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A B S T R A C T

Volume overload in haemodialysis (HD) patients associates
with hypertension and cardiac dysfunction and is a major risk
factor for all-cause and cardiovascular mortality in this popula-
tion. The diagnosis of volume excess and estimation of dry
weight is based largely on clinical criteria and has a notoriously
poor diagnostic accuracy. The search for accurate and objective
methods to evaluate dry weight and to diagnose subclinical vol-
ume overload has been intensively pursued over the last 3 deca-
des. Most methods have not been tested in appropriate clinical
trials and their usefulness in clinical practice remains uncertain,
except for bioimpedance spectroscopy and lung ultrasound
(US). Bioimpedance spectroscopy is possibly the most widely
used method to subjectively quantify fluid distributions over
body compartments and produces reliable and reproducible
results. Lung US provides reliable estimates of extravascular wa-
ter in the lung, a critical parameter of the central circulation
that in large part reflects the left ventricular end-diastolic pres-
sure. To maximize cardiovascular tolerance, fluid removal in
volume-expanded HD patients should be gradual and distrib-
uted over a sufficiently long time window. This review summa-
rizes current knowledge about the diagnosis, prognosis and
treatment of volume overload in HD patients.
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I N T R O D U C T I O N

Over the past few years, mortality in patients with end-stage re-
nal disease (ESRD) undergoing haemodialysis (HD) has only
slightly decreased [1]. Cardiovascular disease is the leading
cause of mortality, accounting for >50% of deaths with known
causes, while cardiovascular mortality is 9-fold higher in these
patients compared with age- and sex-matched individuals in

the general population [2]. Cardiovascular events, such as sud-
den death and hospitalization for heart failure, show a specific
weekly pattern in HD patients, being 25–40% higher during the
first-weekly HD day (Monday or Tuesday) compared with any
other weekday and concentrate within the last hours of the 3-
day interval and the following session [3].

Several factors may be responsible for the increased cardio-
vascular mortality in dialysis patients, but sodium and volume
overload are considered among the main mechanisms of this
association [4]. In ESRD patients, the kidneys are unable to
maintain sodium and water homeostasis [5]. Because of the in-
termittent nature of the thrice-weekly haemodialysis regimen,
excessive interdialytic weight gain (IDWG) and the consequent
excessive intradialytic weight loss constitute a cyclical cardio-
vascular stress [6]. Sodium and volume accumulation is inevita-
bly larger during the 3-day interdialytic interval, which elevates
pre-dialysis and ambulatory blood pressure (BP) levels as well
as wave reflections [augmentation index (AIx) and augmenta-
tion pressure (AP)] from the periphery [7]. Hypervolaemia is
also a frequent condition in peritoneal dialysis patients, and de-
spite its more continuous nature, volume excess is no different
compared with HD [8].

Defining the optimal hydration status in HD patients is
challenging and the identification of an accurate and objec-
tive method to evaluate dry weight has been a focus of HD re-
search for decades [9]. Most studies in this research area are
observational in nature and there is a paucity of trials testing
diagnostic methods that may guide treatment of volume
overload and improve outcomes in these patients. Moreover,
the Kidney Disease Outcomes Quality Initiative HD guide-
lines do not include recommendations for the diagnosis of
fluid overload by objective methods [10]. The aim of this re-
view is to summarize current knowledge regarding the asso-
ciated factors, consequences, diagnosis and management of
volume overload in HD.
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Diagnosis of volume overload

