
Contents lists available at ScienceDirect

NeuroImage: Clinical

journal homepage: www.elsevier.com/locate/ynicl

Distinct multivariate brain morphological patterns and their added
predictive value with cognitive and polygenic risk scores in mental disorders

Nhat Trung Doana,⁎, Tobias Kaufmanna, Francesco Bettellaa, Kjetil Nordbø Jørgensena,b,
Christine Lycke Brandta, Torgeir Mobergeta, Dag Alnæsa, Gwenaëlle Douaudd, Eugene Duffd,
Srdjan Djurovice,f, Ingrid Mellea, Torill Uelanda,c, Ingrid Agartza,b, Ole A. Andreassena,
Lars T. Westlyea,c

a NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of
Oslo, Norway
b Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
c Department of Psychology, University of Oslo, Oslo, Norway
d FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
e Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
f NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway

A R T I C L E I N F O

Keywords:
Multimodal MRI
Clinical prediction
Classification
Brain structure
Schizophrenia
Bipolar disorder
Cognition
Polygenic risk

A B S T R A C T

The brain underpinnings of schizophrenia and bipolar disorders are multidimensional, reflecting complex pa-
thological processes and causal pathways, requiring multivariate techniques to disentangle. Furthermore, little is
known about the complementary clinical value of brain structural phenotypes when combined with data on
cognitive performance and genetic risk. Using data-driven fusion of cortical thickness, surface area, and gray
matter density maps (GMD), we found six biologically meaningful patterns showing strong group effects, in-
cluding four statistically independent multimodal patterns reflecting co-occurring alterations in thickness and
GMD in patients, over and above two other independent patterns of widespread thickness and area reduction.
Case-control classification using cognitive scores alone revealed high accuracy, and adding imaging features or
polygenic risk scores increased performance, suggesting their complementary predictive value with cognitive
scores being the most sensitive features. Multivariate pattern analyses reveal distinct patterns of brain mor-
phology in mental disorders, provide insights on the relative importance between brain structure, cognitive and
polygenetic risk score in classification of patients, and demonstrate the importance of multivariate approaches in
studying the pathophysiological substrate of these complex disorders.

1. Introduction

Schizophrenia and bipolar disorder are complex disorders with high
heritability (van Os and Kapur, 2009), and are along with other mental
and behavioral disorders the largest global contributors to years lived
with disability (Vos et al., 2013). Whereas recent large-scale colla-
borative efforts have provided some clues about the genetic under-
pinnings (Psychiatric Genomics Consortium, 2014), the search for genes
or single-nucleotide polymorphisms (SNPs) with strong impact on
clinical expression has largely proven unsuccessful. This has reinforced
the search for distinct intermediate phenotypes, quantitative biological
traits that are reasonably heritable (Preston and Weinberger, 2005),

which may be more strongly associated to gene function compared to
diagnostic categories (Gottesman and Gould, 2003).

Both clinical expression and empirical evidence suggest molecular,
neurochemical, and macrostructural brain abnormalities in severe
mental disorders (van Os and Kapur, 2009). In line with the clinical and
pathophysiological heterogeneity evident in these disorders, the brain
underpinnings are multidimensional, reflecting a myriad of complex
pathological processes and environmental effects. Multivariate techni-
ques are well suited to disentangle the different sources of variability in
brain imaging data, where each source presumably reflects independent
biological pathways with unique genetic and environmental determi-
nants. Using these methods to determine the underlying structure of
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brain morphology changes in severe mental disorders could provide
novel clues about disease mechanisms and candidate avenues for novel
and personalized interventions (Insel and Cuthbert, 2015). Partial least
squares methods, for instance, which are based on the hypotheses of a
linear relationship between the observations (predictor variables) and
dependent variables and maximize the covariance between the two set
of variables (Sui et al., 2012), have been used for multimodal fusion of
function magnetic resonance imaging (MRI) and EEG (Martınez-Montes
et al., 2004) as well as PET and structural MRI (Chen et al., 2009).
Supervised machine learning regression approach was used to predict
brain development index and assess the relevant multiparametric
imaging patterns from T1 and diffusion tensor images (Erus et al.,
2015). Linked independent component analysis (LICA), a probabilistic
technique based on Bayesian framework, is a promising data-driven
multimodal fusion technique for modeling co-variances across mod-
alities (Groves et al., 2011). Its potential application has been demon-
strated in multimodal studies of healthy subjects (Douaud et al., 2014;
Groves et al., 2012), Alzheimer's disease spectrum (Doan et al., 2017)
and patients with attention deficit hyperactivity disorder (Francx et al.,
2016) and schizophrenia (Brandt et al., 2015).

To identify distinct brain morphology patterns in schizophrenia and
bipolar disorder, we performed data-driven fusion of brain imaging
phenotypes including cortical thickness, surface area and gray matter
density maps using LICA (Groves et al., 2011; Groves et al., 2012). This
multivariate technique enables data-driven decomposition of multi-
modal imaging features into a linear combination of independent
components, each of which may represent a biologically interpretable
mode of brain variation. Cortical surface area and thickness are im-
portant morphological indices of the brain cerebral cortex. Although
the exact neurobiological constituents remain unclear, surface area and
cortical thickness may be determined by the number and the laminar
patterning of cortical columns, respectively (Chen et al., 2013; Rakic,
2009), thus providing a biologically relevant decomposition of cortical
volume. Gray matter density map provides a mixed measure of gray
matter that may partly reflect interactions between cortical thickness
and surface area, but which is also likely reflecting relevant brain
morphological variance that is not modeled by the surface-based
thickness and area measures (Hutton et al., 2009). Surface-based
thickness and area contribute to only a proportion of the gray matter
density alterations in SZ and considering both surface-based and voxel-
based measures in SZ studies may therefore both increase sensitivity
(Palaniyappan and Liddle, 2012), and provide important information
about the inter-dependence between the three measures across the
brain.

We next applied machine learning, or multivariate pattern analysis,
to identify robust combinations of multivariate brain morphology pat-
terns that were most discriminative between groups. Here, our primary
aim was not to build a classification model with maximal performance
compared to existing models. Instead, by means of multivariate ma-
chine learning classification, we aimed to gain further insights re-
garding the most discriminative combinations of features and the im-
portance of each feature with respect to the others in such
combinations. To study their sensitivity to clinical and cognitive traits,
we tested for associations with diagnosis, in addition to a range of
cognitive domains and clinical variables. Polygenic risk score (PGRS)
quantifies the additive effects of a large number of genetic variants with
individually weak effects on complex traits. It is computed for each
individual by summing up the effect sizes of a set of SNPs, selected
based on a p-value threshold and weighted by the number of individual
risk alleles (Purcell et al., 2009; Tesli et al., 2014). PGRS has been used
as a useful genetic marker for evaluating the effect of cumulative ge-
netic risks on the brain phenotypes (Kanai and Rees, 2011; Kauppi
et al., 2015). Therefore, we also assessed to which degree the multi-
variate brain morphology patterns are modulated by PGRS for schizo-
phrenia and bipolar disorder. Finally, to test the added predictive value
provided by multivariate brain imaging features when used in

