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Silver–Russell syndrome (SRS) is a rare, but well-recognized disease characterized by
growth disorder. To date, there are two reports arguing IGF2 mutation for the onset
of SRS. Herein, we present another sporadic case harboring IGF2 mutation. The male
proband was the first and only child of a non-consanguineous Chinese couple. He was
small for gestational age, with relative macrocephaly at birth. Severe feeding difficulties,
low feeding, and growth retardation were revealed during neonatal period. At 4.5 years
old, obvious body asymmetry was noted. Whole exome sequencing identified a novel
de novo c.101G > A (p.Gly34Asp, NM_000612) variant in IGF2 and Sanger sequencing
validated the variant. Amplification refractory mutation system polymerase chain reaction
demonstrated that the IGF2 variant was on the paternal allele. Alignment shows the
variant is evolutionarily conserved. Structural modeling argues that the variant site might
be important for the binding of IGF2 to its receptor. Our study provides further evidence
that IGF2 mutation may be another mechanism of SRS, and we consider that IGF2
should be included in a disease specific gene panel in case it is designed for SRS
routine diagnostics.
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INTRODUCTION

Silver–Russell syndrome (SRS) is a rare disorder found in children with low birth weight, postnatal
short stature, characteristic facial features, and body asymmetry (Silver et al., 1953; Russell, 1954).
The etiology and clinical characteristics of SRS are extremely heterogeneous. Loss of methylation
on chromosome 11p15 and maternal uniparental disomy for chromosome 7 are considered as
the most common molecular pathology. Azzi et al. (2015) developed the only scoring system
(Netchine–Harbison scoring system) using prospective data, which, is helpful to SRS clinical
diagnosis This system includes clinical manifestations of small for gestational age, postnatal
growth failure, relative macrocephaly at birth, prominent forehead, body asymmetry, and feeding
difficulties. For molecular diagnosis, numerous copy number variants and DNA methylation
analysis involving 11p15.5 region and chromosome 7 are mostly recommended [4]. Additionally,
tests of chromosome 14q32 variants, CDKN1C mutations, and multi-locus imprinting disturbance
are also suggested (Wakeling et al., 2017).

Frontiers in Genetics | www.frontiersin.org 1 August 2017 | Volume 8 | Article 105

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
https://doi.org/10.3389/fgene.2017.00105
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2017.00105
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2017.00105&domain=pdf&date_stamp=2017-08-08
http://journal.frontiersin.org/article/10.3389/fgene.2017.00105/abstract
http://loop.frontiersin.org/people/454793/overview
http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


fgene-08-00105 August 4, 2017 Time: 16:44 # 2

Liu et al. IGF2 Mutation Causes SRS

Begemann et al. (2015) identified IGF2 variant (c.191C > A,
p.Ser64Ter) in a multigenerational family with four members
presenting growth restriction. As no report regarding SRS caused
by IGF2 mutation had been published, the authors are not sure
about the contribution of IGF2 to prenatal and postnatal growth.
In another study, the same authors argue that IGF2 mutation
analysis is not indicated in sporadic SRS cases (Muller et al.,
2016). Recently, a Japanese team reported the first case of de
novo IGF2 mutation in a patient with SRS, arguing that IGF2
mutation analysis is helpful in SRS patients negative for other
etiologies (Yamoto et al., 2017). In line with this, the obscure
relationship between IGF2 mutation and SRS becomes clear.
Herein, we present a sporadic case of SRS with de novo variant in
IGF2 to expand the molecular and phenotypic spectrum of IGF2
mutations induced SRS.

