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Abstract: With the rapid spread of the pandemic due to the coronavirus disease 2019 (COVID-19),
the virus has already led to considerable mortality and morbidity worldwide, as well as having
a severe impact on economic development. In this article, we analyze the state-level correlation
between COVID-19 risk and weather/climate factors in the USA. For this purpose, we consider a
spatio-temporal multivariate time series model under a hierarchical framework, which is especially
suitable for envisioning the virus transmission tendency across a geographic area over time. Briefly,
our model decomposes the COVID-19 risk into: (i) an autoregressive component that describes the
within-state COVID-19 risk effect; (ii) a spatiotemporal component that describes the across-state
COVID-19 risk effect; (iii) an exogenous component that includes other factors (e.g., weather/climate)
that could envision future epidemic development risk; and (iv) an endemic component that captures
the function of time and other predictors mainly for individual states. Our results indicate that
maximum temperature, minimum temperature, humidity, the percentage of cloud coverage, and the
columnar density of total atmospheric ozone have a strong association with the COVID-19 pandemic
in many states. In particular, the maximum temperature, minimum temperature, and the columnar
density of total atmospheric ozone demonstrate statistically significant associations with the tendency
of COVID-19 spreading in almost all states. Furthermore, our results from transmission tendency
analysis suggest that the community-level transmission has been relatively mitigated in the USA, and
the daily confirmed cases within a state are predominated by the earlier daily confirmed cases within
that state compared to other factors, which implies that states such as Texas, California, and Florida
with a large number of confirmed cases still need strategies like stay-at-home orders to prevent
another outbreak.

Keywords: columnar density of total atmospheric ozone; COVID-19; maximum temperature;
minimum temperature; spatio-temporal multivariate time-series analysis; USA

1. Introduction

The pandemic due to the coronavirus disease 2019 (COVID-19), caused by the novel
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1], was the most dis-
astrous incident in 2020, causing millions of deaths and resulting in economic activity
worldwide falling sharply. According to the latest report of the World Health Organization
(WHO), the cumulative cases around the world reached 28,637,952 and the cumulative
deaths were 917,417 as of 13 September 2020 (https://www.who.int/docs/default-source/
coronaviruse/situation-reports/20200914-weekly-epi-update-5.pdf?sfvrsn=cf929d04_2).
Furthermore, the World Bank suggested that most countries would be expected to suffer
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from economic recession in 2020 (https://www.worldbank.org/en/news/feature/2020/06/08
/the-global-economic-outlook-during-the-covid-19-pandemic-a-changed-world).

Although some countries and regions (e.g., North America, China, and Europe) are
actively developing vaccines with some showing encouraging signs [2–4], it is almost
impossible to provide sufficient effective vaccines to every person in the next few years.
Hence, this pandemic will undeniably last several months or even a few years. As one
of the most developed countries in the world, the United States declared a public health
emergency on 31 January 2020, and preventive and proactive measures (e.g., suspending
the entry and the quarantine of foreign nationals seeking entry) have been taken to control
the spread of the virus and treat those affected. However, it has become one of the
most severely affected nations as the respective numbers of confirmed cases and deaths
approximately account for 1/5 (i.e., 6,386,832 and 191,809) of the whole global cases as of
13 September 2020. Even worse, as Chowell and Mizumoto [5] argued, states and territories
with the largest proportions of older populations (such as Florida, Maine, and Puerto Rico)
have become the places with the largest number of confirmed cases. The spread of this
pandemic in the USA has become a global concern.

Typically, susceptible-infected-recovered (SIR) based models (e.g., SIRD [6]), first
proposed by Kermack and McKendrick [7], are widely used models due to their simplicity
and good performance. However, these models (such as susceptible-infected-recovered-
susceptible (SIRS), susceptible-exposed-infected-recovered (SEIR), and susceptible-exposed-
infected-recovered-susceptible (SEIRS)) only take into account the tendency of the related
epidemic transmission corresponding to one single region, and other useful information
can hardly be uncovered, which includes the impacts derived from the place itself, other ar-
eas, and other exogenous variables. Some other models that are utilized to characterize
epidemic pervasion are based on time series models. For instance, seasonal autoregressive
integrated moving average (SARIMA) models were employed for modeling infectious
disease count data in Helfenstein [8] and Trottier et al. [9]. Recently, different time series
models (e.g., auto-regressive integrated moving average (ARIMA), the Holt–Winters ad-
ditive model, and HWAAS) and machine learning approaches (e.g., Prophet, DeepAR,
and N-Beats) have been adopted to analyze and compare the prediction accuracy of the
percentage of active cases per population based on the COVID-19 data from ten countries
with the highest number of confirmed cases as of 4 May 2020 [10].

Held et al. [11] proposed a space-time multivariate time series model (denoted as
the HHHmodel) that can be applied to model multiple-unit cases where the “unit” can
be different geographical regions, different age groups, or different epidemics caused by
different pathogens. Motivated by the HHH model, Paul et al. [12] and Paul and Held [13]
developed a spatio-temporal framework to jointly model several epidemics by considering
the spatial interaction effect, as well as the time autoregressive effect. Their models have
been applied to analyze the transmission of dengue fever in Guandong Province in China in
2014 [14], malaria and cutaneous leishmaniasis analysis in Afghanistan [15], hemorrhagic
fever with renal syndrome in Zhejiang Province of China [16], and the effect of containment
measures for COVID-19 in Italy [17].

One drawback of the model proposed by Paul et al. [12] and Paul and Held [13] is that
it mainly takes care of the connection between the current number of infected cases and
the previous numbers of infected cases and the adjacent units/areas, which may ignore
other exogenous predictors. As a result, it is limited in its interpretability and applicability
for infectious diseases such as COVID-19. In fact, recent studies (e.g., [18,19]) have pointed
out that some weather/climate related variables show statistically significant associations
with the transmission of COVID-19.