combination with cognitive performance and polygenic risk, we per-
formed and compared group classification using the different combi-
nations of these feature sets. Based on previous reports on brain mor-
phometric alterations in schizophrenia and bipolar disorders
(Elvsåshagen et al., 2013; Hibar et al., 2017; Hibar et al., 2016;
Kuperberg et al., 2003; Moberget et al., 2017; Rimol et al., 2012; van
Erp et al., 2016a; van Erp et al., 2016b), we hypothesized that LICA
would reveal morphological patterns that not only converge with uni-
variate findings such as the characteristic pattern of fronto-temporal
thinning in the patient groups, but also show novel modes of brain
morphometric variability involving multiple morphometric measures
sensitive to diagnosis. Based on the previously reported brain structural
heterogeneity in patients relative to controls (Kambeitz et al., 2015;
Nenadic et al., 2012), we expected to observe moderate discriminative
power of the resulting multivariate features at an individual level.
Lastly, we hypothesized that combining brain morphology, polygenic
and cognitive scores would yield improved predictive value compared
to using each of these feature sets alone.

2. Material and methods

2.1. Participants

Participant demographics are summarized in Table 1. Briefly, we
included 223 participants with schizophrenia spectrum disorders
(age = 32.1 ± 9.3 years, 95 women, 168 schizophrenia, 22 schizo-
phreniform, 33 schizoaffective), 190 with bipolar spectrum disorders
(age = 35.0 ± 11.3 years, 111 women, 117 bipolar disorder I, 64 bi-
polar disorder II, and 9 bipolar disorder not otherwise specified), and
284 healthy controls (age = 35.2 ± 9.6 years, 134 women). All par-
ticipants were recruited as part of the Thematically Organized Psy-
chosis (TOP) study, which was approved by the Regional Committee for
Medical Research Ethics and the Norwegian Data Inspectorate. Written
informed consent was obtained from all participants. Patients were
recruited from both inpatient and outpatient clinics (but mostly out-
patient) at major psychiatric hospitals in the Oslo area with the fol-
lowing criteria: aged between 18 and 65 years, understood and spoke a
Scandinavian language, had no history of severe head trauma, and
obtained an IQ score of above 70. Healthy controls were excluded if
they or any of their first-degree relatives had a lifetime history of a
severe psychiatric disorder (schizophrenia, bipolar disorder or major
depression). Patients were clinically characterized through a personal
interview conducted by trained physicians or clinical psychologists. The
assessment covered diagnostics, symptomatology, neurocognition, drug
use and medication status (Simonsen et al., 2011). Psychiatric diagnosis
was established using the Structured Clinical Interview for DSM-IV Axis
I Disorders (SCID) (First et al., 1996). An overview regarding family
history of the patients is presented in Supplementary Table 3. The
controls were randomly sampled from national registries from the same
catchment area and age range as the patients, and had no psychiatric or
alcohol/substance use disorder, as well as no cannabis use the last
3 months.

2.2. MR acquisition

Magnetic resonance imaging data were obtained on a 1.5 Tesla
Siemens MAGNETOM Sonata scanner (Siemens Medical Solutions,
Erlangen, Germany) supplied with a standard head coil. For each par-
ticipant, two T1-weighted images were acquired using a repeated 3D T1-
weighted magnetization prepared rapid acquisition gradient echo
(MPRAGE) sequence with the following parameters: repetition time
(TR) = 2730 ms, echo time (TR) = 3.93 ms, inversion time (TI)
= 1000 ms, field of view (FOV) = 240 mm, flip angle (FA) = 7o, ma-
trix = 192 × 256, voxel size = 1.33 × 0.94 × 1 mm, 160 sagittal
slices. The two T1-weighted scans obtained for each participant were
averaged after rigid registration to improve signal-to-noise ratio (SNR).
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2.3. Image pre-processing

T1-weighted scans were processed using FreeSurfer (http://surfer.
nmr.mgh.harvard.edu) to estimate vertex-wise cortical thickness and
surface arealization (Dale et al., 1999). Surface maps were resampled to
a common coordinate system (fsaverage5, 10,242 vertices) using a non-
rigid high-dimensional spherical averaging method to align cortical
folding patterns (Fischl and Dale, 2000). FSL-VBM (Douaud et al.,
2007) was used to derive gray matter density (GMD) maps (see Sup-
plementary Information (SI)).

Thickness maps were smoothed using a Gaussian kernel with a
commonly used full width of half maximum (FWHM) of 15 mm, re-
sulting in a smoothness of 20.8 mm. To match smoothness across sur-
faces, the surface area maps were smoothed with different values of
FWHM (ranging from 10 mm to 15 mm) and maps having approxi-
mately the same smoothness as cortical thickness (corresponding to a
FWHM of 11 mm) were used for further processing. In accordance with
the preprocessing steps described in (Groves et al., 2012), the GMD
maps were resampled to have an isotropic voxel size of 4 × 4 × 4 mm3

using a trilinear interpolator, and smoothed with a FWHM of 10.5 mm
(sigma = 4.5 mm).

2.4. Linked independent component analysis

We performed a data-driven decomposition of the imaging features

obtained from all subjects into independent components using the LICA
implementation by FMRIB, University of Oxford (http://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/FLICA (Groves et al., 2012). LICA was developed based
on the conventional ICA technique, which assumes the signal to be a
linear mixture of statistically independent spatial patterns that are non-
Gaussian. The subject weights, or mixing parameters, are unknown.
During the optimization process, ICA searches for maximally non-
Gaussian patterns by iteratively updating the subject weights. To model
covariance patterns across modalities, LICA allows simultaneous ICA
decompositions on different modalities but constrains the subject
weights to be the same across modalities. Furthermore, LICA balances
the information content from different modalities, allowing a modality
to be absent from a component. A LICA component is thus characterized
by its spatial maps (one per modality) and the subject weights that are
shared across measures, and may involve multiple (hereafter generally
referred to as multimodal components) or only one measure (unimodal
components). Whereas the group spatial maps indicate the spatial
variability at the group level, the subject weights indicate the relative
contribution of a subject to the component. For instance, for a given
modality in a component, if its spatial map shows positive pseudo z-
score, then larger subject weights would reflect relative increases in the
corresponding modality; and vice versa, for a spatial map with negative
values, larger subject weights would reflect relative decreases. To aid
visualization and interpretation of the anatomical distribution of an
effect of interest in subsequent analyses on the subject weights, we

Table 1
Sample characteristics.