An overview of the available methods for volume overload
assessment is presented in Table 1. The lack of validated, easy to
apply methods of measurement of body fluid volume status
most likely contributes to the high prevalence of volume excess
in HD patients. In most centres, volume status is usually esti-
mated on the basis of clinical criteria, i.e. patient’s signs and
symptoms, peridialytic BP measurements and intradialytic hae-
modynamic instability [5]. However, previous evidence sug-
gests that clinical assessment of volume balance is a method
with limited reliability. A bioimpedance spectroscopy–based
study by Wabel et al. [11] including 500 HD patients indicated
that pre-HD systolic BP (SBP) misclassifies the hydration status
in �25% of patients. In addition, it is now well established that
pre- and post-dialysis BP measurements are poorly reproduc-
ible, poorly associated with interdialytic BP assessed with am-
bulatory BP monitoring (ABPM) and have no association with
outcomes [4]. A cross-sectional study in 146 HD patients exam-
ined the association of several volume-related parameters [infe-
rior vena cava diameter (IVC) and collapsibility, blood volume
monitoring markers, plasma renin, aldosterone, N-terminal pro
B-type natriuretic peptide, C-reactive protein (CRP) and inter-
leukin-6] with pedal oedema and results showed that only C-re-
active protein levels were different in patients with and without
oedema (1.22 6 1.61 versus 0.90 6 1.43 mg/dL; P¼ 0.03) while
none of these measurements was associated with the presence
of oedema, suggesting that pedal oedema may not accurately re-
flect volume [12]. A more recent study based on 1106 pre- and
post-dialysis lung US scans in 79 HD patients showed that only
49% and 20% of the patients with severe congestion in this criti-
cal organ had lung crackles or peripheral oedema (Figure 1)
[13].

The most widely used method to quantify fluid distributions
over body compartments is bioimpedance spectroscopy, which
performs an analysis of the body’s resistance and reactance by
measuring the electric current applied on distant electrodes on
the body surface [14]. A comprehensive, multicentre validation
study including 152 subjects (120 healthy individuals and 32
HD patients) showed good agreement (shared variance 91%, R2

¼ 0.91) between total body water (TBW) measured by bioimpe-
dance spectroscopy and the golden standard methods (deute-
rium or tritium dilution) [15]. In the Bland–Altman plot of
these variables, only 5 subjects among 152 had values >2 stan-
dard deviations of the average difference between the gold stan-
dard measurements of TBW and the corresponding
bioimpedance measurement, while there was no bias in the bio-
impedance TBW measurement versus the gold standard meth-
ods. Apart from the agreement with the golden standard, it is
important to note that bioimpedance spectroscopy is a repro-
ducible measurement with an interobserver and intra-observer
coefficient of variation of �2–5% [16, 17]. In another study by
Moissl et al. [18], bioimpedance was proved to be useful to pro-
spectively guide fluid volume optimization in 55 dialysis
patients. In another study, in which 156 HD patients were ran-
domized to bioimpedance-assisted fluid management or
standard-of-care treatment, results showed that bioimpedance
use was associated with a clear-cut improvement in left

ventricular (LV) mass index fmean between groups difference
�10.2 g/m2 [95% confidence interval (CI) �19.2 to �1.17]g
and arterial stiffness (two surrogate endpoints) [19]. In a popu-
lation of 39 566 HD patients from 26 countries, it was found
that chronic fluid overload as assessed by bioimpedance
spectroscopy (body composition monitor, Fresenius, Bad
Homburg vor der Höhe, Germany) doubles the death risk inde-
pendent of other risk factors [20]. By the same token, another
cohort study in 8883 HD patients fully confirmed a dose–re-
sponse relationship between the degree of fluid overload and
mortality [21].