To overcome this limitation for the analysis of state-level time series of the COVID-19
contagion effect, we consider a spatio-temporal framework based on the multivariate
time series model proposed by Paul et al. [12] and Paul and Held [13], which however
decomposes the COVID-19 risk additively into autoregressive, spatiotemporal, exogenous,
and endemic components. Briefly, the autoregressive and spatiotemporal components
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respectively describe the within-state and across-state COVID-19 risk effects. The exoge-
nous component includes other factors that could affect future epidemic development risk,
while the endemic component captures the function of time and other predictors mainly
about individual states.

Briefly, some weather/climate related variables are carefully selected as exogenous
factors in our analyses. Indeed, some climate/weather related variables have been shown
to be correlated with epidemic transmission in the relevant literature. For instance, in a
study of the influence of weather on the foot-and-mouth disease epidemic spread from 1967
to 1968, Hugh-Jones and Wright [20] argued that wind and precipitation played a major role
in the spread of the disease, especially wind. According to Tan et al. [21], the environmental
temperature can influence the spread of SARS. Qi et al. [18] found that the daily average
temperature and daily average relative humidity are significantly negatively associated
with the daily confirmed cases of COVID-19 in Hubei, China. Similarly, Tosepu et al. [19]
found that the average seasonal temperature was significantly correlated with COVID-19
in Jakarta, Indonesia.

The rest of this article is organized as follows. In Section 2, we elaborate our spatio-
temporal multivariate time series model, including the sub-models of each coefficient in
the model. In Section 3, we employ our model for analyzing the COVID-19 count data of
the USA and show our main findings. In Sections 4 and 5, the discussion and conclusions
are presented, respectively. We report the technical materials for parameter estimation in
Appendix A.

2. Development of the Model
Models

Let Yr,t denote the number of infected cases in state r at time point t with
r = 1, · · · , R, t = 1, · · · , T. Usually, Yr,t is assumed to follow a Poisson distribution [22–24].
Since the number of infected cases in each state is hardly totally observed (i.e., the ex-
istence of heterogeneity for different states), employing the Poisson assumption could
underestimate the underlying dispersion. Here, we adopt the negative binomial distribu-
tion [11,12,14]. That is, suppose Yr,t follows a conditional negative binomial distribution,
i.e., Yr,t|Y·,t−l , V ∼ NegBin(µr,t, εr) for r = 1, · · · , R, t = 1, · · · , T, with conditional mean
µr,t and conditional variance:

σ2
r,t = µr,t(1 + εrµr,t),

where Y·,t−l indicates the vector consisting of the number of infected cases of all states
at time point t− l, l is the time lag term satisfying l ∈ {1, · · · , T − 1}, εr is the overdis-
persion parameter of state r, and V is a random effect vector with V ∼ N(0, Σ) with
Σ = diag{σ2

(λ), σ2
(ψ), σ2

(θ), σ2
(ζ)} ⊗ IR×R, ⊗ being the Kronecker product and IR×R an R× R

identity matrix. It is easy to see that when εr equals zero, the distribution of Yr,t reduces to
a Poisson distribution, whereas the larger the value of εr, the greater the overdispersion
is. Thus, comparing with the Poisson assumption, the negative binomial assumption has
wider applicability.

To embed other predictors in the distribution of Yr,t, a hierarchical modeling procedure
is employed here. In the first layer, the conditional mean µr,t is formulated as follows:

µr,t = λr,tYr,t−l + ψr,tΨr,t−l + θr,tΘr,t−l + ζr,t, (1)

where:

Ψr,t−l = ∑
j→r

ωr,jYj,t−l , Θr,t−l = ∑
j

ηr,jxj,k,t−l , j = 1, · · · , R, k = 1, · · · , K.

Here, xj,k,t denotes the observation at time t of the k-th exogenous factor in state j,
which could have an influence on state r. ηr,j is an indicator with the value being 1/mj
if xj,k has influence on state r and zero otherwise, where mj is the number of factors that
have an influence on the number of cases of the j-th state. j→ r indicates that states j and
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r are neighbors that share the same border. ωr,j is an indicator with the value being 1/nj
if state r is adjacent to state j and zero otherwise, where nj is the number of states that
have a common border with state j. Other choices of weights (i.e., ωr,j) are also available
in [12–14] and the references therein.

According to Giuliani et al. [25], λr,tYr,t−l , ψr,tΨr,t−l , and ζr,t are respectively called the
epidemic-within component, epidemic-between component, and endemic component. In
this paper, we adopt the terminology from Giuliani et al. [25], and we further call θr,tΘr,t−l
the epidemic-boosted component. It is noteworthy that Ψr,t−l , which is based on the space-
time dimension, mainly includes the interaction information between one state and other
states neighboring that state, while Θr,t−l contains the correlation information of other
exogenous factors between one state and other states neighboring that state. Comparing
with the model proposed in Paul et al. [12] and Paul and Held [13], our proposed model in
(1) improves the interpretability, as well as the applicability.