Group SZ BD HC Group comparisons

SZ vs. BD SZ vs. HC BD vs. HC

Demographics, education
Total N 223 190 284
Sex (% female) 95 (42.6) 111 (58.4) 134 (47.2) χ2 = 9.65, p= 1.89E-03 χ2 = 5.32, p = 2.11E-02 χ2 = 0.88, p = 3.48E-01
Age (years) 32.10 ± 9.31 34.99 ± 11.31 35.22 ± 9.60 t= −2.73, p = 1.96E-02 t = −3.42, p= 1.99E-03 t = −0.37, p= 1
Education (years) 12.75 ± 2.49 13.50 ± 2.27 14.15 ± 2.26 t= −2.36, p = 5.62E-02 t = −5.43, p < 1E-04 t = −2.81, p= 1.54E-02
Ethnicity (% caucasian) 180 (80.7) 171 (90) 280 (98.5)

Cognitive domains mean z ± sd (n)
g −1.64 ± 2.45 (181) −0.01 ± 2.20 (177) 1.08 ± 1.58 (278) t= −7.58, p < 1E-04 t = −14.59, p < 1E-04 t = −6.19, p < 1E-04
Processing speed −0.63 ± 0.92 (193) −0.13 ± 0.92 (177) 0.51 ± 0.82 (283) t= −5.76, p < 1E-04 t = −14.90, p < 1E-04 t = −8.33, p < 1E-04
Verbal learning/memory −0.45 ± 0.83 (194) 0.06 ± 0.90 (178) 0.25 ± 0.72 (284) t= −6.07, p < 1E-04 t = −9.83, p < 1E-04 t = −2.99, p= 8.56E-03
Executive function −0.53 ± 0.87 (193) −0.01 ± 0.69 (178) 0.37 ± 0.49 (284) t= −7.08, p < 1E-04 t = −14.41, p < 1E-04 t = −6.41, p < 1E-04
Working memory/attention −0.35 ± 0.89 (194) −0.07 ± 1.01 (177) 0.28 ± 0.99 (284) t= −3.17, p = 4.79E-03 t = −7.33, p < 1E-04 t = −3.72, p= 6.5E-04

Symptomsa mean ± sd (n)
Duration of illnessb 10.33 ± 8.15 (220) 13.69 ± 9.91 (188) na t= −3.7, p= 2.4E-04
PANSS negative 15.55 ± 6.59 (220) 10.11 ± 3.60 (186) na t= 10.5, p < 1E-04
PANSS positive 14.86 ± 5.38 (219) 10.08 ± 3.64 (187) na t= 10.6, p < 1E-04
PANSS total 62.18 ± 17.21 (217) 45.59 ± 10.12 (186) na t= 12, p < 1E-04

Drug use n (%)
Alcohol use last month 131 (58.7) 139 (73.2) 213 (75.0)
Amphetamine last month 8 (3.6) 2 (1.1) 1 (0.4)
Cocaine use last month 4 (1.8) 3 (1.6) 2 (0.7)
Cannabis use last month 17 (7.6) 16 (8.4) 3 (1.1)
AUDIT score mean ± sd (n) 6.51 ± 5.87 (198) 8.05 ± 5.83 (178) 6.10 ± 2.93 (247)

Medication n (%)
Antipsychotic 179 (80.3) 74 (38.9) na
Lithium 2 (0.9) 35 (18.4) na
Antiepileptic 29 (13.0) 82 (43.2) na
Antidepressant 57 (25.6) 52 (27.4) na
Hospitalization (mean ± sd) 2.4 (3.3) 1.6 (2.3) na

Polygenic risk scores (PGRS) (total N = 505)
N 145 144 216
SZ PGRS (mean ± sd) 0.34 ± 0.94 0.11 ± 1.01 −0.30 ± 0.94 t= 1.72, p = 2.57E-01 t = 6.05, p < 1E-04 t = 4.13, p = 1.26E-04
BD PGRS (mean ± sd) 0.03 ± 0.99 0.22 ± 0.96 −0.17 ± 1.01 t= −1.62, p = 3.16E-01 t = 1.84, p = 2E-01 t = 3.61, p = 1E-03

AUDIT: Alcohol Use Disorders Identification Test. SZ = Schizophrenia, BD = Bipolar Disorder, HC = Controls.
a The median time period between the clinical assessment and MRI scan was 155 days.
b Defined as years between age at the first occurrence of any psychiatric illness episode (psychotic, affective, or other) and date of MRI scan.
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thresholded the spatial maps (3 < |z| < 10), in line with previous
publications (Brandt et al., 2015; Groves et al., 2012), with stronger
effects implicated in regions with larger z-scores. Model order selection
procedures based on cophenetic coefficient (Ray et al., 2013) suggested
that fifty components provided a good fit with the data (see SI), with
each component representing a distinct mode of brain variation.

2.5. Statistical analyses

2.5.1. Univariate analyses of the LICA subject weights
We applied general linear models (GLM) to test for the main effects

of group, age and sex, as well as of the interaction between age and
group, on the subject weights of each LICA component (group and sex
coded as categorical variables R's lm function). The group pairwise
contrasts were computed using the lsmeans R package (Lenth, 2016).
We assessed the effect of intracranial volume (ICV) on the main findings
by additionally including this measure as a covariate in the group effect
analyses, accounting for age and sex. We further checked for the as-
sociation between the components and total lateral ventricular volume,
accounting for age, sex and ICV. We studied the pairwise correlations
between all components by means of full and partial correlation.

Further, we assessed the associations between LICA subject weights
and cognitive domain scores (g factor, processing speed, verbal
learning/memory, executive function, working memory/attention),
symptom domain (duration of illness, negative, positive and total
PANSS) and polygenic risk scores (Table 1 and SI). We included mea-
sures of cognitive domains previously found to be impaired in schizo-
phrenia and bipolar disorder (Bowie and Harvey, 2005; Simonsen et al.,
2011). Possible confounding roles of ethnicity and subject motion,
quantified using signal-to-noise ratio as a proxy, on the main effect and
cognitive analyses were assessed and presented in SI. For the LICA
components showing significant group effects, we explored possible
effects of medication, substance use (drug, alcohol), and education
within either schizophrenia or bipolar disorder group by including each
of these variables in the GLM.

Correction for multiple testing across all LICA components was
performed using permutation testing. The subject weights were per-
muted 10,000 times with respect to age, sex, and group, as well as
cognitive, polygenic risk, and symptom scores when applicable. In
particular, for the main group effect analysis, in each permutation, the
maximum value of the f statistics associated to the main group effect
across all components was computed and stored. This entire process
resulted in a null distribution of the f statistics consisting of 10,000
values and the original f statistic obtained from the non-permuted data.
The corrected p value was computed as the ratio between the number of
values in the null distribution greater or equal to the original f statistic
and the number of values in the null distribution. A similar permutation
procedure was applied to obtain the corrected p values for the group
pairwise comparisons. Unless specified otherwise, the p values reported
throughout the manuscript are corrected for multiple comparisons
using permutation testing as this non-parametric procedure only make
weak assumptions and can provide the exact control of false positives
from the data (Winkler et al., 2014). However, to facilitate comparisons
with previous literature in which FDR correction is commonly used, for
the main effect analyses, we also report FDR-corrected values
(Benjamini and Hochberg, 1995) (Supplementary Table 1).