CASE PRESENTATION

The proband was a 13-year-old boy who was the first and
only child of a non-consanguineous Chinese family. The
parents were clinically normal and no members presented
a developmental delay in his family. He was delivered at
37 weeks after an uneventful pregnancy. In addition to small
for gestational age (weight 1900 g, −3.6 SDS; length 43 cm,
−4.1 SDS; head circumference 33.0 cm, −1.3 SDS) and relative
macrocephaly at birth, no other abnormality was noted. The
patient had severe feeding difficulties during neonatal period
but without the need of feeding tube. No significant lag
in psychomotor development was found. Echocardiography
revealed atrial septal defect when he was 4 years old, and
hence, he had undertaken surgical treatment. He firstly visited
our hospital due to growth retardation (length 94 cm, −3.3
SDS, weight 11.5 kg, −3.3 SDS) at 4.5 years old (Figure 1A)
(Zhang et al., 2017). Clinical findings (Table 1 and Figure 1B)
of him were similar to that of previously reported (Begemann

et al., 2015). Facial dysmorphisms included triangular face,
micrognathia, and low-set ears. He had ambiguous genitalia
with a small penis and hydrocele. Asymmetrical body, hands,
and feet were obvious. He presented slight hypotonia and a
high-pitched voice. Differential diagnosis excluded the existence
of congenital infections, mitochondrial diseases, and metabolic
diseases. Accordingly, he started growth hormone (GH) therapy
from 4.9 years of age and it was efficacious in the promotion
of growth, however, endocrinological investigation was still
abnormal. Serum IGF1 at 11 years old was 151.6 ng/ml
(−2 SDS) and 13 years old was 319 ng/ml (−2 SDS).
Insulin-like growth factor-binding protein 3 at 11 years
old was 3.63 µg/ml (−2 SDS). The detection method and
reference values of serum IGF-1 and IGFBP-3 levels were
strictly according to that previously reported (Xu et al.,
2010). Based on the clinical symptoms and Netchine–Harbison
scoring system (Azzi et al., 2015), he was diagnosed as SRS.
This study was approved by the Medical Ethics Committee
in The Second Hospital of Anhui Medical University. All
participants have provided written informed consents and that
the subject’s parents provided written consent to publish the
report.

IGF2 VARIANT AS CANDIDATE FOR
PATHOPOIESIS

In order to identify the molecular pathogenesis, auxiliary
examination was performed. Chromosome analysis showed a
46, XY karyotype. ICR1 hypomethylation analysis was negative.
Low coverage whole-genome sequencing did not detect clinically
significant abnormal CNVs and maternal uniparental disomy
7 (isodisomic). Maternal uniparental disomy 7 (heteroisomy)
was not excluded due to limited experimental condition. Whole
exome sequencing (WES) was applied to the family trio. Detailed
method was shown in Supplementary 1. The percentage of

FIGURE 1 | IGF2 mutation c.101G > A (p.G34D) in a patient with features of the Silver–Russell syndrome. Growth chart of the patient (A). Period of human growth
hormone (GH) therapy is indicated by the horizontal bar. The patient has facial dysmorphisms of triangular face, micrognathia, low-set ears (Ba), and irregular teeth
(Bb). He had taken surgical treatment due to atrial septal defect (Bc). Finger and toe deformities were revealed (Bd–f).
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TABLE 1 | Clinical features in patients with growth restriction who had mutations in IGF2.

Begemann et al., 2015 Yamoto et al., 2017

Present case Patient 1 Patient 2 Patient 3 Patient 4 Japanese case

General characteristics

Gender M M F M F M

Country of origin China Germany Japan

Clinical features

Short stature + + + + + +

Relative macrocephaly at birth + + + + + +

Frontal bossing + + + − + +

Low set ears in childhood + + + + + +

Triangular face + + + + + +

Body asymmetry + − − − − −

Reduced stamina + + + + NA NA

Pigment nevi Several Several Many Several Several NA

Finger or toe deformities + + + − + +

High-pitched voice in childhood + + + + + NA

Micrognathia or retrognathia + + + − + +

Ambiguous genitalia + NA NA + NA +

Heart Atrial septal
defect (taken

surgical
treatment at
4 years old)

