
Wavelength Optimization for Quantitative Spectral
Imaging of Breast Tumor Margins
Justin Y. Lo1*, J. Quincy Brown1¤a, Sulochana Dhar2, Bing Yu1¤b, Gregory M. Palmer3, Nan M. Jokerst2,

Nirmala Ramanujam1

1Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America, 2Department of Electrical and Computer Engineering, Duke

University, Durham, North Carolina, United States of America, 3Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United

States of America

Abstract

A wavelength selection method that combines an inverse Monte Carlo model of reflectance and a genetic algorithm for
global optimization was developed for the application of spectral imaging of breast tumor margins. The selection of
wavelengths impacts system design in cost, size, and accuracy of tissue quantitation. The minimum number of wavelengths
required for the accurate quantitation of tissue optical properties is 8, with diminishing gains for additional wavelengths.
The resulting wavelength choices for the specific probe geometry used for the breast tumor margin spectral imaging
application were tested in an independent pathology-confirmed ex vivo breast tissue data set and in tissue-mimicking
phantoms. In breast tissue, the optical endpoints (hemoglobin, b-carotene, and scattering) that provide the contrast
between normal and malignant tissue specimens are extracted with the optimized 8-wavelength set with ,9% error
compared to the full spectrum (450–600 nm). A multi-absorber liquid phantom study was also performed to show the
improved extraction accuracy with optimization and without optimization. This technique for selecting wavelengths can be
used for designing spectral imaging systems for other clinical applications.
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Introduction

A wavelength optimization strategy is developed to improve the

design of a novel spectral imaging probe array [1] for quantitative

assessment of breast tissue margins during partial mastectomy

surgery, a common treatment for early stage breast cancer [2,3].

This generalized method is based on a search heuristic known as

a genetic algorithm that mimics the process of natural evolution

and identifies reduced wavelength sets that maintain tissue optical

contrast when compared to the broadband data. It requires

a technique for measuring or simulating spectral data with known

optical contrast and a metric for data extraction quality. Diffuse

reflectance spectroscopy in the visible range can be used to non-

destructively measure tissue optical properties. The propagation of

multiply scattered photons is sensitive to the absorption by

biological molecules and can ultimately provide contrast between

adipose tissue content (b-carotene absorption), vascularity (hemo-

globin absorption) and scattering (fibroglandular content). During

partial mastectomy, the surgeon strives to excise the entire tumor

with a surrounding rim (or ‘‘margin’’) of normal tissue while

preserving as much normal tissue as possible in the breast.

Ultimately, the complete removal of the breast tumor is vital to

reducing the chance of tumor recurrence [4]. A previously

developed spectral imaging system for breast tumors consists of

a broadband illumination source, an 8-channel fiber optic conduit

to direct light to and from the tissue, and an imaging spectrograph

and cooled CCD for detection. Each placement of the imaging

probe allowed for diffuse reflectance spectra (450–600 nm) to be

measured from up to 8 sites on the margin. Multiple placements of

the probe allowed for mapping the entire margin surface. Optical

properties of the specimens were extracted to create tissue

composition maps of total hemoglobin concentration, b-carotene
concentration, and tissue scattering using a fast, scalable Monte

Carlo model of reflectance previously developed by our group

[5,6]. Pathologically-confirmed positive margins, showed signifi-

cantly lower b-carotene/scattering ratios compared to negative

margins. This finding reflects a decrease in fat content and an

increase in fibroglandular content associated with margin positiv-

ity. The sensitivity and specificity of the system for determining

margin status was 79% and 67%, respectively [7].

The clinical adaptability of this technology will be impacted by

its size, cost, and the time needed to diagnostically map tumor

margins. This motivated the design of a compact and cost-effective

device based on the utilization of a few discrete wavelengths for

illumination to replace a broadband source and monochromator

in the original system and inexpensive photodiode arrays for

detection in lieu of a spectrograph and CCD camera [8–10].
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Optimized selection of wavelengths and bandpass filters was

important to minimize complexity and acquisition time, while

maintaining comparable sensitivity to the relevant sources of

optical contrast in the breast. Several groups have reported on the

optimization of wavelength combinations for specific clinical

applications. Using a matrix decomposition of basis spectra and

simulation of tissue data, Mazhar et al. optimized wavelength

pairs to measure hemodynamic changes in the near-infrared range

for breast imaging applications with diffuse optical tomography

[11]. By solving a linear equation based on a modified Beer-

Lambert Law, Umeyama and Yamada accounted for cross-talk of

measured NIR chromophores in wavelength combinations for

studying the brain [12]. Ferreira et al. presented a device

fabrication driven strategy for the spectroscopic imaging of

esophageal tissue, featuring 16 discrete wavelengths in the 350–

750 nm range [13]. The selection of wavelengths was constrained

by the filter fabrication process, i.e. materials, number of layers,

FWHM, etc. Phelps et al. developed a ratiometric method that

involves the selection of wavelength pairs that are independent of

tissue scattering to rapidly estimate total hemoglobin concentra-

tion in the UV-visible range [14]. These previous studies show the

importance of optimizing wavelength selection for various clinical

applications. Although diffuse reflectance and elastic scattering

spectroscopy [15] have increasingly been applied to breast tumor

margin assessment, few have optimized system production for

clinical translation. In this manuscript, a strategy is presented for

optimizing wavelength selection for a cost-effective design of

spectral devices for tissue margin assessment.