2.5.2. Multivariate machine learning analyses
Finally, we performed pairwise group classification based on a

leave-one-out cross-validation approach using as features the LICA
components after regressing out the linear effect of age and sex. We
used the random forest classifier as implemented in the randomForest R
package (Liaw and Wiener, 2002). For each classification, one subject
was left out as a testing set and a classifier was trained on the remaining
subjects. During training, the optimal number of features that should be
randomly chosen for splitting at each tree was estimated such that it

minimized the out-of-bag error (Breiman, 2001) on the training data
using the tuneRF function (the testing set remained untouched). The
trained classifier was then used to predict the class of the testing set.
This process was repeated for each and every subject. Due to the im-
balanced sample sizes across groups, to alleviate biased performance
towards higher accuracy on the majority class, during training of the
random forest classifier, we repeatedly sampled with replacement an
equal number of subjects per class, and additionally, we used the area
under the receiver-operating-characteristic curve (AUC) as the main
performance measure. We repeated this classification using only data
from subjects with a diagnosis of schizophrenia (N = 168) in the
schizophrenia group, subjects with a diagnosis of bipolar I (N = 117) in
the bipolar group, and the controls. On a subset of the sample for
which imaging, cognitive and genetic data are available (schizo-
phrenia = 122, bipolar disorder = 132, controls = 212), we per-
formed group classifications using the different combinations of these
different feature sets in the same cross-validation framework as de-
scribed above to assess their complementary predictive value. Sig-
nificance in terms of classification improvement was evaluated using
permutation testing (more details can be found in SI).

LICA decomposition was performed using Matlab (version R2014a).
All statistical analyses and classification were performed in R (http://
cran.r-project.org, version 3.2.1).

3. Results

3.1. Univariate analyses of the LICA subject weights

3.1.1. Association with diagnosis
Six components (IC1,2,5,8,12,25 explaining 15.5%, 12.3%, 1.7%,

1.6%, 1.3%, 0.95% of the data variance (Supplementary Fig. 1), re-
spectively) showed significant (p < 0.05, corrected) main effects of
diagnosis (Fig. 1). Eleven (IC1,2,3,5,8,9,11,12,16,20,22) showed sig-
nificant main effects of age (see SI, Supplementary Fig. 3), and nine
(IC1,5,8,9,11,12,14,25,28) showed significant main effects of sex. De-
tailed results are presented in Supplementary Table 1.

IC1 reflects global cortical surface area with schizophrenia showing
smaller subject weights than bipolar disorder (t= −4.26, p= 3.8E-
03) and controls (t= −4.71, p= 5E-04). This component correlated
positively with ICV (Buckner et al., 2004) (t= 31.70, p < 1E-04).
Importantly, however, the group effect remained when including ICV in
the GLM (F = 10.04, p= 2.6E-03, schizophrenia < bipolar disorder:
t= −4.15, p = 6.2E-03, schizophrenia < controls: t= −3.61,
p = 4.7E-02). IC2 reflects global cortical thickness. Schizophrenia and
bipolar disorder patients showed decreased subject weights compared
to controls (schizophrenia < controls: t =−7.31, p= 1E-04, bipolar
disorder < controls: t =−4.88, p = 2E-04), indicating global cortical
thinning in both patient groups.

IC5 is a multimodal component mainly driven by thickness (54%
weight) and GMD (38% weight), implicating cingulate, insular and
medial frontal thickness, as well as global variation with an opposite
weighting in GM and WM. Schizophrenia (t = 5.4, p = 1E-04) and bi-
polar disorder (t = 5.31, p = 1E-04) had larger subject weights than
controls, indicating increased thickness and GMD and decreased white
matter density (WMD) in the patient groups. This component showed a
negative association with total WM volume (t =−13.88, p < 1E-03).

IC8 reflects multimodal involvement of lateral temporal, parietal
and medial frontal thickness (27% weight) as well as a bilateral pattern
of temporal occipital fusiform cortex, lingual cortex, precentral, post-
central gyrus and hippocampus GMD (65% weight). Compared to
controls, schizophrenia (t= −4.28, p= 3.7E-03) and bipolar disorder
(t= −3.63, p = 4.35E-02) showed decreased subject weights, in-
dicating reduced thickness and GMD in these regions.

IC12 revealed a distinct gradient in thickness along the anterior-
posterior axis with positive and negative weights in the frontal and
posterior lobes, respectively. Compared to controls, schizophrenia
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(t =−3.84, p = 1.97E-02) and bipolar disorder patients (t= −3.34,
p = 1.2E-01) showed smaller subject weights, indicating a shift in
thickness distribution across the brain surface with relatively less
anterior compared to posterior thickness in patients relative to controls.

IC25 reveals reduced cerebellar GMD in schizophrenia compared to
controls (t= −3.43, p = 8.75E-02, FDR corrected p = 1.19E-02).

ICV also showed an association on IC5 and IC12 (IC5: t= −6.8,
p < 1E-03, IC12: t= −3.8, p < 1E-03). However, the results on
group differences did not change when including ICV as an additional
covariate in the GLM. Ventricular volume showed an association with
IC1,2,5,8 (IC1: t= −6.3, p < 1E-03, IC2: t= −2.8, p = 5E-03, IC5:
t = 2.5, p= 1.3E-02, IC8: t= −8.6, p < 1E-03, uncorrected), ac-
counting for age, sex and ICV, reflecting larger ventricular GMD regions
in the patient groups. Although IC1 and IC2 were mainly dominated by
surface area and thickness (Fig. 1), they were also subtly influenced by
the GMD measure (Supplemental Fig. 10).

In general, weak correlations were observed between the

components (maximum partial correlation = 0.26, full correla-
tion = 0.23), and only a small subset of components was significantly
correlated with at least one other component (IC2 with IC5,8,9,20,26;
IC4 with IC40; IC0 with IC1,5) (Supplementary Fig. 6).

3.1.2. Associations with cognitive domain scores, PGRS and symptom
domain scores

Groups were significantly different in all cognitive domains with
lower performance in patients (schizophrenia < bipolar disorder <
controls). Bipolar disorder had higher PGRS for bipolar disorder than
controls, and both schizophrenia and bipolar disorder had higher PGRS
for schizophrenia than controls. PGRS for schizophrenia and bipolar
disorder explained ~13% and 6% of the variance in diagnostic status
(Nagelkerke pseudo R2), respectively (Table 1).

Permutation testing revealed no significant univariate associations
between the brain morphology patterns and any of the cognitive, PGRS,
or symptom scores. However, our results showed several nominally

Fig. 1. (a) Spatial maps of six LICA components showing
significant group effects. Volumetric map is presented for
GMD, whereas surface maps are presented for cortical
thickness and surface area. Only spatial maps of modalities
with considerable contribution to the components are
shown. All maps were thresholded with |z| > 3.
SA = surface area, CT = cortical thickness. Whereas
IC1,2,12,25 were unimodal, i.e. dominated by a single
modality, IC5,8 were multimodal and driven by variation in
both CT and GMD maps. (b) Subject weight distribution of
the above six components. The diamond signs represent the
group means. The plotted values are the residuals obtained
by regressing out age and sex effects. SZ = Schizophrenia,
BD = Bipolar Disorder, HC = Controls.
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significant associations with cognitive scores and PGRS, which warrant
replication analyses in independent samples. Among others, processing
speed showed a positive association with IC8 in schizophrenia
(t = 3.31, p = 1.1E-03, uncorrected) and in bipolar disorder (t= 2.1,
p = 3.73E-02, uncorrected), indicating that reduced processing speed
may be related to reduced lateral temporal and medial frontal cortical
thickness and specific local GMD regions in the patient groups (Fig. 4).
IC1, reflecting global surface area, and IC5, reflecting cerebellar GDM,
also showed a trend association with processing speed and working
memory/attention, respectively (see SI for more details and other re-
sults).

