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Abstract: Molybdenum disulfide (MoS2) can be an excellent candidate for being combined with carbon
nanomaterials to obtain new hybrid nanostructures with outstanding properties, including higher
catalytic activity. The aim of the conducted research was to develop the novel production method
of hybrid nanostructures formed from MoS2 and graphene oxide (GO). The nanostructures were
synthesized in different weight ratios and in two types of reactors (i.e., impinging jet and semi-batch
reactors). Physicochemical analysis of the obtained materials was carried out, using various
analytical techniques: particle size distribution (PSD), thermogravimetric analysis (TGA), FT-IR
spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Due to the potential
application of materials based on MoS2 as the catalyst for hydrogen evolution reaction, linear sweep
voltammetry (LSV) of the commercial MoS2, synthesized MoS2 and the obtained hybrid nanostructures
was performed using a three-electrode system. The results show that the developed synthesis of
hybrid MoS2/GO nanostructures in continuous reactors is a novel and facile method for obtaining
products with desired properties. The hybrid nanostructures have shown better electrochemical
properties and higher onset potentials compared to MoS2 nanoparticles. The results indicate that
the addition of carbon nanomaterials during the synthesis improves the activity and stability of
the MoS2 nanoparticles.
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1. Introduction

The designing and production of new nanostructures with improved properties using modern
techniques is a tempting prospect for nanotechnology. Molybdenum disulfide (MoS2) is a widely used
two dimensional nanomaterial with unique properties [1,2]. MoS2 nanoparticles have found various
applications such as a dry lubricant, hydrogen evolution reaction (HER) catalyst, hydrodeoxygenation
(HDO) catalyst, hydrodesulfurization (HDS) catalyst, in energy storage, and many others [2–8].
Nanosized MoS2 can be an excellent candidate for being combined with carbon nanomaterials (CNMs)
to obtain new hybrid nanostructures with outstanding properties, including higher electro- [9,10]
and photocatalytic activity [11,12] or improved rheological and tribological properties [13,14].

In recent years, the application of MoS2 nanoparticles as the catalyst for hydrogen evolution reactions
has generated great interest, due to the search for new renewable energy sources [15–18]. HER is
the cathodic reaction occurring during water splitting (Equations (1) and (2)) [19,20]. Water splitting
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can lead to a sustainable source of clean hydrogen, which can be stored, used in fuel cells, or in other
industrial applications [15,21–23]. Catalysts based on noble metals (including platinum) are known
as the most effective for HER. Due to their scarcity and high prices, it is necessary to find cheaper
alternatives [2,24,25].

In alkaline conditions : 2H2O + 2e− ↔ 2OH− + H2 (1)

In acidic conditions : 2H+ + 2e− → H2 (2)

A nontoxic, environmentally friendly semiconductor-nanometric molybdenum disulfide (MoS2)
seems to be a very promising catalyst for electrocatalytic HER. MoS2-based catalysts have a relatively
low cost, high chemical stability, and excellent electrocatalytic properties. Therefore, nano-MoS2 has
attracted enormous research interest as the electrocatalyst for hydrogen evolution reaction [24,26–29].
Furthermore, nanometric MoS2 is the first known two dimensional semiconductor with a bandgap equal
to 1.8 eV and an indirect absorbance edge at over 800 nm. Therefore, nanoparticles of molybdenum
disulfide may also find an application in photo-electrocatalytic HER [24,30–33].

Besides, MoS2/CNMs hybrid nanomaterials show enhanced catalytic activity from the synergetic
effect between carbon nanomaterials and MoS2 nanoparticles. This effect has many advantages,
including enhancing the number of exposed edges per catalyst volume, increasing active surface area,
suppression of charge recombination, improvement of interfacial charge transfer, and increased number
of photocatalytic reaction centers [2,12,34–36]. Finding a facile and scalable method of production of
MoS2 nanoparticles deposited on carbon nanomaterials with desired properties (such as nanometric
size, narrow particle size distribution, high specific surface area, specific band gap) can be crucial for
further development of these materials.