Figure 1. General flow chart of wavelength selection method. General flow chart illustrating the process for selecting and testing optimal
wavelength sets and spectral bandpass in clinical data obtained from breast tumor specimens and in tissue phantoms.
doi:10.1371/journal.pone.0061767.g001

Figure 2. Dominant absorbers of breast tissue in the UV-visible
spectrum. Molar extinction coefficient of oxy- and deoxy- hemoglobin
and b-carotene in the 400–600 nm range.
doi:10.1371/journal.pone.0061767.g002
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Methods

Figure 1 provides a broad overview of the steps taken to

determine and test the best wavelength sets and spectral bandpass.

First, existing ex vivo breast tissue reflectance data was used as

a training set for the optimization algorithm. A fast, scalable

Monte Carlo reflectance model [5] was used to extract the tissue

optical properties from the training set using various constraints,

such as the total number of wavelengths, the range of wavelengths,

and the increment of each wavelength from which to select.

Combined with a genetic algorithm for global optimization, the

best wavelength sets are identified by minimizing the sum of tissue

property extraction errors from the reflectance spectra. The

selected wavelengths are then validated with an independent

pathology-confirmed ex vivo breast tissue data set. A tissue-

mimicking phantom experiment was also performed as part of

the wavelength selection validation. The text in these subsequent

sections describes the methods in greater detail.

1. Wavelength Optimization
1.1 Diffuse reflectance spectra from ex vivo breast tissue

specimens. The dominant absorbers in the visible spectrum in

breast tissue are oxy- and deoxy-hemoglobin and b-carotene. The
absorption spectra of these breast tissue components are shown in

Figure 2. Previous studies have shown that b-carotene and tissue

scattering are significant parameters that can be used to

differentiate between malignant and benign breast tissues

[2,16,17]. To select the minimum set of wavelengths in the visible

spectral range that are sensitive to these key tissue constituents, an

existing data set of 4953 diffuse reflectance spectra measured from

an ex vivo clinical study at Duke University Medical Center

approved by the Duke University Institutional Review Board

(protocol #00017428) involving partial mastectomy procedures on

100 patients was used as a training set for the wavelength

optimization [7,17]. The diagnosis for the 101 margins were as

follows: 44 negative (.2 mm normal tissue), 35 close (,2 mm

normal tissue), and 22 positive. In addition, routine histopathology

was performed on a subset of these measurements, and the study

pathology classified 6–10 randomly selected measurement loca-

tions (or ‘‘sites’’ on the margins). A total of 320 normal adipose

sites, 24 normal fibroglandular sites, and 38 malignant sites were

used for testing the optimized wavelength sets.

Total hemoglobin [THb], b-carotene [bc], and reduced

scattering coefficients ,ms’. for each of the 4953 diffuse

reflectance spectra were extracted using a previously developed

inverse Monte Carlo model of reflectance [5,6]. Reflectance

spectra of samples at the 10th, 25th, 50th, 75th, and 90th percentile

of the empirical cumulative distribution functions (cdf) of [THb],

[bc], and average ,ms’. were chosen resulting in a total of 15

reflectance spectra in the training set. This method ensured that

the data are sampled evenly over the distributions rather than the

parameter value ranges, which could result in oversampling of

samples at the periphery of the distributions.

Table 1 lists the extracted breast tissue properties for each of the

15 selected reflectance spectra for the wavelength optimization

training set. Samples 1–5, 6–10, and 11–15 represent the 10th

through 90th percentiles of [THb], [bc], and average ,ms’.,

respectively. The objective in selecting reflectance spectra based

on the cdfs extracted from an extensively large data set of

previously measured ex vivo breast tumor margins was to cover

a wide range of [THb] (10.7–97.9 mM), [bc] (7.0–37.6 mM), and

average ,ms’. over 450–600 nm (3.7–11.9 cm21). Thus, from

the 15 reflectance spectra, each with 3 extracted parameters to

compare, there are 45 individual parameters to compare between

the reduced wavelength spectrum extractions and the full

spectrum extractions.

1.2 Combined monte carlo reflectance model and genetic

algorithm to select center wavelengths. The 15 selected

reflectance spectra described from the previous section were used

in a wavelength optimization technique that combines our

previously developed inverse Monte Carlo model of reflectance

[5] with a genetic algorithm (GA) (Global Optimization Toolbox

in MATLAB, The MathWorks, Natick, MA). Briefly, the GA uses

the principles of natural selection and evolution to produce

different solutions for a given problem. For our application, the

GA is an appropriate optimization method because it can solve

every optimization problem that can be described with chromo-

some encoding, which is similar to various wavelength combina-

tions. It can also provide multiple solutions for a given problem,

which is necessary from a practical system design perspective if not

all wavelengths in the solution are available commercially. The

algorithm has two major components: (1) the population of

individuals (or possible solutions) with its own unique string of

‘‘chromosomes’’ and (2) a fitness function that evaluates the

possible solutions. Typically, a population of solutions is randomly

generated for a given range of possible solutions. The fitness

function is used to evaluate each individual from that population.