3.1.3. Post-hoc analyses with medication, substance use, education
Post-hoc analyses on the set of six components with significant di-

agnosis effect showed no significant associations with clinical variables,
or with education, within the patient groups.

3.2. Multivariate machine learning classification analyses

Classification of schizophrenia and controls using all LICA compo-
nents yielded an AUC of 0.75 (Fig. 2) (accuracy = 69%, specifi-
city = 74%, sensitivity = 62%). Classification of bipolar disorder and
controls, and schizophrenia and bipolar disorder yielded lower perfor-
mance (bipolar disorder vs. controls: AUC = 0.67, accuracy = 66%,
specificity = 72%, sensitivity = 58%; schizophrenia vs. bipolar dis-
order: AUC = 0.59, accuracy = 58%, specificity = 52% and sensi-
tivity = 62%). Fig. 2B showed that IC1,2,5,8,12,25 are the most im-
portant features for both schizophrenia vs. controls and bipolar disorder
vs. controls, and IC1 and IC39 (reflecting hippocampal GMD) for
schizophrenia vs. bipolar disorder. This performance remained un-
changed when classifying only subjects with schizophrenia diagnosis
(excluding those with schizoaffective and schizophreniform), bipolar
disorder I and controls (AUC = 0.76, 0.67 and 0.53 for schizophrenia
vs. controls, bipolar I vs. controls, and schizophrenia vs. bipolar I, re-
spectively).

Further, we evaluated the complementary predictive value of brain
patterns, cognitive scores and PGRS (Fig. 3). In classification of schi-
zophrenia and controls, cognitive scores gave a higher performance
than LICA features (AUC = 0.81 vs. 0.67). Using the combined set of
cognitive and LICA features yielded significantly higher results
(AUCcognitive + LICA = 0.85, p = 7.4E-03, permutation testing keeping
the original ordering of cognitive features while permuting randomly
LICA features, repeated 5000 times) compared to using cognitive fea-
tures alone (AUCcognitive only = 0.81) or using LICA alone (AU-
CLICAonly = 0.67, p = 2E-04, permutation testing keeping the original
ordering of LICA features while randomly permuting cognitive

features). PGRS when used alone yielded a modest performance
(AUC = 0.6), but when used in addition to either LICA features or
cognitive scores also led to an improved performance (AUC = 0.73,
p = 2E-04; 0.84, p = 1E-02, respectively). However, additionally in-
cluding PGRS to the combination of LICA and cognitive scores did not
improve performance. The relative feature importance plot (Fig. 3D)
showed that the cognitive features are more informative than LICA and
PGRS features. IC1,2 and 5 are the most informative features among the
LICA components. Similar patterns were observed for bipolar disorder
vs. controls, although accuracies were generally lower. Classification
between schizophrenia and bipolar disorder showed a low performance
even when using all feature sets together (AUC < 0.63).

4. Discussion

Using a data-driven multivariate approach for multimodal fusion of
brain morphometric properties, we identified six novel distinct multi-
variate patterns of complex brain variability, showing significant dif-
ferences in schizophrenia and bipolar disorder compared to controls.
Two independent patterns reflected anatomically distributed cortical
thickness and surface area, suggesting global cortical thinning in the
patient groups, and area reduction in schizophrenia compared to bi-
polar disorder and controls. Beyond these global effects, four multi-
modal regional brain patterns also showed strong effects, capturing 1)
correlated increases in cingulate thickness and decreases in white
matter volume, 2) fronto-parietal and temporal thickness, 3) cerebellar
gray matter density, and 4) a distinct anterior-posterior gradient in
cortical thickness. Group classification revealed high accuracy for di-
agnostic prediction using cognitive data alone. Adding polygenic risk
and imaging features significantly increased accuracy, suggesting
complementary predictive value of brain imaging, cognitive perfor-
mance and polygenic risk in classifying between patients with severe
mental illness and healthy controls.

LICA allowed us to isolate a relatively small number of distinct and
biologically interpretable patterns of brain structure variability, each of
which may explain just a small portion of the total variation in brain
phenotypes underlying severe mental disorders. One important aspect
of this approach is that it is fully data-driven and unbiased, i.e. no other
information (age, sex or diagnosis) than the imaging data was used to
derive the patterns. Furthermore, by means of simultaneous modeling
of both global and regional features linking complementary morpho-
logical measures (thickness, surface area, GMD maps), we were able to
untangle global from regional effects that would have been difficult to
disentangle when considering each of the measures separately using
univariate approaches. Such a multivariate approach focuses on inter-
related patterns across multimodal measures, allowing the

Fig. 2. Performance of the pairwise group classification on the whole sample: A. ROC plot; B. Spider plot indicating the relative importance of all features included (1 = most important,
0 = least important). SZ = Schizophrenia, BD = Bipolar Disorder, HC = Controls.
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identification of complex and weak effects hidden in high-dimensional
data not previously shown in studies applying standard univariate
methods (Calhoun and Sui, 2016; Douaud et al., 2014).

4.1. Case-control difference in LICA subject weights

We identified six distinct multivariate patterns of brain structure
variations showing significant group differences. IC1 reflected global
variability in surface area, and the strong correlation with ICV supports
its global properties. Schizophrenia showed smaller subject weights
than bipolar disorder and controls, indicating that this component is
specific to schizophrenia. This finding is also consistent with recent
meta-analyses confirming reduced ICV in schizophrenia (van Erp et al.,
2016a) but not in bipolar disorder (Hibar et al., 2016). Compared to

controls, we also observed reduced subject weights in schizophrenia
and bipolar disorder in a component reflecting global cortical thickness
(IC2), in line with evidence of widespread cortical thinning in schizo-
phrenia (Goldman et al., 2009; Kuperberg et al., 2003; Rimol et al.,
2010a), and also thinning in bipolar disorder (Elvsåshagen et al., 2013;
Lyoo et al., 2006; Rimol et al., 2010a), although to a lesser extent.

Since IC1 and IC2 modeled the global effects, which accounted for a
large amount of data variance, subtler and more anatomically specific
variance potentially related to disease processes can be revealed. We
identified four other components (each explaining< 2% variance)
showing strong main effects of group. Each of these components po-
tentially represents independent pathogenic mechanisms, as supported
by the weak pairwise correlation (Supplementary Fig. 6).