Persistent
ductus

arteriosus,
ventricular

septum defect,
no surgical
intervention

Persistent
ductus

arteriosus,
spontaneous

closure

− Small
ventricular

septum defect

Pulmonary
hypertension

Response to growth hormone
in the first year

+ + + + − NA

coverage and average depth for WES were 99.76% and 118.56X.
No CDKN1C mutation was found (coverage > 10X, 99%;
coverage > 20X, 90%; depth of the gene: min/max/mean,
7X/238X/106.54X). As the serum IGF1 was decreased, we
checked the sequencing data of IGF1 and IGFR. The results
showed that they were both normal (the depth of IGF1 and
IGF1R were 124.48X and 237.49X), however, a heterozygous
variant in IGF2 (NM_000612, c.101G > A, p.Gly34Asp) was
identified. The same site of the parents was wild type. Sanger
sequencing confirmed the result of WES (Figure 2A). This
variant was not recorded in any of the publicly available SNP
database (dpSNP, 1000Genomes, ExAC, ESP, HGMD, Clinvar)
and damage prediction showed that it was harmful. According
to ACMG guideline (Richards et al., 2015), the interpretation
of the variant was PS2+PM2+PP1+PP3+PP4+PP5, which,
met the standard of “pathogenic.” Together, it is possible
to assume that IGF2 might be the candidate pathogenic
gene.

THE MUTATION SITE LOCATEED ON
THE PATERNAL ALLELE

As IGF2 is documented to be paternally expressed in most
tissues (DeChiara et al., 1991) and monoallelically expressed in

whole peripheral blood leukocytes (Frost et al., 2010), to identify
whether the mutation was on the paternal allele, RNA from
peripheral blood was used for amplification refractory mutation
system polymerase chain reaction (ARMS-PCR). Fluorescence
probe method (Supplementary 2) was applied to increase
binding specificity. Significant amplification for the proband
was found using the mutational primers, whereas amplification
was implemented using wild type primers in healthy controls
(Figure 2B). The result indicated that the mutation locates on the
paternal allele.

STRUCTURAL MODELING RESULTS

To further investigate possible pathogenicity of this mutation
for the onset of the disease, sequence alignment, and structural
modeling were performed. The whole sequence including the
identified site of IGF2 is evolutionarily conserved across species
(Figure 3A). Generally, amino acids with high conservation
are considered to be sensitive to mutation, and thus, the
identified site is likely to be the etiology. Online IGF2 apo
structure (PDB 1IGL) and structures of IGF2 in complex with
its binding partners (PDB 2V5P, 3KR3) were enrolled. The
identified site is G10 in mature IGF2 and G10 is adjacent
to the first α helix in all structures (Figure 3B), indicating
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FIGURE 2 | Sanger sequencing and ARMS-PCR results. Sanger sequencing of the family trio illustrated de novo mutation in the patient (A). Amplification of the
proband was found using the mutational primers (Ba) while amplification was implemented using wild type primers in the controls (Bb–e).

that the local structure of this region has strong rigidity.
The first α helix is involved in the binding of IGF2 with
partners (Figure 3Ca). For complex IGF2/IGF2R (2V5P), G10
is involved in the interaction (Figure 3Cb) and the variant
brings bout a long side chain which will induce steric hindrance.
In addition, IGF2 has an overall negatively charged surface
at the binding site (Figure 3Cc), and G10D variant will
change local charge state. In light of this, it is possible
that G10D variant might affect the binding of IGF2 with
partners by direct interaction disruption or surface charge
modification.

DISCUSSION

Silver–Russell syndrome brings about various forms of unusual
physical characteristics and functional defects, resulting in
the clinical diagnosis difficult. In 2016, the international
consensus statement on SRS has been produced (Wakeling
et al., 2017), which, has particular guiding significance for
clinicians. Netchine–Harbison clinical scoring system (Azzi
et al., 2015) was recommended by the consensus statement.
Our patient was found with (small for gestational age) SGA,
relative macrocephaly at birth, feeding difficulties, growth
retardation, body asymmetry, and micrognathia, which, met the
clinical diagnostic criteria. Body asymmetry identified here is a
distinguishing feature not reported previously in patients with
IGF2 mutation.