In the second layer, for parameters λr,t, ψr,t, and ζr,t, we adopt the same strategy
as given in Paul et al. [12] and Paul and Held [13]; that is, each parameter assumes the
following log-linear form:

log(·r,t) = α
(·)
r + V(·)

r + β(·)>z(·)r,t , (2)

where V (·) is assumed to have a multivariate normal distribution with zero mean and
covariance matrix σ2

(·) IR×R, i.e., V (·) ∼ N(0, σ2
(·) IR×R). We further discuss the formulation

of each parameter as follows.
We first consider autoregressive parameter λr,t. As suggested in Paul et al. [12],

Cheng et al. [14], Adegboye et al. [15], and Wu et al. [16], λr,t is formulated by the following
log-linear form:

log(λr,t) = α(λ) + V(λ)
r , (3)

where α(λ) is related to the intercept term and V(λ)
r ∼ N(0, σ2

(λ)).
For ψr,t, it satisfies:

log(ψr,t) = α(ψ) + V(ψ)
r + β

(ζ)
1 log(Pur,t), (4)

where α(λ) is related to the intercept term and V(λ)
r ∼ N(0, σ2

(λ)). For the choice of Pur,t,
unlike Paul et al. [12] and Paul and Held [13], Giuliani et al. [25] argued that it should be a
variable that reflects the possible heterogeneous influence for different regions, and their
choice was the population of a state. However, we believe that people of different ages
could be significantly divergent under the consideration of the infection effect from the
population. In this regard, we define Pur,t as the population size of people whose ages are
under 65 in state r at time t based on the fact that this group of people is more likely to
travel to other places.

For θr,t, the log-linear formula may not be suitable as the influence of such exogenous
variables could have a positive or negative effect on epidemic transmission, i.e., the sign
of θr,t could be “+” or “−”. Here, we suppose that θr,t follows a normal distribution with
mean α(θ) and variance σ2

(θ), i.e.,

θr,t = α(θ) + V(θ)
r , (5)

where V(θ)
r ∼ N(0, σ2

(θ)).
Giuliani et al. [25] employed a second-order polynomial log-linear regression to

evaluate the fluctuation of the number of confirmed cases from the perspective based on
the time dimension. This is reasonable when the epidemic is in the early stage (i.e., t is
relatively small). However, with the development of the pandemic, the reproduction
number will inevitably tend to be small as the population for a specific state is limited.
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Thus, we suggest to use the s-shaped growth curve—logistic growth model—which was
also employed to study age-specific case-fatality rates of COVID-19 in China and Italy [26].
That is, we consider:

log(ζr,t) =α(ζ) + V(ζ)
r + β

(ζ)
1 log

(
logit(t)

)
+ β

(ζ)
2 log(Por,t), (6)

where:

logit(t) =
(

1 + exp
{
− (β

(ζ)
3 + β

(ζ)
4 t)

})−1

is a logistic function and Por,t is defined as the population size of people whose ages are
over 65 years old in state r at time t.

3. Results
3.1. Data of Interest

Study area: Here, we consider the 50 states plus Washington, D.C. (DC), for our
COVID-19 analyses. However, American Samoa, Guam, the Northern Mariana Islands,
the Commonwealth of Puerto Rico, and the Virgin Islands are excluded from our study for
simplicity.

COVID-19 data: We obtained the state-level confirmed cases data on COVID-19 in the
USA from Kaggle, which are available from https://www.kaggle.com/sudalairajkumar/
covid19-in-usa. Here, we are mainly interested in the cumulative positive cases, as this
will be used for the calculation of the number of daily increased COVID-19 cases in the
USA. On 14 March 2020, the U.S. President held a coronavirus conference, one day after he
declared the pandemic a national emergency (https://www.rev.com/blog/transcripts/
donald-trump-coronavirus-press-conference-transcript-march-14). For this reason, we con-
sider those data starting from March 15th, 2020.

Weather/climate data: The state-level weather and climate data we use in this paper
are openly available from Kaggle, which is fully powered by Dark Sky and can be down-
loaded from https://www.kaggle.com/eeemonts/weatherclimate-data-covid19?select=
csv. The factors included in our analyses are the maximum temperature (MaT), mini-
mum temperature (MiT), humidity (Hu), the probability of precipitation appearance (PA),
the percentage of cloud coverage (CC), sea-level air pressure (AP), wind speed (WS), and
the columnar density of total atmospheric ozone (CDTAO). Consistent with the COVID-19
data, we only consider weather/climate data starting from March 15th, 2020.

Population data: Both the state-level population data of 2019 and the state-level
population percentage of people over 65 years old were collected from Population Reference
Bureau (PRB), which is available from (https://www.prb.org/usdata/indicator/age65/
snapshot). Since the direct accessibility of the population over 65 years old is denied, we
simply used the state-level population of 2019 multiplying the related percentage over
65 years old to get the approximation of the state-level population over 65.

Figure 1 depicts the daily confirmed cases and the cumulative confirmed cases in
the USA. One can see that the cumulative confirmed cases and daily confirmed cases in
some states such as Connecticut (CT), New Jersey (NJ), and New York (NY) have eased
up; some states like North Dakota (ND) became more and more severe; and others tended
to recur.

Figure 2 shows state-level subplots of the cumulative confirmed cases on September
15th, the daily confirmed cases on September 15th, the total populations in 2019, the popula-
tions over 65, and the populations under 65. It appears that both the cumulative confirmed
cases and the daily confirmed cases have a strong consistency with the populations under
65, as well as the populations over 65. The appearance of a high infection rate among
individuals under 65 could mean that there is a trend of younger people having severe
COVID-19 infections in the USA as warned by Kass et al. [27], which can cause much worse
situations (e.g., infecting more older adults) [28].

https://www.kaggle.com/sudalairajkumar/covid19-in-usa
https://www.kaggle.com/sudalairajkumar/covid19-in-usa
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https://www.rev.com/blog/transcripts/donald-trump-coronavirus-press-conference-transcript-march-14
https://www.kaggle.com/eeemonts/weatherclimate-data-covid19?select=csv
https://www.kaggle.com/eeemonts/weatherclimate-data-covid19?select=csv
https://www.prb.org/usdata/indicator/age65/snapshot
https://www.prb.org/usdata/indicator/age65/snapshot
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Figure 1. Original data of state-level daily positive test cases in the USA from https://www.kaggle.com/sudalairajkumar/
covid19-in-usa (excluding Washington, D.C.). The black line indicates the related daily confirmed cases and the red line the
cumulative confirmed cases. The names of all states are denoted by the related postal codes.
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Figure 2. State-level population related information. We take logarithm of the original data for better
visualization.
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Figure 2. State-level population related information. We took the logarithm of the original data for better visualization.