IC5 revealed a distinct pattern of distributed GMD and WMD voxels,
reflecting decreasing WMD with increasing GMD, in addition to loca-
lized and positively weighted lateral fronto-parietal and cingulate
thickness variation. IC5 is similar to a component recently suggested to
reflect a network of gray matter regions involved in transmodal pro-
cessing (Douaud et al., 2014), with estimated age-trajectories that
mirrored both healthy developmental and aging processes, and with
heightened vulnerability to schizophrenia and Alzheimer's disease by
spatially recapitulating the pattern of macrostructural abnormalities
seen in both disorders. In line with this recent study, we observed in-
creased subject weights in schizophrenia, indicating a correlated pat-
tern of increased cortical GMD, increased cortical thickness along the
cingulate gyrus, along with decreased WMD. This specific component
captured a source of variation over and above global effects, and the
focal pattern of increased GMD and cortical thickness was identifiable
since the variability related to global cortical thickness was accounted
for in IC2.

The brain pattern observed in IC5 is in line with the balloon model
hypothesis (Harasty et al., 2003; Seldon, 2005), which proposes that as
the WM grows, the cortical columns stretch and become thinner. This
tangential cortical expansion caused by WM growth is hypothesized to
increase the capacity of the cortex to differentiate afferent signals
(Seldon, 2005). In accordance with this, the increased subject weights
in schizophrenia and bipolar disorder compared to controls may reflect
decreased WM volume along with decreased cortical column differ-
entiation as captured in increased thickness and GMD.

Fig. 3. Performance of the pairwise group classification performed on a subset where imaging, cognitive and polygenic risk score are available: A,B,C. ROC plots for classification
schizophrenia (SZ) and controls (HC), bipolar disorder (BD) and HC, SZ and BD, respectively; D. Spider plot indicating the relative importance in case all feature sets were included
(1 = most important, 0 = least important). PS = Processing speed, VL/mem= Verbal learning/memory, EF = Executive function, WM/att = Working memory/attention.

Fig. 4. Scatter plot of processing speed as a function of IC8's subject weights. Linear
effects of age and sex on both IC8 and processing speed were regressed out before plot-
ting. SZ = Schizophrenia, BD = Bipolar Disorder, HC = Controls.
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IC8 implicated the lateral temporal, parietal and medial frontal
thickness along with GMD map. The GMD pattern largely comprises
temporal and occipito-parietal regions, including the occipital fusiform,
lingual cortex, precentral and postcentral gyrus and hippocampus.
Schizophrenia and bipolar disorder showed significantly reduced sub-
ject weights compared to controls, indicating reduced cortical thickness
and GMD in the implicated regions. Our GMD findings in this compo-
nent are consistent with several previous studies reporting GMD re-
duction in schizophrenia at the precentral, postcentral, para-
hippocampus gyrus (Glahn et al., 2008; Gupta et al., 2015), fusiform
(Onitsuka et al., 2003; van Erp et al., 2016b) and lingual cortex
(Antonova et al., 2005). In our study, all of these structures are im-
plicated in the same independent component, suggesting coordinated
volumetric alterations in the patient groups. The thickness pattern re-
flected in this component is in line with previous reports on cortical
thinning in schizophrenia and bipolar disorder (Kuperberg et al., 2003;
Lyoo et al., 2006; Rimol et al., 2010a). Beyond findings in univariate
studies, IC8 further revealed co-occurring alterations of thickness and
GMD at partially non-overlapping brain regions, which may be influ-
enced by the same aspects of the etiology in mental disorder. Further-
more, association results with cognitive scores, although only nomin-
ally significant, revealed a positive correlation between IC8 and
processing speed (stronger in schizophrenia than in bipolar disorder),
suggesting that regional cortical thinning and GMD reduction is asso-
ciated with reduced processing speed in patients.

IC12 revealed a distinct anterior-posterior gradient in cortical
thickness with increasing frontal thickness along with decreasing pos-
terior thickness, thus reflecting the relative thickness increase along the
posterior-anterior axis over and above all other components. The ob-
served decreased subject weights in schizophrenia and bipolar disorder
compared to controls reflects a shift of the thickness distribution to-
wards a stronger posterior compared to anterior weighting. The de-
creased frontal distribution corresponds with the characteristic fronto-
temporal cortical thinning in schizophrenia and bipolar disorder
(Elvsåshagen et al., 2013; Kuperberg et al., 2003; Rimol et al., 2012),
but extends previous findings by suggesting that this pattern of effects
reflects a shift in the anterior-posterior distribution of cortical thick-
ness, over and above global thinning. The linear combination of IC12
and the global cortical thinning component (IC2), would likely result in
a net effect of frontal-temporal thinning, as obtained using mass-uni-
variate analyses on the observed absolute thickness values (SI, Sup-
plementary Fig. 9). An important strength of LICA was the ability to
model the global thickness reduction effect into a separate independent
component (IC2), and thus more subtle patterns of relative thickness
changes as reflected by IC12 can be revealed. The spatial distribution of
IC12, which was derived solely from the imaging data in a data-driven
manner, is consistent with patterns implicating anterior-posterior gra-
dients of gene expression shown in animal studies (Kudo et al., 2007;
O'Leary et al., 2007), and partially overlaps with a gradient pattern of
cortical thickness genetic correlation revealed in a seed-based analysis
seeding from the primary visual cortex (Rimol et al., 2010b). This
pattern is also in line with a genetically informed two-cluster solution of
cortical morphology, although more closely resembling an anterior-
posterior arealization pattern than a ventral-dorsal cortical thickness
gradient (Chen et al., 2013).

IC25 reflected a specific cerebellar pattern. Group analyses revealed
reduced subject weights in schizophrenia compared to controls in-
dicating reduced cerebellar GMD in this patient group. While the cer-
ebellum has not been among the brain regions most consistently re-
ported in studies of brain structure in schizophrenia (Honea et al.,
2005; Shenton et al., 2001), this subcortical structure is increasingly
seen as relevant to several brain disorders with marked cognitive
changes and distinct patterns of cerebro-cortical degeneration, such as
Alzheimer's disease and frontotemporal dementia (Guo et al., 2016).
Moreover, both structural (Bostan et al., 2013; Palesi et al., 2015) and
functional (Buckner et al., 2011) data suggest extensive connectivity

between the cerebellum and associative cerebral cortex. Importantly,
the current well-powered study supports previous reports of altered
cerebellar structure in schizophrenia (Okugawa et al., 2007) and bi-
polar disorder (Johnson et al., 2015; Laidi et al., 2015). Our results for
IC25 are also in line with two recent large-scale VBM-based analyses of
schizophrenia (Gupta et al., 2015; Moberget et al., 2017), underscoring
the relevance of the cerebellum for the pathophysiology of severe
mental disorders (Watson et al., 2014). The fact that IC25 is specific to
the cerebellum, despite that LICA is able to probe co-occurring varia-
tion across multiple measures, and the low correlation between this
component and other components, may support the notion of a complex
interaction between this structure and other brain regions (Andreasen
and Pierson, 2008; Barch, 2014). However, a recent study identified
robust associations between regional cerebellar volumes and cortical
thickness, in particular in patients with schizophrenia(Moberget et al.,
2017). Interestingly, the observed patterns cortical thickness associa-
tions with cerebellar volumes mirrored the case-control differences in
cortical thickness, suggesting coordinated cortico-cerebellar reductions
in schizophrenia (Moberget et al., 2017).