Shi et al. presented a method for synthesizing MoS2/graphene hybrid heterostructures with a
growth template of graphene-covered copper foil. The chemical vapor deposition (CVD) of MoS2

on the graphene surface ensures the formation of monocrystalline hexagonal flakes with a typical
lateral size from several hundred nanometers to several micrometers [37]. Li et al. synthesized
MoS2 on reduced graphene oxide (rGO) structures via a microwave-assisted reduction in graphite
oxide in an aqueous solution of a MoS2 precursor. The obtained materials showed improved
photocatalytic performance, due to the lower recombination of electron-hole pair and enhanced light
absorption [38]. Song et al. presented a synthesis method of MoS2 nanosheets on rGO surface by
a one-step hydrothermal growth technique. MoS2/rGO materials showed excellent electrochemical
performance for Na-ion batteries [39]. Similarly, Murugan et al. deposited MoS2 nanosheets on rGO
by an in situ hydrothermal method, resulting in MoS2/rGO materials consisting of a few-layered
MoS2 structures with abundantly exposed edges stacked onto rGO [40]. Whereas Kumar et al. have
synthesized MoS2 nanoparticles deposited on graphene oxide (GO) and rGO, obtaining materials with
promising electrocatalytic properties for HER [41]. Therefore, direct formation of MoS2 on graphene
surface exhibits great potential towards HER catalysis and other advanced electrochemical applications.
However, the above-mentioned methods have many drawbacks that prevent the commercialization
of these materials. CVD and microwave-assisted methods are very expensive and not scalable, in
turn, hydrothermal methods are characterized by a lack of process control, quality and repeatability of
the manufactured materials. Thus, a novel method of producing MoS2/CNMs hybrid nanostructures
with the use of continuous flow reactors by a wet chemical synthesis is proposed in this paper [42–44].
The synthesis of hybrid nanostructures carried out in continuous flow reactors (such as impinging
jet reactors) allows an almost instantaneous mixing of reagent streams at the molecular level, which
has an important role in obtaining products of high quality and repeatability. Due to the good mixing
conditions, materials obtained in the impinging jet reactor might show better dispersion of MoS2

particles on the carbon surface, smaller particle size, and a lower tendency to agglomerate, which has a
significant impact in advanced applications, such as catalysis. Moreover, this technique allows for
the continuous production of materials with the desired properties [42,45–49]. The aim of the conducted
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research was to examine if impinging jet reactors can be used for preparation of MoS2/GO hybrid
structures with enhanced properties compared to the more commonly used semi-batch reactor. Due to
better mixing conditions, better scalability, and better process control, this method should result
in high-quality MoS2/GO nanostructures with desired properties. In this paper the materials were
synthesized in different ratios of MoS2 and GO and in different types of reactors (i.e., impinging
jet and semi-batch reactors). The properties of the obtained materials were characterized using
different analytical techniques, such as particle size distribution (PSD), thermogravimetric analysis
(TGA), Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron
microscopy (SEM). Furthermore, the electrochemical properties towards a hydrogen evolution reaction
were tested. The results have shown that the use of continuous flow reactors allows to obtain
MoS2/GO hybrid structures with desirable properties (such as nanometric size, narrow particle size
distribution, enhanced catalytic activity and stability) and better electrochemical activity compared to
MoS2 nanoparticles.

2. Materials and Methods

2.1. Graphene Oxide

Graphene oxide was synthesized by a modified Hummers’ method as described in [50,51].
GO was obtained through the oxidation of graphite powder using 98% sulfuric acid H2SO4 (Chempur,
Piekary Śląskie, Poland) and potassium permanganate KMnO4 (Chempur, Piekary Śląskie, Poland)
in the presence of sodium nitrate NaNO3 (Sigma-Aldrich, Saint Louis, MI, USA). Generally, for 10 g
of graphite, 230 mL of H2SO4, 30 g of KMnO4 and 4.7 g of NaNO3 were used. The chemicals were
added in an ice bath, where the temperature was kept below 10 ◦C. Next, the mixture was stirred for
2 h with the control of the temperature not exceeding 30 ◦C. After the process, 100 mL of water was
added and the temperature increased up to 100 ◦C. Further, the mixture was treated with 10 mL of 30%
hydrogen peroxide H2O2 (Sigma-Aldrich, Saint Louis, MI, USA), and at the end of the process filtrated
in a special filtration system with ceramic membranes and exfoliated by ultrasonic treatment. The final
product was in the form of an 0.34 wt% aqueous suspension of graphene oxide.