3.2. Weather and Environmental Factors’ Selection

To explore the association between weather/climate based factors and COVID-19
transmission, Tosepu et al. [19] applied the Spearman-rank correlation test, while
Bashir et al. [29] utilized the Kendall and Spearman-rank correlation tests. Here, we
first use the Kendall and Spearman-rank correlation tests to identify factors that have a
significant correlation with daily confirmed cases.

Figure 3 shows the results from the Spearman and Kendall tests. According to the
scatter plots, the p-values associated with MaT, MiT, Hu, CC, and CDTAO with respect
to all states are mostly below 0.10, whereas those associated with AP and PA are mostly
over 0.10. On the other hand, results from bar plots suggest that no particular factor has
a remarkable association with the majority of the states. Briefly, AP and PA only have an
influence on less than 25 states, while MaT, MiT, and CDTAO have a strong association

https://www.kaggle.com/sudalairajkumar/covid19-in-usa
https://www.kaggle.com/sudalairajkumar/covid19-in-usa
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with more than 40 states. According to Figure 4, it can be safely concluded that MaT, MiT,
and CDTAO are the major factors that contribute to the strong associations in most of the
states and are taken into account for further modeling analyses.
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Figure 3. State-level Spearman and Kendall test results. Scatter plots show the related p-value, and bar plots show the
related number of states that are significantly influenced by related factors with α = 0.01, 0.05, and 0.10, respectively, which
are drawn with dotted black lines. The white dotted lines in the bar plots are equal to 25, which is approximately half
of the total number of analyzed states. Maximum temperature (MaT), minimum temperature (MiT), humidity (Hu), the
probability of precipitation appearance (PA), the percentage of cloud coverage (CC), sea-level air pressure (AP), wind speed
(WS), and the columnar density of total atmospheric ozone (CDTAO)
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Figure 4. State-level combination of Spearman and Kendall tests. Two-dimensional barcode plots show whether a factor is
significantly associated with a state by both the Spearman and Kendall tests (with squares in dark green color). The bar plot
represents the number of states that are significantly associated with each factor with α = 0.01, 0.05, and 0.10, respectively,
by both the Spearman and Kendall tests. The horizontal line in the top subplot is equal to 25, which is approximately half of
the total number of analyzed states.
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3.3. Optimal Parameters’ Determination

For better fitting the confirmed cases in different states, the optimal time lag l needs
to be determined. Considering that the desirable range for l is dynamically increased,
point-wise optimization seems too tedious and less efficient. Thus, we adopted the pos-
sible range from one to 14, which is the time interval that the CDC suggested to stay at
home after one’s last contact with a person who has COVID-19 (https://www.cdc.gov/
coronavirus/2019-ncov/if-you-are-sick/quarantine.html). Besides, all weather/climate
factors were respectively nondimensionalized by Studentization to mitigate the impact of
the different units.

Table 1 summarizes the correlation between different time lags and the related penal-
ized log-likelihood values. It is noticed that when l = 2, the average estimate of l(π, v) has
the largest value (i.e., 48,510,611.518) with the smallest sd (i.e., 301,043.787). Hence, l = 2
will be used in all subsequent analyses.

Table 1. Different time lags and the corresponding penalized log-likelihood values shown with the mean and standard
deviation (sd). Thirty different initial processes for each lag are randomly implemented. The corresponding mean and sd
are calculated based on 30 repetitions.

Lags l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7

mean
(

l(π, v)
)

47512882.850 48510611.518 48188861.487 47895162.927 47783167.600 47998732.406 47976026.240

sd
(

l(π, v)
)

1600987.450 301043.787 923652.391 849380.316 1297418.980 825285.208 1055666.220

lags l = 8 l = 9 l = 10 l = 11 l = 12 l = 13 l = 14

mean
(

l(π, v)
)

47747910.670 47946826.823 47493940.570 47630036.889 47306645.479 47309743.565 47115278.420

sd
(

l(π, v)
)

1199672.290 643524.434 1288241.920 773951.669 920626.589 673304.655 1158747.060

Table 2 shows the estimates of π and σ based on the configuration for time lag l = 2.
From the estimates of the dispersion parameters ε’s, we observe that the daily confirmed
cases of COVID-19 show obvious overdispersion in almost every state (especially in New
Mexico (NM)), which confirms that using the negative binomial distribution is a sensible
choice for analyzing the transmission of COVID-19 in the USA.

The estimates of σ characterize the heterogeneity of COVID-19 transmission across
states. According to the results in Table 2, there is spatial variation concerning the epidemic-
within component with σ̂λ = 0.851, the epidemic-between component with σ̂(ψ) = 0.836,
the epidemic-boosted component with σ̂(θ) = 0.816, and the endemic component with
σ̂ζ = 0.853. Therefore, we believe that there is significant spatial heterogeneity in the
epidemic-within, endemic-between, epidemic-boosted, and endemic component.

Table 2. Optimal parameter estimates with time lag l = 2. One-hundred different initial processes
are randomly implemented. The related mean and standard deviation (sd) are calculated based on
100× outcomes.