During the last decade, a novel and easy to apply ultrasound
(US) technique to quantify water excess in the lungs in these
patients has been developed [22]. Lung US takes advantage of
basic principles of ultrasonography, i.e. excessive lung water in
the thickened subpleural interlobular septa completely reflect
the US beam, forming highly echogenic structures, the US-B
lines [22], which are hyperechoic reverberation artefacts be-
tween the subpleural interlobular septa and the overlying pleura
(Figure 2) [23]. In a cross-sectional analysis of baseline data
from the Lung water by UltraSound guided Treatment to pre-
vent death and cardiovascular complications in high risk end-
stage renal disease patients with cardiomyopathy (LUST) study,
lung US was superior to clinical criteria in detecting and moni-
toring volume excess in haemodialysis patients [13]. The feasi-
bility and the validation of this technique in HD patients were
examined in a study including 75 HD patients [24]. In this
study, the number of US-B lines was reproducible and had
small interoperator variability. Of note, lung water as
estimated by this technique modestly correlated with LV mass
(r¼ 0.28, P¼ 0.01), diastolic dysfunction and LV filling
pressures [early transmitral diastolic velocity (E): r¼ 0.31,
P¼ 0.008; early transmitral diastolic velocities ratio (E:e 0):
r¼ 0.48, P< 0.001], but was only weakly associated with the
hydration status as measured by bioimpedance analysis [24].
Previous ultrasonographic techniques include measurement of
the IVC diameter and collapsibility [25]. Measurement of IVC
diameter, relative plasma volume and bioimpedance analysis
during a dry weight reduction protocol guided by clinical crite-
ria has been examined in a pilot study in 16 incident HD
patients [26]. In this study, all methods, except bioimpedance,
were overtly inadequate for capturing meaningful volume
changes induced by a dry weight reduction intervention [26].
Recently an automated method to evaluate IVC diameter has
been developed, but this device has not yet been tested in dialy-
sis patients [27]. Although the inferior vena cava reflects central
venous pressure, it is a poor marker of hydration status because
it may be affected by respiration, right heart function and by
intrathoracic or abdominal pressure changes [28].

Additional methods for the evaluation of hydration status in
dialysis patients include the use of circulating biomarkers.
However, biomarkers are costly and are variably removed dur-
ing HD, while their levels are highly dependent on cardiac func-
tion [29]. Results from observational studies suggest a
significant association of cardiac natriuretic peptides with vol-
ume status assessed with bioimpedance analysis and mortality
[30, 31], but their simultaneous association with LV
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hypertrophy (LVH) and systolic dysfunction [32] substantially
weakens their diagnostic potential for volume overload. The
Crit-Line (Hema Metrics, Kaysville, UT, USA), which uses a
transmissive photometric technique to provide intradialytic
real-time assessment of hematocrit levels and to estimate
changes in relative plasma volume, is of dubious value for
assessing volume status and for guiding fluid removal in HD
patients [28]. The use of whole-body bioimpedance cardiogra-
phy, which provides multidimensional insight into intradialytic
haemodynamic changes (peripheral vascular resistance, cardiac
output), was tested in a single study including 27 HD patients,
but results indicated no significant differences in the recorded
parameters between patients with and without intradialytic hy-
potension [33]. Flow time (FT), or LV ejection time, reflects the
duration of systole and is measured from the beginning of the
upstroke to the trough of the incisura notch on pulse waveform
analysis. FT is corrected for the heart rate (FTc) and the change
in this measurement may reflect variations in stroke volume
and circulating volume [34]. FTc in HD patients decreases dur-
ing standard dialysis, but the value of the technique for the diag-
nosis of volume status and for monitoring this parameter in
dialysis are unknown [35]. Invasive techniques such as pulmo-
nary artery catheterization and transesophageal Doppler evalu-
ation of aortic FT changes have never been tested in the HD
population [28]. A small study in 14 paediatric HD patients
compared optimal dry weight estimation between an algorith-
mic analysis through neuronal networks of data obtained with
bioimpedance spectroscopy and intradialytic plasma volume
monitoring with clinical evaluation by treating physicians and
showed that standard-of-care treatment was associated with
non-significantly higher dry weight [mean difference 0.497 kg
(95% CI �1.33–1.29), P¼ 0.99] [36]. Perhaps not surprisingly,
no study so far has ever compared any of the above methods
with the best available technique for measuring lean body mass,
that of hydrodensitometry (hydrostatic or underwater weigh-
ing), in HD patients.