All of the individuals from the populations are then ranked

according to their fitness values. From this existing population,

a user-identified proportion is selected to breed a new generation

of solutions, and those solutions with fitter values are more likely to

be selected. The parent solutions reproduce new offspring

solutions by genetic operators such as crossovers or mutations,

which essentially results in changes of chromosomes in the

offspring and maintains genetic diversity in the subsequent

populations. The GA ends when a solution that satisfies the

criteria is found, a designated computational time is reached, or

a specified generation number is reached. Figure 3 is a general

diagram of the steps taken for wavelength optimization, combining

an inverse Monte Carlo reflectance model with the GA.

The algorithm begins with the initial constraints of the

wavelengths to be used. To extract the 4 parameters of oxy-

Table 1. Extracted ex vivo breast tissue properties used for
training set.

Sample [THb] (mM) [b-carotene] (mM) ,ms’.450–600 (cm21)

1 10.7 7.5 4.1

2 18.1 21.7 5.3

3 32.7 18.6 11.5

4 59.3 21.0 8.0

5 97.9 16.6 4.4

6 55.7 7.0 3.9

7 49.6 11.3 9.2

8 32.8 17.5 6.3

9 73.1 26.0 8.8

10 95.9 37.6 8.4

11 24.2 13.6 3.7

12 22.3 29.3 4.8

13 40.3 31.3 6.5

14 91.1 15.8 8.9

15 11.5 30.8 11.9

doi:10.1371/journal.pone.0061767.t001
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hemoglobin, deoxy-hemoglobin, b-carotene, and reduced scatter-

ing coefficients, at least 5 center wavelengths are needed. The

initial population of wavelength sets is created by a random

permutation of 50 different wavelength combinations, for 5, 8, and

12 wavelengths in 1, 5, and 10 nm increments from 450–600 nm

(151, 31, and 16 possible center wavelengths, respectively). The

selection of wavelengths in 1 nm increments represents an ideal

situation in system design in which the types of sources available

are not limited. The selection of wavelengths in 5 and 10 nm

increments represents a more realistic situation, in which the final

optimized set of wavelengths will likely be commercially available

in the form of bandpass filters. These different wavelength

combinations serve as the initial solutions of the iterative GA.

The inverse MC model serves as the GA’s fitness function, which is

used to evaluate the suitability of each set of wavelengths as

a possible solution for extracting ,ma., thus [THb] and [bc], and
,ms’. from the training set.

In the 1st generation of a given GA process with its constraint of

total wavelengths and the selection increment, the output of the

fitness function is 50 sets of extracted breast tissue properties,

[THb], [bc], and average ,ms’., for 15 samples using each of the

50 reduced wavelength solution sets. The fitness value was the

RMS error between the extracted tissue parameters ([THb], [bc],
and average ,ms’.) using the reduced wavelength set and using

the full 450–600 nm spectrum. Fifty individual wavelength sets

were ranked by increasing fitness values (sum of extracted errors)

for the 15-sample training set. From these 50, the top 15

wavelength sets with the lowest sum of extracted errors are

duplicated to create a new generation of solutions. These same 15

wavelength sets were also used to generate 35 new wavelength sets

by means of single-point crossovers or wavelength mutations. In

a crossover operation, a random wavelength serves as the point

where two wavelength sets break and join. In a mutation

operation, a new wavelength is randomly generated from

a Gaussian distribution and replaces a wavelength of the parent

wavelength set, creating a new wavelength set. The selection of the

parent wavelength sets from the previous generation to crossover

or to mutate and pass on to the next generation is based on the

simulation of a roulette wheel, in which the area of the wheel

corresponding to a parent is inversely proportional to the parent’s

fitness value, or sum of extracted errors. In other words, the lower

the wavelength set’s extracted errors, the higher the probability of

that wavelength set is selected, crossed over or mutated, and

Figure 3. Diagram of combined Monte Carlo reflectance model and genetic algorithm. Diagram detailing the steps of selecting
wavelengths for quantitative tissue spectroscopy using the genetic algorithm and inverse Monte Carlo model.
doi:10.1371/journal.pone.0061767.g003

Table 2. Average ma (450–600 nm) of liquid phantoms
containing hemoglobin, crocin, and polystyrene
microspheres.

Absorber Level 1 Avg ma (cm21) Absorber Level 2 Avg ma (cm21)

Total Hb Cr Total Hb Cr

0.51 0.51 0.00 0.91 0.91 0.00

0.99 0.51 0.48 1.72 0.90 0.82

1.23 0.51 0.72 2.12 0.89 1.23

1.47 0.51 0.96 2.53 0.89 1.64

1.70 0.50 1.20 2.93 0.88 2.05

aEach absorber level was tested for 2 scattering levels (avg ms’ = 9 cm21 and avg
ms’ = 12 cm21) for a total of 20 phantoms.
doi:10.1371/journal.pone.0061767.t002
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passed down to be part of the next 50 solutions to be evaluated.