Estimates σ(λ) σ(ψ) σ(θ) σ(ζ) α(λ) α(ψ) α(θ) α(ζ)

mean 0.851 0.836 0.816 0.853 0.220 −0.136 0.173 −0.233
sd 0.121 0.113 0.107 0.124 0.911 0.929 0.958 0.991

estimates β
(ψ)
1 β

(ζ)
1 β

(ζ)
2 β

(ζ)
3 β

(ζ)
4

εAL εAK εAZ
mean −0.300 0.232 −0.064 −0.119 −0.076 0.731 0.774 0.764

sd 0.873 1.068 1.004 1.180 1.085 0.285 0.286 0.269
estimates εAR εCA εCO εCT εDE εFL εGA εHI

mean 0.739 0.697 0.754 0.776 0.744 0.732 0.730 0.693
sd 0.286 0.296 0.284 0.270 0.285 0.301 0.275 0.297

estimates ε ID ε IL ε IN ε IA εKS εKY εLA εME
mean 0.707 0.673 0.781 0.715 0.696 0.751 0.816 0.784

sd 0.253 0.278 0.284 0.285 0.292 0.281 0.296 0.290

https://www.cdc.gov/coronavirus/2019-ncov/if-you-are-sick/quarantine.html
https://www.cdc.gov/coronavirus/2019-ncov/if-you-are-sick/quarantine.html
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Table 2. Cont.

Estimates σ(λ) σ(ψ) σ(θ) σ(ζ) α(λ) α(ψ) α(θ) α(ζ)

estimates εMD εMA εMI εMN εMS εNJ εNM εNY
mean 0.780 0.658 0.740 0.724 0.758 0.708 0.858 0.780

sd 0.301 0.291 0.296 0.289 0.308 0.291 0.273 0.306
estimates εMO εMT εNE εNV εNH εNC εND εOH

mean 0.716 0.757 0.732 0.780 0.776 0.793 0.769 0.710
sd 0.299 0.281 0.298 0.303 0.284 0.273 0.284 0.301

estimates εOK εOR εPA εRI εTX εSC εSD εTN
mean 0.667 0.732 0.742 0.763 0.812 0.765 0.746 0.729

sd 0.294 0.277 0.306 0.283 0.296 0.279 0.273 0.290
estimates εUT εVT εVA εWA εWV εWI εWY εDC

mean 0.736 0.742 0.687 0.757 0.805 0.779 0.727 0.791
sd 0.291 0.287 0.327 0.283 0.287 0.300 0.289 0.296

3.4. Components Analysis

Figure 5 shows the state-level estimated random effects with respect to epidemic-
within component, epidemic-between component, epidemic-boosted component, and
endemic component. Clearly, heterogeneity appears in all components, and the random
effects from the four components have a significant effect in most of the states. Here,
we mainly focus on random effects from the epidemic-within component and epidemic-
boosted component. From Subplot (a) in Figure 5, the estimates of α(λ) + V(λ) for most
states are smaller than zero, which implies that community-level spread in most states has
considerably alleviated from the perspective of epidemic-with component. Similarly, the
estimates of α(λ) + V(λ) are smaller than the negative estimate of α(θ) (see Subplot (c) in
Figure 5), which indicates higher values of weather/climate factors corresponding to less
daily confirmed cases.
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Figure 5. State-level estimated random effects in the multivariate time series model for (a)
epidemic-within component V (λ); (b) epidemic-between component V (ψ); (c) epidemic-boosted component
V (θ) and (d) endemic component V (ζ). Vertical dotted lines in (a) and (b) are −α(λ) and −α(θ). There is
strong variation in all four components and different random effects for different states have various
influence.

Figures 6 and 7 show the state-level percentage of daily confirmed cases of each component in211

every single day and the state-level means of fitted values based on (1). It is obvious that the estimated212

values of epidemic-within component are the highest among all components in most of the states (e.g.,213

CA) as time goes on. This phenomenon suggests that cross states spread, weather/climate factors’214

influence, or other unobserved factors have little impact on the COVID-19 transmission whereas the215

Figure 5. State-level estimated random effects in the multivariate time series model for: (a) epidemic-within component
V (λ); (b) epidemic-between component V (ψ); (c) epidemic-boosted component V (θ); and (d) endemic component V (ζ).
Vertical dotted lines in (a,b) are −α(λ) and −α(θ). There is a strong variation in all four components, and different random
effects for different states have various influences.
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Figures 6 and 7 show the state-level percentage of daily confirmed cases of each
component in every single day and the state-level means of fitted values based on (1).
It is obvious that the estimated values of the epidemic-within component are the highest
among all components in most of the states (e.g., CA) as time goes on. This phenomenon
suggests that cross-state spread, weather/climate factors’ influence, or other unobserved
factors have little impact on COVID-19 transmission, whereas the previous state’s re-
lated cases predominate the fluctuation of future infections in most states. For several
states such as Connecticut (CT), New Hampshire (NH), and Rhode Island (RI), no partic-
ular component demonstrates a dominant effect on daily confirmed cases. According to
Figure 1, we find that with relatively less confirmed cases, the endemic component seems
to be more dominant in these states, which is also shown in CT, NH, and RI.