Direct consequences of volume overload on BP and
cardiovascular regulation in HD patients

During interdialytic intervals, HD patients are subjected to
fluid accumulation, a parameter defined by the oral fluid and
food–water intake minus residual urine output (when present),
stool water output, sweat and respiratory water loss. Chronic
fluid overload develops as the patient’s fluid gains exceed the
prescribed ultrafiltration rate needed to achieve or maintain dry
weight. Higher IDWG is closely associated with higher pre-dial-
ysis BP [37] and results in a gradual upward shift in ambulatory
BP levels, which is worse during the third day and night of the
long interdialytic interval [38, 39]. Thus volume overload is cur-
rently considered the main pathogenic mechanism of hyperten-
sion in the ESRD population [5]. As a matter of fact, the
worldwide prevalence of hypertension in this population is as
high as 85% [40]. The increase in volume during the
interdialytic intervals likely contributes to short-term BP vari-
ability from Day 1 to Day 2 of the regular interdialytic interval
[41], which has been implicated in the risk for cardiovascular
events independent of BP levels [42]. Further, chronic volumeT
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overload and increased IDWG are considered major factors for
the BP increase that occurs in some patients during the HD ses-
sion [43]. On the other hand, higher ultrafiltration volume is
also associated with intradialytic hypotensive episodes [44].
This can result in interruption of sessions, shorter dialysis time,
inappropriate adjustment of target dry weight to higher levels

or infusion of saline solutions, all factors that further contribute
to volume expansion [45]. High ultrafiltration volumes
(>2.5 kg) go along with higher pre- and lower post-dialysis BP
as compared with ultrafiltration volumes�2.5 kg and this asso-
ciation may be triggered by poor compliance with fluid restric-
tion and non-achievement of the true dry weight, a hypothesis
supported by a large survey [46]. Results from another study ex-
amining target weight achievement patterns in 152 196 HD
patients suggested that higher ultrafiltration volume (2.9 6 1.5
versus 2.4 6 1.2 L) and rate (10.2 6 5.2 versus 8.6 6 4.5 mL/h/
kg) were significantly higher in patients not achieving dry
weight (post-dialysis weight �1 kg from the prescribed dry
weight) [47].

The number of antihypertensive drugs prescribed to HD
patients paradoxically associates with higher BP levels [48].
This may depend on the fact that antihypertensive drugs may
prompt haemodynamic fragility during dialysis, eventually hin-
dering the achievement of dry weight, thus causing volume ex-
pansion and apparent resistance to drug treatment. Moreover, a
cross-sectional study compared two different approaches for
the treatment of hypertension in 423 HD patients and showed
that antihypertensive drug–based therapy was associated with
more intradialytic hypotensive episodes compared with salt re-
striction and dry weight reduction (27 versus 11 per 100 patient
sessions; P< 0.01) [49]. It is likely that this association is con-
founded by the fact that too much medication may actually
limit the opportunity to probe dry weight and leads to BP resis-
tance through expanded volume [48].

Beyond BP, volume accumulation during the interdialytic
interval and the subsequent volume removal during HD associ-
ate with intermittent changes in other important cardiovascular
parameters. Arterial stiffness is probably the major vascular ab-
normality in ESRD patients and represents the main underlying
factors for isolated systolic hypertension and LVH in this popu-
lation [50]. The AP, AIx and central pulse pressure (PP), all
alterations resulting from arterial stiffness, gradually increase

FIGURE 2: Ultrasonographic appearance of (A) normal lungs and
the presence of (B) 1, (C) 4 and (D) 10 US B-lines.

FIGURE 1: Correlation analysis between volume overload evaluated with lung US and (A) pulmonary crackles and (B) pedal oedema.
Reprinted from Torino et al. [13], with permission.
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during both the 3-day and 2-day interdialytic interval, whereas
pulse wave velocity (PWV) remains unchanged during these
short time frames. Thus intermittent volume accumulation
may trigger cardiovascular damage via arterial stiffness–related
mechanisms, leading to the hypothesis that premature arrival of
the reflected waves is generated by intermittent volume accumu-
lation causing alterations in peripheral vascular tone and, conse-
quently, changes in the morphology of peripheral reflection sites
[51]. Subsequent ABPM studies registering BP and arterial
stiffness–related measurements (AIx and central BP) during the
2-day interval confirm this interpretation and an additive in-
crease during the third day of the 3-day interval with minimal in-
crease in PWV [38, 39].