Because higher crossover fractions result in less diversity in the

subsequent generations and we also found no significant differ-

ences in computational time or solutions for various crossover

fractions ranging from 0–40%, in this particular study, the

crossover fraction is set at 20%, which means 7 of the 35 solutions

are the result of a crossover while the remaining 28 are the result

of mutations. In the cases of any resulting offspring from

a crossover operation having duplicate wavelengths, one of the

duplicate wavelengths is discarded, and a new wavelength is

randomly generated and inserted in the wavelength set. This

process iterates until the minimum fitness value of the generation is

unchanged for 10 generations or after 50 generations. All of the

GA processes tested in this study converged to an optimum

solution given their respective constraints prior to reaching 50

generations. A single optimization requires approximately 21–28

hours, depending on the initial constraints tested, such as the

number of wavelengths implemented and the selection increment.

The highest ranked 3 solutions from the final generation produced

by each GA process were further evaluated using previously

described clinical data, independent from the 15 spectra used in

the selection process.

1.3 Selection of optimal bandpass. In addition to selecting

the most appropriate total number and the center wavelengths of

the source, it is also important to understand the effect of

increasing full-width half-maximum (FWHM) on the accuracy of

the extraction of optical properties. While laser diodes can have

very small FWHM, it may not be possible to obtain sources at

every wavelength in the optimized solutions. On the other hand,

bandpass filters are commercially available at every 10 nm center

wavelength in the UV-NIR spectrum, but may come at a cost of

10 nm FWHM around the center wavelength. Light emitting

diodes (LEDs) often have even larger FWHM, commonly ranging

from 20–50 nm.

Forward Monte Carlo simulations were conducted to study the

effect of increasing bandpass. Using the wavelength-dependent

optical properties of the 15 clinically measured spectra chosen for

the training set described in Section 2.1, diffuse reflectance spectra

were generated. The wavelength-dependent absorption coeffi-

cients, ma, were determined using the molar extinction coefficients

for oxy- and deoxy-hemoglobin, as well as b-carotene. The

reduced scattering coefficients, ms’, at each wavelength were

calculated using Prahl’s Mie scattering program [18]. The

simulations were scaled for the probe geometry used in the

clinical measurements [5]. Each of the 15 simulated spectra were

convolved with Gaussian distributions of 1, 5, 10, 20, 30, 40, and

50 nm, resulting in a total of 105 spectra of varying FWHM.

The inverse Monte Carlo model was used to extract [THb],

[bc], and average ,ms’. values from the 15 reflectance spectra

with various FWHMs. The extractions were repeated for the top 3

solutions from the wavelength optimizations for 5, 8, and 12 total

center wavelengths. The extracted parameters from the reduced

wavelengths set with added FWHM were compared to those of the

full, simulated spectra without added FWHM. Because these

simulations did not include system and measurement artifacts that

Table 3. Top solutions for each optimization with varied
increments and total number of wavelengths.

l range # of lsOptimized Wavelengths Error

450:1:600 12 451 460 474 483 487 502 511 560 579 584
585 596

11.7%

451 460 474 483 502 509 511 560 573 584
585 596

11.8%

466 479 491 500 516 527 532 560 566 574
590 597

12.0%

8 474 481 498 509 555 573 593 596 12.2%

489 492 503 522 537 558 583 592 12.3%

485 492 503 510 537 544 560 593 12.5%

5 485 496 512 547 589 18.1%

478 499 513 582 596 19.5%

482 496 527 576 597 19.7%

450:5:600 12 460 470 485 490 505 525 530 535 550 570
575 600

11.9%

460 470 475 480 485 500 515 525 530 555
585 595

12.2%

455 465 470 490 505 510 515 530 550 560
590 595

12.4%

8 470 485 495 500 510 550 580 600 12.4%

460 485 500 510 555 560 580 600 12.7%

450 480 500 505 545 555 585 600 13.2%

5 485 495 510 540 590 18.5%

490 520 525 570 595 18.7%

485 495 510 545 595 19.9%

450:10:600 12 450 470 480 490 500 510 520 530 540 560
580 600

12.0%

460 470 480 490 510 530 540 550 560 570
580 600

12.1%

450 460 490 500 510 530 540 550 560 570
580 600

12.3%

8 460 490 510 520 540 550 580 600 12.4%

470 480 490 500 510 560 580 600 12.6%

480 500 510 530 550 560 570 600 13.3%

5 480 490 520 540 590 19.0%

480 490 520 550 600 19.9%

450 490 520 530 590 20.3%

The error from the optimization is the minimized average errors of the
extracted parameters from the 15 representative reflectance spectra chosen
from the breast tissue data set.
doi:10.1371/journal.pone.0061767.t003

Figure 4. Average of extracted errors for tissue parameters
with increasing number of wavelengths. Average extracted %
error of [THb], [bc], and ,ms’. for 5, 6, 7, 8, and 12 total wavelengths
selected from 450–600 nm in 1 and 10 nm increments.
doi:10.1371/journal.pone.0061767.g004
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may exist in measured clinical data, a 10% error was set as the

threshold for determining an acceptable FWHM in the analysis.