2.2. Molybdenum Disulfide

Molybdenum disulfide was produced through the wet chemical synthesis in the impinging jet
reactor with tangential (V-type) geometry as described in [42–44]. The synthesis was carried out using
ammonium heptamolybdate tetrahydrate (NH4)6Mo7O24·4H2O (HMA) (Chempur, Piekary Śląskie,
Poland) and ammonium sulfide (NH4)2S (AS) (Sigma-Aldrich, Saint Louis, MI, USA). Citric acid
C6H8O7 (CA) (Stanlab, Lublin, Poland) was used as a reducing agent in this reaction. HMA and CA
with Mo:CA molar ratio of 1:2 were dissolved in water at 90 ◦C and mixed for at least 30 min. 20 wt.%
solution of AS was diluted, maintaining the molar ratio of Mo:AS of 1:2. Both prepared solutions were
filtrated using a set with three filtration steps (1 µm; 0.45 µm; 0.22 µm). The reaction was carried out at
25 ◦C. The obtained suspension was purified through three times centrifugation (RCF 21390) for 1 h in
Sigma 3–18 K Centrifuge (Osterode am Harz, Germany). After each centrifugation the supernatant
was removed from the precipitate, and the sample was re-dispersed in deionized (DI) water for 15 min
in an ultrasonic bath. The purified precipitate was dried at 50 ◦C until the dark-brown powder was
received. Further purification and crystallization were conducted through annealing at 850 ◦C for 1 h
in argon flow in the vacuum retort furnace.

2.3. MoS2/GO Hybrid Nanostructures

MoS2/GO hybrid nanostructures were obtained by a wet chemical synthesis with the same reagents
as in the case of MoS2 synthesis, i.e., HMA, CA, AS. The reaction was carried out in two types of
reactors: a semi-batch reactor and an impinging jet reactor. The structures were synthesized in different,
assumed weight ratios of MoS2:GO, such as 10:1; 30:1; 50:1. The corresponding GO masses were
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calculated based on the amount of MoS2 produced during the synthesis reaction (Equations (3) and (4))
assuming 100% efficiency [42].

(NH4)6Mo7O24 + 21(NH4)2S
H3O+

→ 7MoS2 ↓ +7S ↓ +24H2O + 48NH3 ↑ (3)

(NH4)2S + 2C6H8O7 → H2S ↑ +2C6H7O7NH4 (4)

2.3.1. Synthesis in the Semi-Batch Reactor

0.706 g of HMA and 1.537 g CA were dissolved in ~10 mL of DI water at 90 ◦C and mixed for at
least 30 min with Mo:CA molar ratio of 1:2. After cooling to room temperature, an appropriate amount
(Table 1) of 0.34 wt.% aqueous suspension of GO was added to the mixture, filled up to 20 mL with DI
water and dispersed in an ultrasonic bath for 30 min. A total of 2.734 mL of 20 wt.% AS solution was
diluted in 20 mL of DI water. Subsequently, the reagents were thermostated at 25 ◦C. AS solution was
supplied to the reactor with a flow rate of 20 mL/min with GO + HMA + CA suspension, previously
passed through a filter set with three filtration steps (1 µm; 0.45 µm; 0.22 µm). The product was a
dark-brown suspension of MoS2/GO. A scheme of the used system with the semi-batch reactor is
presented in Figure 1.

Table 1. The weight of reagents used. HMA: ammonium heptamolybdate tetrahydrate; AS: ammonium
sulfide; CA: Citric acid.