In the same vein, interdialytic volume accumulation during
the long interval goes along with dilatation of the left and right
cardiac chambers, pulmonary circulation overload and diastolic
dysfunction in these patients. Cardiac chambers dilatation and
IDWG are closely associated, indicating that the recurrent
stretching of cardiac chambers between sessions results in long-
term cardiac chambers remodelling [52]. The long (3-day)
interdialytic interval associates with more pronounced left and
right atrial enlargement and right ventricular systolic pressure
(RVSP) increase, and the IDWG is the strongest factor driving
the increase in RVSP, suggesting that continuous volume accu-
mulation underlies not only left but also right atrium enlarge-
ment and pulmonary overload [53]. In clinical practice, higher
IDWG prompts the prescription of higher ultrafiltration vol-
umes, which in turn leads to diastolic dysfunction and myocar-
dial stunning, possibly due to a rapid decrease of the
intravascular fluid compartment [54]. The increase in central
BP accompanying interdialytic volume accumulation directly
increases cardiac afterload and raises myocardial oxygen de-
mand, thereby favouring the occurrence of acute ischaemic car-
diac events [6].

Long-term consequences of volume overload in
haemodialysis

Volume overload is considered a major underlying risk fac-
tor for all-cause and cardiovascular death in ESRD patients
[55]. Large studies focusing on IDWG, a proxy of volume over-
load and the simplest biomarker of fluid overload, coherently
exposed the potential deleterious effects of volume expansion
on survival and cardiovascular disease [56–58]. Both high die-
tary sodium intake and high sodium concentration in the dialy-
sate induce a positive sodium balance, activate the thirst
mechanism and increase fluid intake [59]. Total body sodium is
distributed in different compartments, namely the osmotically
active sodium of the extracellular fluid, which directly affects
haemodynamic response and fluid tonicity, and the osmotically
inactive exchangeable sodium stored in the bones, skin, muscle
and artery interstitium, which replenishes extracellular sodium
but also affects local hypertonicity, immune cell activity and BP
[60]. As expected, salt restriction associates with lower IDWG
in this population and such an association is independent of
pre-haemodialysis BP levels [49]. Similarly, high dialysate so-
dium to induce a positive sodium gradient results in an increase

in serum sodium across dialysis, which in turn triggers thirst
and increases the IDWG [61].

Several studies have associated objectively measured fluid
overload with adverse clinical outcomes (Table 2). As analysed
above, a study including�40 000 incident HD patients showed
that cumulative 1-year fluid overload by whole-body bioimpe-
dance spectroscopy associates with all-cause mortality, regard-
less of BP levels [20]. The hypothesis that bioimpedance-
guided fluid removal might translate into better clinical out-
comes is supported by a small trial (131 HD patients) with a
very limited number of events (one death in the intervention
and nine deaths in the control arm) [73]. Another randomized
trial in 298 haemodialysis patients in Taiwan testing the same
intervention showed that bioimpedance-guided ultrafiltration
did not influence the risk of hospitalization but reduced the in-
cidence of acute fluid overload and cardiovascular events, as
well as the incidence of hypertension and intradialysis hypoten-
sion, while mortality did not differ in the two study arms, but
the number of deaths was again very small again (three in the
intervention arm and three in the control arm) [74]. Even
though these trials showed signals of benefit of bioimpedance-
guided treatment strategies, no conclusion can be drawn from
the data gathered until now.