Currently, positive molecular investigation is reported
in about 60% patients with SRS (Netchine et al., 2007).
Notwithstanding molecular testing is negative in a notable
proportion of patients who are suspected as SRS, molecular
diagnosis plays important roles for the diagnosis of patients
with few or atypical features and the management of SRS.
For example, GH therapeutic effect varies according to the
underlying syndromic diagnosis (Verge et al., 1994; Renes
et al., 2013; Wakeling et al., 2017). To further define the

type of mutation and provide more tailored management,
we firstly examined 11p15 methylation pattern as it is
the mostly documented molecular pathology (Schonherr
et al., 2006). As the result was normal, next generation
sequencing including WES and low-coverage whole genome
sequencing were performed. Clinically significant CNVs,
maternal uniparental disomy 7 (isodisomic), and CDKN1C
variants were not detected, however, a de novo heterozygous
IGF2 c.101G > A (p.Gly34Asp) variant was identified.
Sanger sequencing showed it was de novo. The variant was
pathogenic according to ACMG guideline criteria (Richards
et al., 2015).

IGF2 is documented to be linked to growth retardation,
overgrowth, obesity, polycystic ovary syndrome, and cancer
(Livingstone, 2013). IGF2 induced growth retardation is
reported to be linked to a paternally methylated imprinting
control region (Demars and Gicquel, 2012). Begemann
et al. (2015) firstly reported growth restriction caused by
IGF2 mutation. Accordingly, the identified IGF2 variant
was suspected as causal pathogenesis of the proband. It
is reported that the paternal allele of IGF2 is transcribed
while the maternal allele is silenced (DeChiara et al., 1991),
therefore we hypothesized that the mutation located on the
paternal allele. ARMS-PCR validated our assumption and
further illustrated the possibility of the identified variant as the
pathogenic.

IGF2 is the predominant IGF in adults and mainly
exists in the form of complex (Baxter et al., 1995). Freely
circulated IGF2 is unstable and subject to degradation,
hence, complex state is important for IGF2 function.
IGF2 combines with a family of six insulin-like growth
factor-binding proteins and receptors including IGF2
receptor, IGF1 receptor, and insulin receptor to mediate
cell proliferation, differentiation, migration, and survival. In
line with this, conformational change of IGF2 is important
for its physiological regulation. Structural modeling showed
that the mutated site influence the binding of IGF2 with its
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FIGURE 3 | Sequence alignment and structure analysis results. IGF2 is evolutionarily conserved across species (A). The mutated site (dashed circle) is in adjacent to
the first α helix of IGF2 in both free and binding states (B). Schematic drawing of the binding sites (red boxes) of IGF2 with its two different binding partners (Ca:
yellow, IGF2R; green, IGF2 antibody). Detailed interaction of G10 with its binding sites (Cb). Binding surface of the local region on IGF2 around G10 is negatively
charged (Cc).

objects, which might in turn accelerate the degradation of
IGF2.

To date, patients with growth retardation from a
multigenerational family with IGF2 point mutation and a

sporadic case of de novo IGF2 indel mutation were reported
(Begemann et al., 2015; Yamoto et al., 2017). Herein, we present a
sporadic case with de novo mutation in IGF2. To our knowledge,
this is only the second report of a pathogenic de novo IGF2
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variant. We suggest that investigating for an IGF2 mutation
could be considered when investigating individuals with an
SRS phenotype; we acknowledge that it is likely that mutations
in this gene will likely explain the etiology of SRS in
a minority of individuals. Further reports will be critical
to refining the molecular and clinical features, including
the pattern of GH responsiveness, associated with IGF2
mutations.
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