MoS2/GO Ratio 10:1 30:1 50:1

Volume of reagents’
solution [mL] 20

20 wt.% AS mass [mL] 2.734
HMA mass [g] 0.706

CA mass [g] 1.537
0.34 wt.% GO mass [g] 12.556 4.186 2.512
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Figure 1. Synthesis of Molybdenum disulfide (MoS2)/ graphene oxide (GO) in the semi-batch reactor.

2.3.2. Synthesis in the Impinging Jet Reactor

The substrates were prepared by the same procedure as in the 2.3.1 stage. One of the inlets of
the reactor was supplied with AS solution and another with GO + HMA + CA suspension. The reactor
works in a continuous flow rate of 20 mL/min, using a syringe pump. The reaction was carried out
at 25 ◦C. The product, as in the semi-batch procedure, was a dark-brown suspension of MoS2/GO.
A scheme of the used system with the impinging jet reactor is presented in Figure 2.

Table 1 contains the amounts of reagents used during the synthesis, both in the semi-batch reactor
and the impinging jet reactor.
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2.4. Purification

To remove impurities, the obtained suspensions were centrifuged (RCF 21390) for 1 h in Sigma
3–18 K Centrifuge (Osterode am Harz, Germany). The supernatant containing impurities from
the samples was removed, and the precipitates were re-dispersed in DI water using the ultrasonic bath
for the next 15 min. This procedure was repeated three times. The precipitates were dried at 50 ◦C
for 24 h until the dark powders were received. Recent studies report that amorphous molybdenum
disulfide may have better catalytic properties than its crystalline form [52,53]. The aim of the conducted
annealing is to remove sulfur from the obtained hybrid nanostructures. The boiling point of sulfur
is around 445 ◦C [54], and to ensure the appropriate temperature, the annealing was carried out at a
temperature higher by 100 ◦C, due to the fact that at higher temperatures, the carbon material may be
decomposed. The powders were placed in the vacuum retort furnace and annealed at 550 ◦C for 1 h in
an argon flow. The final products were in the form of powders with graphite color.

2.5. Structural Characterization

A thorough physicochemical analysis of the synthesized materials was carried out, using various
analytical techniques. The direct product after the reaction was characterized by LS 13 320 Laser
Diffraction Particle Size Analyzer from Beckman Coulter Life Sciences (Brea, CA, USA). Characteristic
particle size L10 of the synthesized products was calculated using moments of the PSD (Equation (5)).

mk =

∞∫
0

Lkn(L)dL for k = 1, 2, . . . (5)

For the final products thermogravimetric analysis, FT-IR spectroscopy, X-ray powder diffraction,
and scanning electron microscopy performed. TGA of the hybrid nanostructures and MoS2 was
conducted from 30 ◦C to 1600 ◦C with 20 ◦C/min heating rate in 30 mL/min argon flow using TGA/DSC
(Thermal Gravimetric Analysis/Differential Scanning Calorimetry) 3 + analyzer from Mettler Toledo
(Columbus, OH, USA). FT-IR was carried out using Nicolet iS10 spectrometer from Thermo Scientific
(Waltham, MA, USA) in the transmittance mode. For this measurement, a small amount of each hybrid
material and GO was mixed with KBr powder (0.5 wt.%) and pressed into pellets. The spectrum was
collected in the range 500–4000 cm−1 with a 4 cm−1 resolution. The XRD analysis was carried out
using Panalytical X’Pert Pro (Malvern, United Kingdom) diffractometer with a copper lamp CuKα1.
The average size of the crystallites was calculated using Scherrer equation. The SEM images were
taken using field emission scanning electron microscope (FE-SEM) Hitachi S5500 (Chiyoda, Tokyo,
Japan) with a resolution of 0.4 nm. Two modes: the secondary electrons (SE) mode and the bright-field
scanning transmission electron microscopy (BF-STEM) were used. The samples were prepared by
applying a few drops of the hybrid nanostructures’ suspension in acetone on the TEM copper grid
with carbon film.
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2.6. Electrochemical Measurements