2. Wavelength Selection Validation
2.1 Independent pathology-confirmed tissue data. The

results from the wavelength optimization were tested against an

existing breast tissue data set, independent of the 15 spectra used

for the training set described previously. The inverse Monte Carlo

model was used to extract [THb], [bc], and ,ms’. from each of

the 382 pathological confirmed sites (320 adipose, 24 fibrogland-

ular, 38 malignant) obtained from breast tumor margins. The

tissue extractions were performed for the full spectrum of 450–

600 nm in 2.5 nm increments for a total of 61 wavelengths, and

for the top 3 optimized solutions for each of the test cases: 5, 8, and

12 total wavelengths in 1, 5, and 10 nm increments. To show the

differences between optimization and non-optimization, tissue

extractions were also made using the semi-evenly spaced

wavelengths empirically chosen from 400–600 nm used in a pre-

viously reported system [19]. Using the full spectrum [THb], [bc],
and,ms’. extractions as the gold standard, errors in the extracted

parameters resulting from the reduced wavelength sets were

calculated. The Bland-Altman method was used to assess the

agreement between the extractions using the full spectrum and the

extractions using the optimized and non-optimized spectra.

2.2 Multi-absorber liquid phantom study. A set of 20

phantoms was used to further assess the results from the

wavelength optimization. The liquid tissue-simulating phantoms

were prepared by mixing polystyrene microspheres (07310,

Polysciences, Inc) as the scatterer with water soluble hemoglobin

(H0267, Sigma Co.) and crocin (17304, Fluka) as the absorbers.

Hemoglobin and crocin were used as the absorbers since they have

been used to simulate blood and b-carotene in breast tissue [20].

Based on the optical properties of b-carotene found in previous

studies, the appropriate crocin level was added by matching the

mean ma of these two absorbers with similar spectral features [2].

The 2 scattering levels represent the means over 450–600 nm of

representative malignant (ms’ = 9 cm21) and normal

(ms’ = 12 cm21) breast tissue. The optical properties of the

phantoms are shown in Table 2.

The phantom optical measurements were obtained with

a previously reported system with slight modifications [1,9] The

system consists of a 450W Xenon Arc lamp and a scanning

monochromator (Gemini 180, JY Horiba) coupled to a 600 mm
optical fiber as the source. The spectral bandpass of the

illumination was fixed at 7 nm. A custom annular silicon

photodiode with 2.5 mm outer diameter and 0.75 mm inner

diameter was used for detection [21]. The optical fiber was fitted

through and epoxied in the detector aperture to illuminate the

phantoms, and the detector was connected to a photodiode

amplifier (PDA-850, Terahertz Technologies, Inc.) for reflectance

measurements. Diffuse reflectance measurements were taken at

the discrete wavelength solutions as well as at the evenly spaced

wavelengths from 400–600 nm in order to compare the optimized

solution to one which samples wavelengths at regularly spaced

intervals over the visible spectral range as previously described [8].

The inverse Monte Carlo model was used to extract optical

properties from each phantom and root mean square (RMS)

errors were compared for both sets of wavelengths.

Results

1. Eight Wavelengths can be Used to Accurately Extract
[THb], [bc], and ,ms’.
Table 3 enumerates the top 3 solutions for each of the

constraints in the optimization, including wavelength range,

increment, and total number of wavelengths. For the optimized

solutions chosen from 450–600 nm in 1 nm increments, the

average errors of extracted THb, bc, and ms’ from the 15 tissue

reflectance spectra increases from 11.7% to 12.2% to 18.1% as the

total number of wavelengths used decreases from 12 to 8 to 5.

When selecting in 5 nm and 10 nm increments, the errors increase

from 11.9%–18.5% and 12.0%–19.0% as the wavelengths de-

crease from 12 to 5, respectively. This trend is not unexpected

because as the total number of wavelengths as well as available

Figure 5. Effect of increasing spectral bandpass. (a) Simulation of the effect increasing spectral bandpass on a diffuse reflectance spectrum
representing 10 mM [THb], 5.5 mM [bc], and 3.11 avg ,ms’.. (b) Average extracted errors of [THb], [bc], avg ,ms’. with increasing spectral bandpass.
doi:10.1371/journal.pone.0061767.g005
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center wavelength choices decrease, the possibility of capturing the

spectral features of the absorbers and scatterers in tissue also

decreases, thus increasing the extracted errors.

Figure 4 puts into perspective the optimal number of

illumination wavelengths required for the design of a breast

spectral imaging system. At 5 wavelengths, the average extracted

percent error of [THb], [bc], and ,ms’. from the 15

representative breast tissue reflectance spectra was close to 20%.

The increase to 6, 7, and 8 wavelengths improved the extraction

errors to 14%, 13%, and 12%, respectively. There are diminishing

returns in improving extraction errors by adding more wave-

lengths past 8. The graph shows that for our particular application

for breast tumor margin assessment, the appropriate number of

wavelengths to use is 8.