Ventricle volume showed an association with IC1,2,5 and 8, re-
flecting increased ventricular GMD in the patient groups. Ventricle
enlargement is among the most robust brain structural findings in
schizophrenia (Moberget et al., 2017; van Erp et al., 2016a). Our results
showed that ventricular volumetric alteration is not implicated in one
single independent mode of variability, but rather distributed and co-
occurring with global alteration pattern of surface area and thickness in
schizophrenia.

4.2. Associations with cognitive domain and polygenic risk

Whereas the rationale for a close link between the brain structure
and inter-individual differences in performance on cognitive tests is
sound (Kanai and Rees, 2011), empirical results have been mixed.
Previous studies have reported either null association (Killgore et al.,
2009) or mixed results (Van Petten, 2004), and have proven difficult to
replicate (Boekel et al., 2015). Our results suggest moderate yet po-
tentially interesting associations between the derived multivariate
brain morphology patterns and neuropsychological performance. For
instance, we found a nominal positive association between IC8 and
processing speed within the patient groups. Previous studies have re-
ported an association between processing speed and white matter in
schizophrenia involving occipital regions (Antonova et al., 2005;
Karbasforoushan et al., 2015), as well as gray matter volume in several
frontal, parietal and occipital regions in healthy subjects (Chee et al.,
2009). Our results may complement these findings by suggesting that
reduced processing speed is associated with a coordinated pattern of
reduced medial frontal, lateral temporal, parietal thickness and regional
GMD, comprising the precentral gyrus, postcentral gyrus, hippocampus
and occipital fusiform, lingual cortices. In accordance with previous
findings on a positive correlation between processing speed and total
brain volume (Betjemann et al., 2010), the global surface area com-
ponent (IC1), strongly correlated with ICV, showed a positive associa-
tion with processing speed. Our results also showed a nominal asso-
ciation between the cerebellar component (IC5) and working memory/
attention, in line with studies indicating that the cerebellum underwent
rapid phylogenetic increases in size compared to the neocortex (Barton
and Venditti, 2013), lesion studies demonstrating that cerebellar al-
terations produce deficits in verbal working memory (Ravizza et al.,
2006) and VBM studies reporting positive correlations between GM
volume in cerebellar subregions and working memory (Ding et al.,
2012) and IQ (Moberget et al., 2017). It should be noted however that
the current associations were non-significant after stringent multiple
testing correction and thus replications in future studies are warranted.

Our results revealed no robust associations between brain structure
and schizophrenia or bipolar disorder PGRS. This may partly be ex-
plained by the fact that PGRS is a cumulative composite score
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(Psychiatric GWAS Consortium Bipolar Disorder Working Group, 2011;
Schizophrenia Psychiatric Genome-Wide Association Study
Consortium, 2011) which only explained a moderate amount of var-
iance in diagnostic status in the current sample, and further refinements
may increase their sensitivity to brain variability. Although some evi-
dence suggests common genetic variance in brain anatomy and schi-
zophrenia (Lee et al., 2016), our results correspond with a recent large-
scale study which reported no evidence for genetic overlaps between
schizophrenia risk and volumes of several brain structures (Franke
et al., 2016). It is therefore conceivable that the genetic variants in-
fluencing individual differences in brain structure is only weakly
overlapping with the variants modulating risk for severe mental illness,
and thus the hidden heritability of severe mental disorders needs to be
revealed elsewhere.

4.3. Classification analysis

4.3.1. Pairwise group classifications using LICA features
To gain further insights on the multivariate combinations of the

LICA patterns as well as the sensitivity of such combinations to diag-
nosis at an individual level, we submitted the LICA components' subject
weights to multivariate classification using a cross-validated approach.
Classification analysis revealed moderate predictive value for the
schizophrenia versus controls in a two-class classification. This perfor-
mance is comparable to previous findings in a sample with equivalent
size using VBM and support vector machine (Nieuwenhuis et al., 2012).
In this study, the authors applied VBM and feature selection to use the
most predictive sets of voxels for optimal group classification. Our
study has a slightly different focus. With the primary aim on finding
covariance patterns across complementary brain morphological mea-
sures, we applied the LICA approach for feature extraction and applied
machine learning classification as a means to further evaluate the re-
sulting features in terms of their discriminative power. Classification of
schizophrenia from controls showed slightly lower performance com-
pared to other studies (Kambeitz et al., 2015). There are however
several factors, including sample characteristics, that may influence the
classification performance. In this study, we originally investigated the
entire spectrum of schizophrenia and bipolar disorder, which may show
increased heterogeneity within the patient groups and phenotypic
overlap with the control group than e.g. schizophrenia and bipolar I
disorder. The classification performance obtained was very similar
when we excluded patients with schizophreniform and schizoaffective
disorders. However, the latter two subgroups comprised a very small
number of subjects compared to schizophrenia. The heterogeneity
within schizophrenia spectrum remains to be explored in future studies
with more reasonably sized subgroups.

Compared to the classification between schizophrenia and controls,
the performance of the two-class classifications of bipolar disorder was
less accurate versus controls and rather low versus schizophrenia.
Schnack et al. reported substantially higher accuracy for classification
of schizophrenia versus bipolar disorder (88%) and lower for bipolar
disorder versus controls (59%) (Schnack et al., 2014). Several factors
may explain the differences in performance. In addition to the differ-
ence in sample size, where our sample was significantly larger and in-
cluded a wide range of schizophrenia and bipolar patients, the schizo-
phrenia group included in that study showed longer duration of illness
and higher symptom severity, as reflected by the higher PANSS scores.
Furthermore, most of the bipolar disorder patients received lithium
treatment (68%) compared to 18% in our sample. These differences
may in turn imply that the brain phenotypes of our bipolar group
showed lower and higher discriminative power compared to schizo-
phrenia and controls, respectively, as compared to those used in
(Schnack et al., 2014), leading to lower classification performance of
bipolar disorder versus schizophrenia and higher for bipolar disorder
versus controls. This is in accordance with a recent systematic assess-
ment on the relation between sample size and classification in

psychiatric disorders, where the authors reported that studies with
larger sample size are more likely to show lower accuracy than those
with smaller sample sizes, possibly attributed to the increased clinical
heterogeneity of the sample, but studies with smaller sample size may
show lower generalizability to other samples (Schnack and Kahn,
2016). The difference in classification algorithms used, random forest
versus support vector machine, may also have an influence, although
most likely to a lesser extent than the patient clinical profiles as the
utility of both classifiers in clinical studies has been validated
(Greenstein et al., 2012; Kambeitz et al., 2015; Schnack et al., 2014).
The difference in feature extraction approaches may also partly explain
the difference in performance.