Three observational studies using lung US showed a significant
association between the number of US-B lines (an estimate of lung
water) and clinical outcomes in HD patients. In the first, among
392 HD patients, those with severe lung congestion (>30 US-B
lines) had higher all-cause [hazard ratio (HR) 4.20 (95% CI 2.45–
7.23)] and cardiovascular mortality [HR 3.20 (95% CI 1.75–5.88)]
in analyses adjusted for New York Heart Association class and
other risk factors [66]. In the second, which performed a head-to-
head comparison between bioimpedance analysis and lung US in
a series of 96 patients, only the pre-HD number of US-B lines pre-
dicted all-cause mortality, and these results were echoed in a third
study that enrolled 71 HD patients [67, 75].

LVH is common in the HD population and predisposes to
systolic and diastolic dysfunction, arrhythmias and sudden
death [76]. The coexistence of hypertension and LVH likely
reflects the causal role of hypertension in LVH and suggests
that chronic volume expansion is the triggering event in the
pathway leading to LVH [77]. However, volume overload in
HD patients may also cause adverse events by mechanisms in-
dependent of hypertension. Indeed, chronic fluid overload pre-
dicts mortality across all BP strata, from hypotension to
normotension and frank hypertension [20]. Volume overload
per se associates with interstitial lung oedema, airway obstruc-
tion, pleural effusions and pulmonary hypertension [78].
Moreover, due to hypopharyngeal oedema, fluid overload is a
trigger of sleep apnoea [79], which is per se a strong risk factor
for cardiovascular events in the HD population [80]. Subclinical
lung congestion, a consequence of chronic volume expansion,
associates with poor physical functioning and quality of life in-
dependent of heart failure in dialysis patients [81].

Inflammation and volume overload in HD patients

Over the past few years, the use of 23Na magnetic resonance
imaging (MRI) has made the measurement of exchangeable
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body sodium feasible [82]. Recent evidence from studies using
this technique showed that tissue sodium concentration is
higher in patients undergoing dialysis compared with healthy
controls or CKD patients [83]. Non-osmotically active tissue
sodium is a critical determinant of extracellular fluid volume
and arterial pressure in the HD population [60]. Apart from
expanding extracellular volume, sodium in HD patients is
stored non-osmotically in the connective tissue, in the skin and
muscles [84]. Non-osmotic accumulation of sodium critically
depends on tissue inflammation and on the secretion of vascu-
lar endothelial growth factor-C (VEGF-C) by macrophages.
Low VEGF-C levels, which typically occur in the elderly, associ-
ate with a higher accumulation of sodium in the skin after HD.
Non-osmotic sodium accumulation in the skin and in muscles
likely explains the long time lag needed in some HD patients
for the normalization of BP after fluid overload has been cor-
rected [85]. Of note, the link between inflammation and fluid
accumulation extends to the lung. Chronic, systemic inflamma-
tion as measured by serum CRP amplifies lung congestion in
HD patients. Indeed, in this study, serum CRP was a consistent
effect modifier of the relationship between left atrial volume
and lung water [86]. In other words, at a similar degree of fluid
overload (as estimated by the left atrial volume), lung conges-
tion is greater in patients with inflammation than in those with-
out, a phenomenon likely attributable to inflammation-driven
capillary leakage and albumin extravasation [87].

Management of volume overload

Controlling the fluid overload in HD patients is an unmet
clinical need [88]. Restraint due to patients’ symptoms (intra-
dialytic hypotension, muscle cramps, nausea and vomiting) and
the use of ‘fast and easy’ solutions to treat intradialytic hypoten-
sion (i.e. cessation of ultrafiltration, hypertonic sodium infu-
sions, increasing dialysate sodium concentration, premature
termination of dialysis) are all recognized barriers towards
achievement of dry weight in HD patients [4].