To check the potential application of the synthesized MoS2 and hybrid nanostructures as catalysts
for HER, electrochemical measurements were performed and compared with reference MoS2 from
Sigma-Aldrich (Saint Louis, Missouri, United States) (90 nm, 99%). To prepare the catalyst ink, 6 mg
of the material was added to 0.5 mL of terpineol (≥96%, Sigma-Aldrich (Saint Louis, MO, USA))
and dispersed using ultrasounds for 60 min. The suspension was spin-coated (500 rpm for 30 s)
onto the fluorine-doped tin oxide (FTO) glass substrate. The prepared electrodes were dried at a hot
plate at 80 ◦C. Subsequently, electrodes were placed in the vacuum retort furnace FCF 2R Czylok
(Jastrzębie-Zdrój, Poland) and annealed at 550 ◦C for 2 h in an argon atmosphere to increase the ductility
of the material [34]. Linear sweep voltammetry (LSV) was performed using a three-electrode system
on Keithley 2450 Source Meter/Unit (Cleveland, OH, USA). The reference electrode was Ag/AgCl
and platinum wire was used as the counter electrode. The aqueous electrolyte was 0.5 M H2SO4.
Measurements were taken for each sample 5 times.

3. Results and Discussion

Figure 3 shows the particle size distributions of GO (just before the reaction) and MoS2/GO
(direct products of the reaction in a semi-batch reactor) with different weight ratios. The characteristic
particle sizes L10 of GO and MoS2/GO (10:1; 30:1; 50:1) were 0.104, 0.096, 0.199, 0.182 µm, respectively.
The addition of carbon nanomaterials to the reaction environment allows primary heterogeneous
nucleation to occur. MoS2 particles precipitated and continued to grow on graphene flakes, obtaining
hybrid nanostructures. In samples 30:1 and 50:1 PSDs show that the characteristic particle size
increased due to the coverage of GO flake by the synthesized MoS2 particles. In the case of the 10:1
sample, there was practically no change in the characteristic size. For this sample, the largest amount
of GO was used, meaning it had the biggest amount of nucleation centers. The lack of change in
this sample may indicate that the synthesized MoS2 particles were so small and evenly distributed
on the GO surface that their formation did not affect the characteristic particle size. Compared to
the precipitation of the pure MoS2 in the semi-batch reactor (as described in [42]) with the same process
parameters (25 ◦C, initial Mo concentration of 0.2 mol/dm3), obtained hybrid nanostructures are more
stable and have a lower tendency to agglomerate. PSDs of the hybrid nanostructures do not show
the presence of agglomerates, and in the case of pure MoS2 PSD shows a distinct peak of agglomerates
with the characteristic particle size equal to 1.4 µm [42].Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 16 
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Figure 4 shows the particle size distributions of GO (just before the reaction) and MoS2/GO (direct
products of the reaction in the impinging jet reactor) with different weight ratios. The same as in
the case of a semi-batch reactor, PSDs show that the characteristic particle size L10 increased due to
the covering of GO flakes by MoS2 particles. The characteristic particle sizes L10 of MoS2/GO (10:1; 30:1;
50:1) were 0.096, 0.150, 0.073 µm, respectively. The use of the impinging jet reactor in the MoS2/GO
synthesis allowed to obtain smaller particle sizes compared to the materials from the semi-batch
reactor, due to the better mixing conditions. Similarly, as in the semi-batch procedure, obtained hybrid
nanostructures are more stable and have a lower tendency to agglomerate.
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Thermogravimetric analysis of the purified and annealed materials is shown in Figure 5a
and the derivative thermogravimetric analysis (DTG) in Figure 5b. A small initial weight loss at 100 ◦C
for all samples corresponds to the evaporation of adsorbed water. Further weight loss around 200 ◦C for
hybrid structures obtained in the impinging jet reactor is attributed to the removal of oxygen-containing
functional groups from graphene oxide. For these samples another distinct weight decrease is visible
around 400 ◦C, due to the oxidation of MoS2 to MoO3, resulting probably from the oxygen released
during the degradation of GO. However, the materials synthesized in the semi-batch reactor do not
show weight loss at this temperature range, hence the amount of oxygen from the GO structure
wasn’t sufficient for the oxidation of MoS2 to MoO3 [55,56]. Further gradual weight loss of the rest
of the samples corresponds to the removal of stable oxygen functional groups. Due to worse mixing
conditions in the semi-batch reactor, it is likely that MoS2 particles were not only deposited on
the carbon surface, but some were formed as a result of homogeneous nucleation. Therefore, some of
the carbon material was not completely covered with MoS2 and due to its hydrophilic properties,
some of GO was removed during purification, hence its lower content in the samples compared to
the materials from the impinging jet reactor. TG analysis of the synthesized samples confirmed that
the synthesis carried out in the impinging jet reactor allows to obtain stable hybrid nanostructures
based on MoS2 and carbon nanomaterials.
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FT-IR spectra of GO, the structures synthesized in the semi-batch reactor and in the impinging jet
reactor are shown in Figure 6. GO has shown characteristic peaks associated with O–H stretching at
3200–3600 cm−1, C–H stretching at 2850–2960 cm−1, carbonyl C=O stretching at 1710–1740 cm−1, C=C
stretching about 1625 cm−1, C–O stretching vibration of alkoxy group at 1300–1420 cm−1, C–O stretching
vibration of carboxyl groups at 1050–1150 cm−1, and CH2− at 760 cm−1 [57]. The decrease in the peak
intensity of the oxygen-rich functional groups present in the synthesized nanostructures suggests a
reduction in GO. In the case of the hybrid nanostructures, a peak associated with C–N stretching at
900–1000 cm−1 can be observed, suggesting that GO was additionally functionalized by HMA during
the preparation of GO + HMA + CA suspension in the ultrasonic bath. For the samples obtained in
the impinging jet reactor the signal of C–N stretching is stronger (Figure 6b). It might suggest that
due to the high intensity of mixing in the area of collision of streams an additional functionalization
is also taking place in the reactor. This functionalization can positively affect the electrochemical
and photocatalytic properties of the obtained materials, due to the possibility of creating a p-n junction
between the N–GO and MoS2 (which is a p-type semiconductor). Furthermore, a weak peak at 600 cm−1