0
.0

0
.4

0
.8

0 50 100 150

AK

0
.0

0
.4

0
.8

0 50 100 150

AL

0
.0

0
.4

0
.8

0 50 100 150

AR

0
.0

0
.4

0
.8

0 50 100 150

AZ

0
.0

0
.4

0
.8

0 50 100 150

CA

0
.0

0
.4

0
.8

0 50 100 150

CO

0
.0

0
.4

0
.8

0 50 100 150

CT

0
.0

0
.4

0
.8

0 50 100 150

DC

0
.0

0
.4

0
.8

0 50 100 150

DE

0
.0

0
.4

0
.8

0 50 100 150

FL

0
.0

0
.4

0
.8

0 50 100 150

GA

0
.0

0
.4

0
.8

0 50 100 150

HI

0
.0

0
.4

0
.8

0 50 100 150

IA

0
.0

0
.4

0
.8

0 50 100 150

ID

0
.0

0
.4

0
.8

0 50 100 150

IL

0
.0

0
.4

0
.8

0 50 100 150

IN

0
.0

0
.4

0
.8

0 50 100 150

KS

0
.0

0
.4

0
.8

0 50 100 150

KY

0
.0

0
.4

0
.8

0 50 100 150

LA

0
.0

0
.4

0
.8

0 50 100 150

MA

0
.0

0
.4

0
.8

0 50 100 150

MD

0
.0

0
.4

0
.8

0 50 100 150

ME

0
.0

0
.4

0
.8

0 50 100 150

MI

0
.0

0
.4

0
.8

0 50 100 150

MN

0
.0

0
.4

0
.8

0 50 100 150

MO

0
.0

0
.4

0
.8

0 50 100 150

MS

0
.0

0
.4

0
.8

0 50 100 150

MT

0
.0

0
.4

0
.8

0 50 100 150

NC

0
.0

0
.4

0
.8

0 50 100 150

ND

0
.0

0
.4

0
.8

0 50 100 150

NE
0

.0
0

.4
0

.8

0 50 100 150

NH

0
.0

0
.4

0
.8

0 50 100 150

NJ

0
.0

0
.4

0
.8

0 50 100 150

NM

0
.0

0
.4

0
.8

0 50 100 150

NV

0
.0

0
.4

0
.8

0 50 100 150

NY

0
.0

0
.4

0
.8

0 50 100 150

OH

0
.0

0
.4

0
.8

0 50 100 150

OK

0
.0

0
.4

0
.8

0 50 100 150

OR

0
.0

0
.4

0
.8

0 50 100 150

PA

0
.0

0
.4

0
.8

0 50 100 150

RI

0
.0

0
.4

0
.8

0 50 100 150

SC

0
.0

0
.4

0
.8

0 50 100 150

SD

0
.0

0
.4

0
.8

0 50 100 150

TN

0
.0

0
.4

0
.8

0 50 100 150

TX

0
.0

0
.4

0
.8

0 50 100 150

UT

0
.0

0
.4

0
.8

0 50 100 150

VA

0
.0

0
.4

0
.8

0 50 100 150

VT

0
.0

0
.4

0
.8

0 50 100 150

WA

0
.0

0
.4

0
.8

0 50 100 150

WI

0
.0

0
.4

0
.8

0 50 100 150

WV

0
.0

0
.4

0
.8

0 50 100 150

WY

Figure 6. State-level daily percentage of daily confirmed cases with respect to the epidemic-within, endemic-between,
epidemic-boosted, and endemic components, which are indicated by red, green, blue, and black lines, respectively.
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Figure 7. State-level estimated means of daily confirmed cases and related 90% confidence intervals. The gray band
represents the 90% confidence interval, the white line the observations of the daily confirmed cases, and the red line the
estimated mean values.

4. Discussion

In this article, we find that MaT, MiT, and CDTAO have statistically significant associ-
ations with daily confirmed cases in almost all the states in America, based on both the
Kendall and Spearman-rank correlation tests. Furthermore, from the estimated coefficients
of the epidemic-boosted component, we identify that this association is negative. That is,
higher MaT, MiT, and CDTAO correspond to smaller daily confirmed cases. However,
further analysis uncovers that the previous daily confirmed cases in one state itself are
generally predominant for the next confirmed cases, which suggests that states with a large
number of confirmed cases tend to cause more infections.

Recent research [18,19] has shown some evidence of the correlation between weather/
climate factors and COVID-19 transmission. Our work, based on an extended multivariate
time series model, further confirms and quantifies the existence of a similar relationship.
Unlike some existing models (e.g., [10]), our model successfully facilitates the interpretabil-
ity and practicability by an additional term that characterizes the degree of the influence
from some other external factors. However, one obvious drawback of our model is that
a large number of unknown parameters need to be estimated, and the computational
cost is therefore high. As a result, the effective sample size also needs to be sufficiently
large. Recently, Kimball et al. [30] investigated a COVID-19 outbreak in a long-term care
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skilled nursing facility (SNF) in King County, Washington, recognized on 28 February 2020,
and discovered that screening the SNF residents based on the symptoms related to this
epidemic could not to discover all SARS-CoV-2 infections since they found that 23 (30.3%)
workers had SARS-CoV-2 positive tests even if they were asymptomatic or presymptomatic
on the testing day. Such clustering based infections dramatically aggregate the transmis-
sion intensity, making the analysis based on not only our model, but others previously
mentioned non-trivial challenges. More recently, Rader et al.’s analysis [31] unveiled that
“epidemics in crowded cities are more spread over time, and crowded cities have larger
total attack rates than less populated cities”. Such phenomena further imply that an area
with a higher population density could cause a much severer outbreak, which is also a
situation that requires further investigation.

5. Conclusions

As COVID-19 has become the most disastrous health event in the world, especially in
the USA by far, so understanding the transmission pattern of this pandemic has become
more urgent. Our analyses of the COVID-19 surveillance data depict remarkably heteroge-
neous transmission across states during the COVID-19 outbreak in the USA from 15 March
2020 to 15 September 2020. The degree of heterogeneity is characterized by random effects
parameter estimates. With the Kendall and Spearman-rank correlation tests, we explore
the association between weather/climate factors and daily confirmed COVID-19 cases for
each state, which is further used for the analysis of the spatial and temporal occurrence of
COVID-19.

Some interesting findings are noteworthy. First, the heterogeneity of COVID-19
transmission across states is observed in all four components, which implies that there are
different situations in different states and the same strategies may not work perfectly to
contain this pandemic in all states.