2. Spectral Bandpass Affects Extraction Accuracy
Because the system used to obtain the existing breast tumor

margin data had a spectral bandpass of 3.9 nm, it is challenging to

evaluate the effect of changes in bandpass and to optimize both the

wavelengths and bandpass of a system. The forward MC model

was used to simulate the same 15 reflectance spectra used in the

wavelength optimization. The original spectra were degraded to

simulate increases in spectral bandpass of 5, 10, 20, 30, 40, and

50 nm. Representative reflectance spectra (10 mM [THb], 5.5 mM
[bc], and 3.11 avg ,ms’.) with these changes in spectral bandpass

are shown in Figure 5(a). The extracted errors from each case are

shown in Figure 5(b). The results in Figure 5(b) show that to

extract the breast tissue properties with good accuracy, the

wavelengths must have ,10 nm FWHM, and 8 or more

wavelengths have to be implemented in the system design.

Parameter extraction accuracies are affected by not only the

number of wavelengths and the center wavelengths used, but also

Table 4. Summary of average extracted errors of parameters for various tissue types for the top 3 optimized solutions.

Constraints [THb] [bc] ,ms’.

# of l, increment Tissue Set1 Set2 Set3 Set1 Set2 Set3 Set1 Set2 Set3

12l: 450:1:600 A 3.1 2.4 4.5 23.9 25.5 210.8 9.3 3.0 7.8

FG 3.9 3.4 5.6 213.9 215.9 215.7 4.2 3.9 11.8

M 3.0 3.9 24.8 2.1 22.5 211.9 8.9 2.1 5.3

12l: 450:5:600 A 3.8 2.0 5.6 27.9 24.6 22.4 6.4 11.7 2.7

FG 2.0 8.8 12.2 27.6 210.1 211.4 11.2 4.9 10.0

M 22.8 6.0 5.9 22.7 25.2 27.0 2.7 6.2 7.7

12l: 450:10:600 A 4.0 22.2 6.0 22.8 28.7 211.5 1.4 3.8 9.3

FG 7.7 9.7 10.4 29.6 217.3 214.9 3.2 10.8 15.7

M 6.6 26.5 4.7 24.4 28.5 29.5 2.0 24.0 7.7

8l: 450:1:600 A 8.5 5.5 11.0 23.0 21.4 25.7 6.6 8.8 7.9

FG 22.6 10.4 8.7 27.0 218.9 212.0 6.6 13.5 11.1

M 4.1 28.2 11.9 4.4 23.0 3.2 8.5 5.0 7.7

8l: 450:5:600 A 7.1 7.0 8.2 22.9 24.7 26.1 8.6 9.0 8.9

FG 5.9 8.5 11.9 26.8 218.2 210.0 13.3 14.6 15.5

M 5.3 7.7 8.2 2.9 27.7 2.1 7.1 8.7 8.7

8l: 450:10:600 A 11.7 6.7 13.9 212.2 24.8 213.2 4.8 2.2 9.1

FG 13.9 7.2 7.1 215.4 28.8 210.0 9.0 4.5 14.8

M 211.8 7.5 12.9 219.2 22.9 29.4 1.1 2.8 8.1

5l: 450:1:600 A 22.2 23.3 21.0 220.8 210.2 10.1 17.2 16.6 15.6

FG 23.3 28.4 27.0 10.9 218.1 12.5 22.8 23.5 23.2

M 21.0 25.3 25.9 13.6 11.8 13.8 16.8 18.2 18.3

5l: 450:5:600 A 22.3 26.4 23.4 23.7 223.2 24.0 18.4 18.7 18.2

FG 27.1 29.3 20.9 28.1 220.6 28.0 25.1 23.5 24.4

M 23.4 26.6 22.8 18.8 221.2 18.7 19.6 25.4 18.3

5l: 450:10:600 A 16.0 21.4 24.4 26.9 28.8 25.1 24.7 24.9 21.9

FG 13.3 21.8 17.9 22.5 23.8 28.1 29.6 29.8 29.0

M 19.7 15.6 220.3 25.1 23.4 221.5 20.9 22.0 221.1

ES8l: 400–600 A 22.5 14.0 215.5

FG 23.6 64.4 218.3

M 17.3 15.7 226.3

Positive values indicate an over-estimation of the extracted parameters while negative values indicate an under-estimation of the parameters. [THb]: total hemoglobin;
[bc]: b-carotene;,ms’.: reduced scattering coefficient; A: adipose tissue; FG: fibroglandular; M: malignant tissue; ES8l: semi-evenly spaced 8 wavelengths (400, 420, 440,
470, 500, 530, 570, 600 nm).
doi:10.1371/journal.pone.0061767.t004
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by the spectral bandpass of the wavelengths. It has been shown

through existing clinical data that using 5 wavelengths is likely

inadequate for accurate extractions of breast properties. The

simulations on the effect of widening spectral bandpass also show

that the errors with 5 wavelengths are nearly double those of 8.

Similar to previously measured data, the increase from 8 to 12

wavelengths did not seem to have a significant impact on

improving the extraction accuracy. Because commercially avail-

able LEDs have a much larger bandpass than the 10 nm identified

here, more work is required to realize a compact, energy-saving

spectral imaging system. Additional filters can be used to narrow

the bandpass at each wavelength, or each of the LED spectra can

be accounted for with the Monte Carlo reflectance model. Briefly,

the shape of each LED spectrum can be added to the MC forward

model, which computes a lookup table of ‘‘LED-modified’’

reflectance spectra for a wide range of optical properties. The

inverse MC model can then be used to extract optical properties

from samples measured with the system with the specified LEDs as

sources.