is assigned to the Mo–S stretching vibration presented in MoS2-based materials [58].
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XRD analysis (Figure 7) confirmed that synthesized MoS2 is crystalline with a hexagonal crystal
structure 2H–MoS2. The average crystallite size is 9 nm in c-direction and 12 nm in a-direction.
In the case of MoS2/GO from the semi-batch reactor the average size of MoS2 crystallites is 3.1 nm
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in c-direction and 7.4 nm in a-direction, and from impinging jet reactor it is ~1.6 nm in c-direction.
The addition of GO to the synthesis of MoS2 allowed to obtain smaller crystallites. This is due to the fact
that graphene oxide has many functional groups that can serve as nucleation sites for MoS2 particles.
In the impinging jet reactor the obtained particles are smaller, which can be attributed to the better
mixing conditions. Due to the lower annealing temperature of MoS2/GO, the hybrid nanostructures
show lower crystallinity.
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SEM images of the synthesized MoS2 are shown in Figure 8. As can be seen, synthesized molybdenum
disulfide has a crystal structure with a layered surface and in the form of flakes. SEM images showed
that MoS2 particles tend to agglomerate obtaining micrometer size.
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Figure 9 shows SEM images of the obtained hybrid nanostructures in the semi-batch reactor.
SEM images have confirmed the XRD results that MoS2 nanoparticles on GO are not fully crystalline.
Nanoparticles of MoS2 are attached to the carbon surfaces, forming shapes close to GO flakes.
With increasing MoS2 content, the hybrid structures resemble pure molybdenum disulfide. Furthermore,
the hybrid nanostructures exhibit a lower tendency to agglomerate, comparing to pure MoS2 particles.Nanomaterials 2020, 10, x FOR PEER REVIEW 11 of 16 
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Figure 10 shows SEM images of the obtained hybrid nanostructures in the impinging jet reactor.
As with the particles from the semi-batch reactor, the MoS2 nanoparticles are not fully crystalline.
MoS2 nanoparticles can be observed on the GO flakes’ surface (Figure 10a). This structure is different
than for the samples obtained in the semi-batch reactor, confirming the XRD results that the particles
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are smaller. In the pictures it can be seen that MoS2 particles attach to GO surface, changing their
morphology. In both cases (semi-batch and impinging jet reactor) MoS2 seems to be agglomerated
(except in Figure 10a, where small MoS2 nanoparticles are evenly distributed on the GO surface) and no
big differences between the two synthesis methods can be observed. During the synthesis of MoS2/GO
hybrid structures two processes can occur: heteronucleation, where MoS2 nanoparticles will form
on GO surface and homonucleation, where MoS2 will form in the solution. SEM and PSD results
suggest that most of the MoS2 particles tend to form on GO flakes, meaning that the formation of MoS2
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Figure 11a shows the linear sweep voltammetry of the obtained samples. The polarization
curves of synthesized and commercial MoS2 have an onset potential (potential with current density
~0 mA/cm2) of −0.63 V, −0.54 V, respectively, and show a sharp decrease in the current density as
the potential decreases. In the case of the hybrid nanostructures obtained in the semi-batch reactor
(10:1; 30:1; 50:1), the onset potential was −0.40 V, −0.48 V, −0.43 V, respectively, and for the samples from
the impinging jet reactor (10:1; 30:1; 50:1) it was −0.39 V, −0.39 V, −0.36 V, respectively. The addition
of GO increases the onset potential, possibly due to the formation of smaller MoS2 nanoparticles
exhibiting more active sites than pure MoS2. Another reason for this effect is because carbon flakes
serve as conducting support, causing enhanced electrical conductivity and improving the interfacial
charge transfer as well as suppression of charge recombination. The 50:1 ratio (both from the impinging
jet reactor and semi-batch reactor) exhibits the best catalytic performance. Probably, this ratio allows
for uniform precipitation of MoS2 on the carbonaceous surface and obtaining nano-sized particles
(PSD results). The hybrid nanostructures synthesized in the impinging jet reactor have shown better
electrochemical properties, due to the better mixing conditions, providing better dispersion of MoS2