Second, some weather/climate factors (i.e., CC, Hu, MaT, MiT, and CDTAO) demon-
strate significant correlations with daily confirmed cases in many states. In particular,
MaT, MiT, and CDTAO have a strong association with most states. Based on the esti-
mated coefficients from the epidemic-boosted component, one can further find that these
variables correspond to daily confirmed cases with a negative correlation in almost all
states, i.e., higher MaT, MiT, and CDTAO correlate with less daily confirmed cases. This
phenomenon suggests that climate change in the local and adjacent areas could affect the
possibility of infection in this area.

Third, since the estimates of the epidemic-within component in most states are pre-
dominant, their corresponding values can represent the fluctuation of the daily confirmed
cases. Since the estimated coefficients of the epidemic-within component in most states

are smaller than one (exp
(

α(λ) + V(λ)
r

)
< 1), the community-level spread of COVID-19 in

most states is remarkably mitigated and the transmission intensity is decreased. Further-
more, we believe that the relatively large number of daily confirmed cases in the current
stage are mainly due to the previous large number of infected cases, and the number of
new confirmed cases per day will gradually decrease as time goes on.

Fourth, for the future tendency of the daily confirmed cases, the influence of the
previous confirmed cases is the most important among the four components. This means
that for states like Texas (TX), which has a large number of confirmed cases, the risk of
a sharp increase of the daily confirmed cases is still higher than other states with less
confirmed cases. Therefore, there is no doubt that regulations like social distancing or
wearing masks in public places are clearly necessary.

Final, since the endemic components for some states (e.g., Vermont (VT)) show obvious
predominance, other possible variables that could influence COVID-19 transmission need
to be further determined.
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Appendix A. Materials for Parameter Estimation

Appendix A.1. Inference

We consider the process of model parameter estimation. Let σ = (σ(λ), σ(ψ), σ(θ),

σ(ζ))
>, ε = (ε1, · · · , εR)

>, α = (α(λ), α(ψ), α(θ), α(ζ))>, and β = (β
(ψ)
1 , β

(ζ)
1 , β

(ζ)
2 , β

(ζ)
3 , β

(ζ)
4 )>

represent all unknown parameters. Let v = (v(λ)>, v(ψ)>, v(θ)>, v(ζ)>)> denote the
observations of random effects V .

Recall that Yr,t|Y·,t−l , V ∼ NegBin(µr,t, εr), and V ∼ N(0, Σ). The conditionally joint
probability function is then given as:

f (yt, v; α, β, ε, σ|y,t−l)

= f (y,t; α, β, ε, σ|v, y,t−l) f (v; σ)

=

{
∏

r

Γ(yr,t +
1
εr
)

Γ(yr,t + 1)Γ( 1
εr
)
(

µr,tεr

1 + µr,tεr
)yr,t(

1
1 + µr,tεr

)
1
εr

}

· (2π)−2R|Σ|−1/2 exp(−1
2

v>Σ−1v)

∝

{
∏

r

Γ(yr,t +
1
εr
)

Γ( 1
εr
)

(
µr,tεr

1 + µr,tεr
)yr,t(

1
1 + µr,tεr

)
1
εr

}

· |Σ|−1/2 exp(−1
2

v>Σ−1v).

(A1)

or the logarithm of the conditional likelihood function is:

l(π, v) ∝ ∑
r,t

{
log Γ(yr,t +

1
εr
)− log Γ(

1
εr
) + yr,t log(

µr,tεr

1 + µr,tεr
)

− 1
εr

log(1 + µr,tεr)
}
− 1

2
log |Σ| − 1

2
v>Σ−1v,

(A2)

where π = (α>, β>, ε>)>, | · | denotes the determinant of a matrix and Γ(·) represents the
gamma function.

Since (A2) includes the random effects, maximizing the above equation with respect
to π and v does not generate the log-likelihood, but the penalized log-likelihood or
posterior mode estimates from a Bayesian viewpoint [32]. Furthermore, not only the
sample observations v are unavailable, but also the values of parameters σ̂2

(λ), σ̂2
(ψ), σ̂2

(θ),

and σ̂2
(ζ) are unknown. To address this issue, Paul and Held [13] proposed a Laplace
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approximation based method to estimate the covariance by maximizing the marginal
likelihood with respect to π and ε. It is noteworthy that their approach can be applied to
general cases. Note that the covariance matrix (i.e., Σ) is assumed to be a diagonal matrix
and V(·)

r ∼ (0, σ2
(·) I), r = 1, · · · , R. If R is sufficiently large, we can replace σ2

(·) by its sample
variance. In our case, R represents the number of states in the USA, which can be safely
assumed to be sufficiently enough. Specifically, we have the sample variance as:

σ̂2
(·) =

v(·)>v(·)

R− 1
. (A3)

The estimate of v>Σ−1v then satisfies:

̂v>Σ−1v = v>Σ̂−1v = 4(R− 1)

and the estimate of |Σ| is thus:

|Σ̂| = (σ̂2
(λ)σ̂

2
(ψ)σ̂

2
(θ)σ̂

2
(ζ))

R

=
[(v(λ)>v(λ))(v(ψ)>v(ψ))(v(θ)>v(θ))(v(ζ)>v(ζ))]R

(R− 1)4R .

Therefore, (A2) can be simplified as:

l(π, v) ∝ ∑
r,t

{
log Γ

(
yr,t +

1
εr

)
− log Γ

( 1
εr

)
+ yr,t log

( µr,tεr

1 + µr,tεr

)
− 1

εr
log
(
1 + µr,tεr

)}
− R

2 ∑
λ,ψ,θ,ζ

log
(

v(·)>v(·)
)

.