In theory, low salt intake and low dialysate sodium may be
useful for the control of fluid overload and hypertension in HD
patients. Results from an observational pilot study in 20 HD
patients suggest that 23Na-MRI can reliably quantify the tissue
sodium stores and can prove a useful diagnostic tool to assess
total body sodium removal in these patients [89]. In a study in
eight hypertensive patients, a salt diet of 6 g/day (about
100 mmol of sodium) in association with a reduction in dialy-
sate sodium to 135 mmol/L caused a meaningful hypotensive
effect in HD patients [90]. However, it is almost a generalized
experience that maintaining a low salt intake is very difficult in
these patients. Lowering dialysate sodium to levels close to pre-
dialysis serum sodium levels resulted in reduced pre-dialysis BP
levels and IDWG and interdialytic thirst in two small studies
[91, 92], but a recent meta-analysis collating 266 patients in 12
studies found that besides causing a modest decrease in BP, this
intervention lowers serum sodium and increases hypotensive
episodes and cramps during HD [93].

On the other hand, it is well demonstrated that longer and
more frequent HD schedules have a favourable impact on BP
control and may improve clinical outcomes. The effects of more

frequent dialysis over thrice-weekly HD on clinical outcomes
were tested in the Frequent Haemodialysis Network (FHN)
Daily Trial, which compared the standard thrice-weekly HD
schedule versus six HD sessions per week [94]. In this trial, SBP
at 1 year was lower by 10 mmHg in the frequent-dialysis arm
than in the control arm and the incidence of the composite pri-
mary endpoint (mortality or reduction in LV mass index mea-
sured by nuclear magnetic resonance) was by 39% lower in the
same arm [94]. However, these beneficial effects were counter-
balanced in part by a higher risk of arteriovenous fistula occlu-
sion. Of note, observation of patients in this trial extended to an
average period of 3.6 years, which documented that patients in
the active arm of the trial had a 46% reduction in the risk of
death [95]. This was a legacy effect, because patients in this trial
all returned to conventional dialysis at the end of the trial,
which lasted for 1 year. Another pilot study, which randomized
18 patients to a thrice-weekly or every-other-day HD regimen,
showed that dry weight (69.7 6 9.1 versus 67.4 6 9.1 kg;
P< 0.05) was lower at study-end and pre-HD mean BP de-
creased by 7 mmHg with less antihypertensive medications
(2.6 6 1 versus 2.0 6 0.9; P< 0.05) in the frequent HD group
but were similar in the control group [96].

Identification of the optimal dry weight remains a chal-
lenge. The effects of dry weight reduction on BP were evalu-
ated in the Dry Weight Reduction in Hypertensive
Haemodialysis Patients (DRIP) study, a randomized clinical
trial in which ultrafiltration was intensified until patients be-
came symptomatic [97]. This intervention resulted in a 7.6/
3.4 mmHg reduction in 44-h BP favouring the active arm
[97]. However, patients in the active arm of the trial had a
higher risk of intradialytic hypotensive episodes. Similarly,
observations in an uncontrolled study with dry weight reduc-
tion guided by clinical criteria suggested that ultrafiltration
intensification may increase arteriovenous fistula problems
and the risk of cardiovascular events [98].

Implementation of non-invasive methods to guide dry
weight reduction interventions may result in favourable out-
comes. Results from the previously discussed study by
Onofriescu et al. [73] show that a bioimpedance-guided inter-
vention does not modify SBP but reduces PWV, a robust surro-
gate endpoint reflecting arterial stiffness. As previously
remarked, survival in the active arm of the trial was higher than
in the control arm, but the number of deaths (one in the active
arm and eight in the control arm) was too low to allow sensible
conclusions. Similarly, in another trial, a bioimpedance-guided
dry weight reduction strategy reduced the incidence of hyper-
tension and of intradialytic complications but did not affect sur-
vival (three deaths in each arm) [74].

