then sum the SSEs
for the three groups of sites to obtain a total SSE for the
split.

Step 4 of the SWSC algorithm is to define the best split as
the one with the smallest total SSE. In cases where we have
more than one split with the same minimum SSE, we choose
the split that has the lowest variance in the lengths of the
three contiguous groups of sites. This maximizes the sizes of
each window and avoids small data blocks which could pro-
vide unreliable parameter estimates.

The outcome of the SWSC algorithm for a single UCE is a
single split that defines three groups of contiguous sites, each
of which is then used as a data block for input into
PartitionFinder 2 (see below).
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UCE Site Position (UCESP)
The UCESP is graphically summarized in figure 3, and includes
the following three steps, which we describe in more detail
below:

(1) Find the central nucleotide site for each UCE.
(2) Create data blocks based on their locations relative to

the central site in each UCE.
(3) Merge small data blocks.

Step 1 of the UCESP is to define the central site of the
UCE as site 0. Sites to the left of this site are labeled with
negative numbers, and sites to the right of this site are
labeled with positive numbers. Step 2 of the UCESP is to
create one data block for each label, by combining all the
sites with the same label into a single data block. For a data
set with 1,000 UCEs, this will create many data blocks with
1,000 sites (one from each UCE). However, the longest
UCEs in the data set will lead to the creation of much
smaller data blocks, because they will have sites labeled
with large numbers that are rarely found in other UCEs.
Small data blocks cannot be practically analyzed; there-
fore, step 3 of the UCESP is to progressively merge small
data blocks with their nearest neighbors until each data
block meets the same criteria previously described in the
step 2 of the SWSC method. This algorithm results in a
single set of data blocks which can be used for down-
stream analyses in PartitionFinder 2.

Partitioning Schemes: PartitionFinder
We used PartitionFinder 2 (Lanfear et al. 2016) to estimate
the optimal partitioning schemes and models of molecular
evolution for seven different approaches to partitioning
each of the seven data sets analyzed here (table 1): four of
the partitioning approaches are described here (i.e., SWSC-
EN, SWSC-GC, SWSC-MU, UCESP), and we compare these
to three partitioning approaches that are widely used in
phylogenomic studies of UCEs (treating the entire align-
ment as one partition; assigning one partition to each
UCE; and assigning one partition to each UCE and opti-
mizing this scheme in PartitionFinder). Given an optimal
partitioning scheme for each method, we then define the
best method for each data set as the method that results
in the partitioning scheme with the best (i.e., lowest) AICc
score. We used PartitionFinder 2 with the following set-
tings: start with a tree estimated through maximum par-
simony, linked branch lengths, and GTRþG model of
nucleotide evolution, and the relaxed clustering algorithm
with default settings. For each data set, we calculated the
AICc scores of the following partitioning schemes: (1)
Single: treating all sites as belonging to a single subset;
(2) UCE: one subset for each UCE alignment; (3) PF-UCE:
each UCE was defined as a data block; (4) SWSC-GC: data
blocks defined by the SWSC-GC algorithm; (5) SWSC-EN:
data blocks defined by the SWSC-EN algorithm; (6) SWSC-
MU: data blocks defined by the SWSC-MU algorithm; and
(7) UCESP: data blocks defined by the UCESP algorithm. In

(3)–(7), the final partitioning scheme was optimized in
PartitionFinder 2.

Checking Reliability of SWSC-EN
To evaluate whether the performance of the SWSC-EN
method results from simply from splitting the UCEs into
smaller subsets, we compared the observed AICc score for
each of the seven empirical data sets to 25 AICc scores cal-
culated from the same data sets in which the sites of each
UCE were shuffled. Shuffling the sites of each UCE serves to
hold the number and size of initial data blocks input to
PartitionFinder 2 constant, but within each UCE it random-
izes the sites that are assigned to each of the three data blocks.
For each of the 25 randomizations for each of the seven
empirical data sets (175 analyses in total) we (1) shuffled
the sites within each UCE; (2) used the shuffled alignments
with the original data block definitions from the un-shuffled
data as input to PartitionFinder 2; (3) optimized the parti-
tioning as described above. The scripts and permuted data
sets are available from GitHub at https://github.com/
Tagliacollo/PartitionUCE (doi: 10.5281/zenodo.1027526).

Phylogenomic Inferences: Branch Order and Branch
Lengths
We used IQ-Tree (Nguyen et al. 2015) to infer phylogenetic
trees for each of the seven empirical data sets (table 1),
under each of the seven partitioning schemes. The aim
was to evaluate whether more appropriate partitioning
schemes for UCE data sets leads to changes in branch order
and/or branch lengths. The IQ-Tree runs used default
parameters, including linked branch lengths among parti-
tions (option –spp) and 100 nonparametric bootstrap rep-
licates to investigate node support. We compared the
branching orders of topologies through visual inspection
of the trees, and by calculating the PD between pairs of
topologies. The PD is a measure of the difference between
two topologies, which is similar in principle to the more
commonly-used Robinson–Foulds distance, but has more
attractive statistical properties such as not giving maximal
differences to pairs of topologies that differ by the place-
ment of a single taxon (Steel and Penny 1993). We com-
pared branch lengths between topologies by plotting the
pairs of topologies facing each other, and by calculating and
comparing the total tree lengths (i.e., the sum of all branch
lengths) of topologies estimated from the same data using
different models. The latter approach may reveal any sys-
tematic differences of the methods to over- or under-
estimate branch lengths relative to each other.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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