(A4)

Due to the difficulty of implementing the gamma function with a large input value
(e.g., Γ(200) = ∞ in the R software), we replace the gamma function Γ(·) by Stirling’s ap-
proximation [33], i.e.,

√
2π exp(−u)uu−1/2. One noticeable advantage for this replacement

is that one can directly calculate the logarithm value first rather than the value of the gamma
function first (and the logarithm value next), which can significantly mitigate the data
overflow phenomenon (e.g., log(Γ(u))|u=200 = ∞, but log(

√
2π exp(−u)uu−1/2)|u=200 =

1
2 log(2π)− u + (u− 1

2 ) log(u)|u=200 ≈ 857.933 in the R software). Accordingly, (A4) can
be approximated as:

l(π, v) ∝ ∑
r,t

{(
yr,t +

1
εr

)
log
( 1 + yr,tεr

1 + µr,tεr

)
+ yr,t log(µr,t)−

1
2

log(1 + εryr,t)
}

− R
2 ∑

λ,ψ,θ,ζ
log
(

v(·)>v(·)
)

.

(A5)

To obtain estimates of π and v by maximizing (A5), we apply the Adam algorithm,
which is sufficient and accessible for multi-parameter optimization and only requires
first-order gradients with little memory requirement [34]. Its pseudo-code is shown in
Algorithm A1 in Appendix A.3. Here, the initial values for v’s, α’s, and β’s are generated
from the standard normal distribution (N(0, 1)), while those for ε’s are generated from the
uniform distribution (U(0.01, 1)), which guarantees the non-negativity.
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Appendix A.2. First-Order Partial Gradients of the Penalized Log-Likelihood Function
From (A5), we have:

∂l(π, v)
∂µr,t

=
yr,t
µr,t
−
(

yr,t +
1
εr

) εr

1 + µr,tεr
,

∂µr,t
∂λr,t

=yr,t−l ,
∂µr,t
∂ψr,t

= Ψr,t−l ,

∂µr,t
∂θr,t

=Θr,t−l ,
∂µr,t
∂ζr,t

= 1,
∂λr,t

∂α
(λ)
r

=
∂λr,t

∂v(λ)r

= λr,t,

∂ψr,t

∂α(ψ)
=

∂ψr,t

∂v(ψ)r

= ψr,t
∂θr,t

∂α(θ)
=

∂θr,t

∂v(θ)r

= 1,

∂ζr,t

∂α(ζ)
=

∂ζr,t

∂v(ζ)r

= ζr,t,
∂ψr,t

∂β
(ψ)
1

= ψr,t log(Pur,t),

∂ζr,t

∂β
(ζ)
1

=ζr,t log
(

logit(t)
)

,
∂ζr,t

∂β
(ζ)
2

= ζr,t log(Por,t),

∂ζr,t

∂β
(ζ)
3

=β
(ζ)
1

(
1− logit(t)

)
,

∂ζr,t

∂β
(ζ)
4

= tβ
(ζ)
1

(
1− logit(t)

)
.

Thus,
∂l(π, v)

∂εr
=∑

t
− 1

ε2
r

log
( 1 + yr,tεr

1 + µr,tεr

)
+
(

yr,t +
1
εr

)( yr,t
1 + yr,tεr

− µr,t
1 + µr,tεr

)
− yr,t

2(1 + εryr,t)
,

∂l(π, v)

∂v(λ)r

=∑
t
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∂µr,t
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− vrR
|v(λ)|2
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,
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t

∂l(π, v)
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∂µr,t
∂ψr,t

∂ψr,t

∂v(ψ)r

− vrR
|v(ψ)|2

=∑
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( yr,t
µr,t
− 1 + yr,tεr
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)
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|v(ψ)|2

,

∂l(π, v)

∂v(θ)r
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t
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∂µr,t
∂θr,t

∂θr,t
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∂ζr,t

∂ζr,t
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= ∑
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(ζ)
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(
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where:

logit(t) =
(

1 + exp
{
− (β

(ζ)
3 + β

(ζ)
4 t)

})−1
.
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Thus,

∇(π,v)l(π, v) =

((∂l(π, v)
∂π

)>
,

∂l(π, v)

∂v(λ)r

,

∂l(π, v)

∂v(ψ)r

,
∂l(π, v)

∂v(θ)r

,
∂l(π, v)

∂v(ζ)r

)>
.

(A6)

Appendix A.3. Pseudo Algorithm

Here is the algorithm for the parameters’ optimization in (A5).

Algorithm A1 Adam based method for parameter optimization. Good default settings for
the analyzed COVID-19 dataset are learning rate η = 0.05, exponential decay rates b1 = 0.1
and b2 = 0.1, and γ = 1× 10−8. Algorithm tolerance tol = 1× 10−4. All operations are
element-wise.

Initialization: maxit = 200 (maximum iteration steps), flag = 0 (convergence indicator),
e1 = 0 (first moment vector), e2 = 0 (second moment vector), ε = 0 (iteration-step
indicator), (π0, v0), a0 = 0, τ0 = 0.
Iteration process:

while ε <= maxit and flag = 0 do
ε = ε + 1
gε = ∇(π,v)l(πε−1, vε−1) (gradients of l(π, v) shown in (A6) in Appendix A.2)

e(1)ε =
b1e(1)ε−1−(1−b1)gε

1−bε
1

(bias-corrected first moment estimate)

e(2)ε =
b2e(2)ε−1+(1−b2)g2

ε

1−bε
2

(bias-corrected second raw moment estimate)

τε = (πε−1, vε−1)− η e(1)ε√
e(2)ε +γ

(temporarily updated parameters)

(πε, vε) = b2aε−1 + (1− b2)τε (updated parameters)
aε = (1− 1

ε )aε−1 +
1
ε τε (averaged parameters for further iteration)

if |(πε ,vε)−(πε−1,vε−1)|√
5R+9

< tol (convergence determination)
flag = 1

end while
return (πε, vε) (optimal estimates)
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