Other structural MRI-based studies documented in a recent review
(Wolfers et al., 2015) reported comparable performance with our re-
sults on classification of bipolar disorder and controls (Serpa et al.,
2014). A higher performance was reported by Rocha-Rego et al.
(Rocha-Rego et al., 2014) (72% and 73%) and Bansal et al. (Bansal
et al., 2012) (98.2%). However, the considerable differences in sample
size (much smaller number of patients (N ≤ 26 versus N = 190 in our
study)) and sample characteristics (e.g. older patients (Bansal et al.,
2012; Rocha-Rego et al., 2014) with our study showing larger sample
heterogeneity likely explain the difference in performance. In general,
although some previous studies have reported relatively high classifi-
cation accuracies, our results of a low classification performance be-
tween the schizophrenia and bipolar groups are in line with the re-
ported clinical, genetic, and neurobiological overlaps between these
disorders (Cross-Disorder Group of the Psychiatric Genomics
Consortium et al., 2013; Karege et al., 2012).

Our results documented moderate classification performance, which
is accordance with the notion that MRI-based machine learning for
prediction of diagnosis is still in its infancy and has not yet reached the
level of accuracy required in a clinical setting (Wolfers et al., 2015).
Nevertheless, the multivariate structural patterns sensitive to diagnosis
as well as the added discriminative value they carried, as reported in
our study, motivate further research on the extraction of novel brain
phenotypes using multivariate multimodal fusion techniques to im-
prove the prediction performance.

4.3.2. Assessing added discriminative values of LICA, cognitive and
polygenic risk features

The cognitive scores showed a higher classification performance
than LICA features, suggesting that cognitive performance has higher
clinical sensitivity than imaging features, which is in line with the
notion of an intimate link between cognitive function and the under-
lying pathophysiology (Keefe and Harvey, 2012). Adding cognitive to
LICA features and vice versa, LICA to cognitive features, yielded a
significantly improved performance, indicating that the two feature sets
contain complementary predictive information. This increased perfor-
mance may reflect added specificity provided by the brain features, a
hypothesis that should be addressed in future studies including data
from patients with a range of different brain disorders. Whereas the
neurocognitive test scores may be non-specific to biological pathways
underlying psychiatric diseases, neuroimaging may yield novel insights
in the neural mechanisms underlying psychiatric symptoms to inform
new interventions (Linden, 2012). Our results support that combining
complementary feature sets from different domains improves prediction
sensitivity. Similarly, PGRS showed complementary predictive value
together with LICA or cognitive features. Adding PGRS to the combined
sets of LICA and cognitive features did however not improve perfor-
mance implying that the predictive value of PGRS is captured by a
multivariate combination of brain and cognitive variables. For classi-
fication between schizophrenia and bipolar disorder, adding the LICA
features did not improve the performance, indicating that the multi-
variate morphological features, as derived using LICA, did not provide
added predictive value. More research using different approaches such
as partial least squares and on cohorts with different clinical/cognitive
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profiles is needed to assess the added value of the brain morphological
phenotype in distinguishing between these two disorders.

4.4. Limitations

LICA performs joint analysis of multiple measures and relies on the
assumption that the same subject weights are shared across measures.
Alternatively, one could consider running conventional ICA separately
for each group and subsequently perform post-hoc analyses. However,
this would not allow for a joint modeling of the shared variance across
features, and it is not clear how one would couple the components
(Groves et al., 2011). LICA has the ability to automatically balance
information across measures, allowing a component to be only driven
by one measure or jointly driven by multiple measures depending on
how strongly related the information of a measure to the underlying
pattern of the component. It is possible that LICA would return unim-
odal components that resemble components obtained using separate
ICA results. In this case, LICA is still preferred over separate ICA de-
compositions since its joint analysis framework allows for better in-
terpretation in terms of specificity. In particular, such unimodal com-
ponents, when found together with other multimodal components in
the LICA context, i.e. those driven by multiple measures, may reflect
disease or environmental mechanism that is specific to the relevant
measure. This is in principle different from post-hoc correlation analysis
of the components resulting from separate ICAs. Nevertheless, like with
other multivariate methods, the results obtained with LICA should be
interpreted with caution, keeping in mind the inherent limitations of
the technique, including the assumption of the similar spatial maps
across groups and of shared subject weights across measures (Groves
et al., 2011).

We included all three groups in the same decomposition. One could
consider performing separate analyses for schizophrenia vs. controls,
and bipolar disorder vs. controls, and subsequently compare the two
patient groups by means of post-hoc analyses. However, such a com-
parison requires that the components involved are the same across
group pairs, which may not be possible to ensure. To compare between
schizophrenia and bipolar disorder in relation to controls, which would
allow us to assess the specificity of the patterns, one approach is to
include all groups in the same decomposition. Unlike supervised tech-
niques such as partial least squares, which maximize the covariance
between the input variables and diagnosis label, LICA is a fully data-
driven technique that makes use of no diagnosis information, and de-
composes the data into independent modes of brain variability. The
resulting pattern may reflect different biological and environmental
factors, or a combination of them. Whereas data-driven analysis has the
potential to reveal novel patterns best describing the data structure that
could be sensitive to diagnosis effect, given the high overlap between
schizophrenia and bipolar disorder, it may be more sensitive to treat
them as separate groups and search for patterns that best differentiate
between the two disorders in a supervised analysis framework.

We consistently used random forest as a tool for validating the
discriminative power of the LICA features and their added value when
used in combination with cognitive and PGRS scores. Whereas the
classification performance was in line with the literature, this classifier
may however not represent the optimal choice across all feature sets,
particularly the PGRS feature set with only two features included.

Lastly, we included a large sample size covering the entire spectrum
of schizophrenia and bipolar disorder, since we aimed to find mor-
phological patterns generalized to the psychosis spectrum instead of
specific to a subgroup. Whereas the large sample size is a strength, the
clinical heterogeneity of the sample may likely partly explain the re-
latively low classification performance (Schnack and Kahn, 2016).

4.5. Future directions

A possible extension of this work could be to include the genetic

data and/or cognitive domain scores as additional “modalities” in LICA
decomposition, which may present an effective way to model common
variances between genetic, cognitive data and brain morphometry.
Furthermore, using multivariate techniques such as LICA to combine
structural MRI, functional MRI and diffusion MRI may reveal novel
sensitive imaging markers characterizing the potentially complicated
relationships among these modalities. Any analysis making use of the
diagnosis information may be limited by the potential caveat of the
current diagnosis. Another future direction would be to utilize un-
supervised clustering or machine learning techniques to identify sub-
groups that may be more sensitive to clinical or cognitive profiles.

5. Conclusions

Using a data-driven approach for multimodal fusion of brain mor-
phometric features, we identified six distinct multivariate brain pat-
terns underlying strong effects of schizophrenia and bipolar disorder.
We provided evidence of complementary diagnostic predictive value of
brain imaging, cognitive and genetic features with cognitive perfor-
mance measures being most sensitive to classification of patients.
Although the classification accuracy does not support a direct clinical
utility, the novel multivariate brain morphology patterns are biologi-
cally interpretable and may inform models of pathogenic mechanisms
in severe mental illness.
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