The usefulness of the intradialytic blood volume monitoring
technique was evaluated in the Crit-Line Intradialytic
Monitoring Benefit (CLIMB) study, which randomized 443
patients to Crit-Line or conventional ultrafiltration monitoring,
and results indicated an increased risk for non-access [HR 1.61
(95% CI 1.15–2.25); P< 0.01] and access-related [HR 1.52
(95% CI 1.02–2.28); P< 0.04] hospitalizations and higher mor-
tality (8.7 versus 3.3%; P¼ 0.021) in the active group [99].
Similarly, a randomized crossover study in 32 patients with
intradialytic hypotension failed to show a benefit of a blood
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volume–guided biofeedback technology for the prevention of
symptomatic hypotensive episodes during HD [100].

Over the past few years, biofeedback control sensors on dial-
ysis machines have been used to automatically regulate ultrafil-
tration and dialysate conductivity (UCR) or ultrafiltration and
temperature (UTR) to offer individualization in these parame-
ters [101]. The use of these techniques was compared with con-
ventional dialysis in a randomized controlled trial including
244 HD patients, 15% of whom were fluid overloaded, and
results suggested that dry weight reduction was higher in the
UTR compared with the UCR group (5.0 6 3.4 versus
2.0 6 2.7%, P¼ 0.013) but not compared with standard-of-care
treatment (versus 3.9 6 2.1% body weight; P¼ 0.31) [102].

There is emerging evidence that the lung US-guided treat-
ment policies may be useful to improve hypertension and to
reduce LVH in HD patients. A randomized controlled trial cor-
ollary to LUST showed that the gradual dry weight reduction
with a lung US-guided strategy reduced 48-h SBP
(�6.61 6 9.57 versus �0.67 6 13.07 mmHg, P¼ 0.033) and
DBP (�3.85 6 6.34 versus �0.55 6 8.28 mmHg, P¼ 0.031) as
compared with standard treatment with no excess of dialysis
hypotension episodes [103]. Furthermore, the lung US-guided
treatment reduced cardiac chamber dimensions and LV filling
pressure as estimated by the E/e 0 ratio (E/e’: �0.38 6 3.14 ver-
sus 1.36 6 3.54; P¼ 0.034) [104] and 48-h PWV (�0.23 6 0.59
versus 0.05 6 0.45 m/s; P¼ 0.030) [105], but not in ambulatory
BP variability parameters during follow-up [106].

C O N C L U S I O N

Fluid overload is a major risk factor for all-cause and cardiovas-
cular mortality in the HD population. Volume overload under-
lies hypertension, LVH and dysfunction, as well as pulmonary
circulation overload in these patients, and is a major contribu-
tor to the dire prognosis of ESRD. Dry weight assessment in
clinical practice still rests on subjective evaluation of patient
signs and symptoms rather than on objective measurements.
However, clinical criteria to evaluate fluid balance are notori-
ously unreliable and for this reason volume overload goes unde-
tected in HD patients. Inaccurate evaluation of fluid volume
status may lead to incorrect antihypertensive drugs and ultrafil-
tration prescriptions.

The diagnosis of subclinical volume overload in HD patients
has been a matter of research for decades. Bioimpedance spec-
troscopy is a widely used technique that provides reliable esti-
mates of fluid overload in these patients, but adequately
powered clinical trials based on clinical endpoints for recom-
mending this technique as a useful instrument to guide ultrafil-
tration prescription in clinical practice are still lacking. Lung US
subjectively quantifies interstitial fluid accumulation in a critical
area of the central circulation, like the lung. Recent evidence
suggests that application of this method may be useful to safely
reduce ambulatory BP in hypertensive HD patients. Whether a
lung US-guided treatment strategy can decrease major out-
comes in high-risk HD patients remains to be answered by the
ongoing LUST study. Apart from optimal dry weight estima-
tion, management of volume overload should also include grad-
ual fluid removal to avoid hypotensive episodes, provision ofT
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sufficient HD time to achieve ultrafiltration and sodium re-
moval and a significant reduction of sodium intake to decrease
thirst and IDGW. Proper implementation of these strategies
would help to reduce volume overload for the benefit of our
patients.
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