particles on the GO surface. Another explanation for this result might be connected to additional
functionalization of GO with nitrogen groups during the synthesis of the hybrid structures, which can
possibly create a p-n junction between the N-GO and MoS2, enhancing the catalytic properties. The LSV
curves and onset potential are similar, indicating that the use of impinging jet reactor allows to obtain
products with repeatable properties. Figure 11b shows the fifth measurement of LSV. As can be seen,
obtained polarization curves for MoS2 particles change during the measurements, while for the hybrid
nanostructures they are repeatable, hence the addition of GO improves electrochemical stability of
MoS2 particles.
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Figure 11. Linear sweep voltammograms of MoS2 and MoS2/GO performed using three electrodes
system (Platinum wire as counter electrode and Ag/AgCl as reference electrode) (a) the first measurement,
(b) the fifth measurement.

4. Conclusions

The hybrid nanostructures based on molybdenum disulfide and graphene oxide can be successfully
obtained in the semi-batch reactor and the impinging jet reactor. Due to the better mixing conditions,
materials obtained in the impinging jet reactor have shown better dispersion of MoS2 particles on
the carbon surface, smaller particle size, less tendency to agglomerate, and higher carbon material
contents. During preparation, GO was additionally functionalized by HMA, confirmed by FT-IR
measurements, which can be observed especially in the samples from the impinging jet reactor, probably
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due to the high intensity of mixing in the area of collision of streams. This functionalization can
positively affect the electrochemical and photocatalytic properties of the materials obtained, due to
the possibility of creating a p-n junction between carbon and MoS2 particles. The hybrid nanostructures
obtained in the impinging jet reactor have shown better electrochemical properties and higher onset
potentials. The results indicated that addition of carbon nanomaterials during the synthesis improves
the activity and stability of the MoS2.
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the published version of the manuscript.
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