3. Optical Contrast in Breast Tissue is Retained with
Optimized Wavelength Choices
The top 3 optimized solutions with 5, 8, and 12 total

wavelengths selected from 450–600 nm in 1, 5, and 10 nm

increments were tested in an independent partial mastectomy

tissue data set. Although the initial 15 reflectance spectra selected

in the training set spanned the 10th to 90th percentiles of [THb],

[bc], and ,ms’., in this large data set the histological diagnoses of

the tissues corresponding to these spectra were not known.

Therefore, a subset of measurements for which diagnosis was

histopathologically confirmed was used to independently test the

optimized wavelengths, and were split into 3 tissue types: adipose,

fibroglandular, and malignant.

Table 4 and Table 5 provide a summary of all errors extracted

for the top 3 optimized solutions for each tissue type and for 5, 8,

and 12 wavelengths in 1, 5, and 10 nm increments. A positive

percent error value indicates an over-extraction by the reduced-

wavelength solutions; a negative value indicates an under-

estimation of the extracted parameters. When the number of

wavelengths is increased from 8 to 12, the sum of absolute values

of the extracted errors for the 3 parameters for any given set of

solutions did not improve drastically, which was expected based on

the findings shown in Figure 4. When the total number of

wavelengths used is decreased from 8 to 5, however, the extracted

errors are increased. For solutions selected in 1 nm increments, the

extracted [THb] from normal adipose, normal fibroglandular, and

malignant tissues using 8 wavelengths differed by 8.5%, 22.6%,

and 4.1% from the full 61-wavelength set, respectively. When the

wavelengths were reduced to 5, the errors increased to 22.2%,

23.3%, and 21.0% for the 3 tissue types. Similarly, with 8

wavelengths, the extracted [bc] errors for the adipose, fibrogland-
ular, and malignant tissues were 23.0%, 27.0%, and 4.4%. With

just 5 wavelengths, the errors increased to 220.8%, 10.9%, and

13.6%. The extracted reduced scattering coefficient errors were

also more than doubled (6.6–8.5% to 16.8–22.8%) when total

wavelengths decreased from 8 to 5. Because the motivation for this

work is to provide a method of optimizing wavelength choices for

a compact, cost-effective, and fast spectral imaging device that also

has a simplistic design, the solutions with 12 total wavelengths

were eliminated and only 8 total wavelengths are used for

subsequent system design to be described in a future work.

Although the top optimized solution for each wavelength

selection constraint had the lowest average errors of [THb], [bc],
and ,ms’. extracted from the 15 representative reflectance

spectra in the training set, the best choice of wavelengths from the

independent breast data set validation is not necessarily the same

as the best solution from the training set. This is possibly due to the

relatively small size of the training set. However, the differences in

errors between the top 3 optimized solutions are also small, which

indicates that the solutions have been minimized. The best

wavelength set for extracting optical parameters with the lowest

errors in the histopathology confirmed data set is solution#1: 474,

481, 498, 509, 555, 573, 593, 596 nm for the wavelengths selected

in 1 nm increments. The best wavelength set selected from 5 nm

increments is also solution #1: 470, 480, 495, 500, 510, 550, 580,

600 nm. However, the best wavelength set selected from 10 nm

increments is solution #2: 470, 480, 490, 500, 510, 560, 580,

Table 5. Summary of average extracted errors of the ratio of
[THb]/,ms’. and [bc]/,ms’. for various tissue types for the
top 3 optimized solutions.

Constraints [THb]/,ms’. [bc]/,ms’.

# of l, increment Tissue Set1 Set2 Set3 Set1 Set2 Set3

12l: 450:1:600 A 22.9 24.5 28.4 215.426.6 210.8

FG 27.0 21.5 213.3213.1210.9212.7

M 23.7 24.2 28.3 27.9 22.1 28.7

12l: 450:5:600 A 26.1 0.3 0.7 25.6 25.7 29.8

FG 29.8 27.7 24.9 212.8215.9213.1

M 26.4 20.5 22.2 26.3 211.728.9

12l: 450:10:600 A 23.0 26.5 24.1 26.1 28.8 213.7

FG 26.0 28.4 26.9 212.2212.8216.8

M 23.4 23.9 24.0 25.6 29.8 29.2

8l: 450:1:600 A 24.8 26.0 27.3 211.3212.7215.1

FG 21.4 21.5 21.2 210.1218.6216.4

M 22.5 26.1 26.9 28.5 29.6 25.1

8l: 450:5:600 A 21.8 22.6 25.9 23.4 216.9217.3

FG 25.3 27.4 24.7 214.1212.029.9

M 22.5 21.7 21.3 25.2 29.0 27.6

8l: 450:10:600 A 28.6 4.2 26.0 8.3 7.6 15.0

FG 25.8 2.2 29.4 19.0 14.4 19.9

M 28.5 4.4 26.3 10.0 4.3 9.6

5l: 450:1:600 A 17.4 18.4 16.7 221.6232.3218.4

FG 13.1 16.3 12.7 228.7230.4224.0

M 15.3 21.0 19.8 223.5219.8214.7

5l: 450:5:600 A 16.1 220.417.3 228.0221.9227.6

FG 14.6 218.314.4 223.8232.8222.4

M 15.9 223.716.1 223.3222.820.2

5l: 450:10:600 A 217.6216.7217.723.1 28.8 226.9

FG 217.4217.2216.7223.524.3 220.8

M 222.025.8 218.0221.224.8 220.9

ES8l: 400–600 A 44.0 35.3

FG 26.6 102.1

M 70.1 75.5

Positive values indicate an over-estimation of the extracted parameters while
negative values indicate an under-estimation of the parameters. [THb]: total
hemoglobin; [bc]: b-carotene; ,ms’.: reduced scattering coefficient; A: adipose
tissue; FG: fibroglandular; M: malignant tissue; ES8l: semi-evenly spaced 8
wavelengths (400, 420, 440, 470, 500, 530, 570, 600 nm).
doi:10.1371/journal.pone.0061767.t005
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600 nm. The wavelengths selected from 1 nm increments from

450–600 do have striking similarities with those selected from both

the 5 nm and 10 nm increments. From a practical system design

standpoint, this is a good finding because of the abundant

availability of sources in 10 nm increments, such as those of LEDs.

On the other hand, the wavelengths selected from 1 nm

increments (and some wavelengths in 5 nm increments) in the

450–600 nm range are not all commercially available to date.

Since wavelength choices in both the 5 nm and 10 nm increments

did not yield significantly different extracted errors, the 8

wavelengths selected in 10 nm increments (solution #2) were

chosen for subsequent analyses in this study: 470, 480, 490, 500,

510, 560, 580, and 600 nm, which are all commercially available

filters with 10 nm bandpasses. A practical low-cost implementa-

tion for these center wavelengths would be to use a white LED

together with the respective bandpass filters.

The optimization helped identify wavelength sets that can be

used to extract tissue parameters with errors ,20%; however, the

acceptable extraction errors for [THb], [bc], and ,ms’. has to be

determined based on the contrast of these optical endpoints in

various tissue types. In Table 6, the percent difference of

quantifiable optical contrast was calculated between the histolog-

ically-confirmed median adipose and malignant tissue samples, as

well as the median fibroglandular and the malignant samples. A

positive percent difference indicates that the benign (adipose or

fibroglandular) tissue samples had greater extracted values than

those of the malignant sample. The malignant sample showed

decreased [THb] and ,ms’. compared to the adipose samples

and decreased [THb] and [bc] compared to the fibroglandular

sample. Also in the table are the extraction percent changes from

the full 450–600 nm spectrum compared to the 8 optimized

wavelengths and the 8 evenly spaced wavelengths. A positive

percent change indicates an over-estimation of the extracted

values by the 8-wavelength reduced spectra compared to the full

450–600 nm spectrum. A negative percent change means that the

extracted values are decreased using 8 wavelengths.

The percent change using the optimized wavelengths is smaller

than the percent difference for all optical parameters so optical

contrast should be preserved with these reduced wavelengths. On

the flip side, the percent change using the evenly spaced

wavelengths without any optimization is sometimes greater than

the percent difference for the optical parameters, such as for [bc]
and [bc]/,ms’.. This means that the optical contrast to

differentiate benign from malignant samples may be washed out

if the un-optimized wavelengths are used. By examining the

percent differences between optical parameters of benign and

malignant samples and the mean extracted errors from Table 4

and Table 5, it was also further established that none of the top

wavelength sets with only 5 wavelengths can be used for our

clinical application because most of the extracted errors are

greater than percent differences of the optical parameters for the

various breast tissue types tested.

Figure 6 shows the Bland-Altman plots comparing the

extractions between the optimum 8-wavelength set and the evenly

spaced 8-wavelength set with the full 450–600 nm 61-wavelength

set. The various tissue types are shown in columns, and the

extracted parameters are shown in rows. The mean difference (or

bias between the optimized reduced and full wavelength extrac-

tions) and 95% limits of agreement for [THb] are 1.5610.6,

3.2611.6, and 2.3611.3 mM for adipose, fibroglandular, and

malignant tissue types, respectively. By comparison, the evenly

spaced 8-wavelength extractions do not agree as well for extracting

[THb], with the mean difference and 95% limits of agreement at

210.0635.2,24.4651.8, and22.2646.3 mM for the three tissue

types. Similar trends are observed for the extraction of [bc] and
,ms’.. The mean differences between the opimized 8 wave-

lengths and the 61-wavelength spectrum for the extraction of [bc]
are close to 0 with a much smaller range of limits of agreement for

various tissue types:20.762.7,20.763.9, and20.461.7 mM. By

comparison, the un-optimized evenly spaced wavelengths have

a larger difference and wider range: 21.969.3, 27.1614.9, and

1.8637.1 mM. For scattering, the optimal wavelengths also

performed better: 0.261.1, 0.362.0, and 0.261.6 cm21 com-

pared to 1.162.5, 2.067.5, and 3.167.0 cm21. Because previous

studies have shown that [bc] and,ms’. are significant parameters

that provide optical contrast for breast tumor margin assessment,

these results further show the importance of optimizing wave-

length choices.

Figure 7 contains representative breast tumor margin images of

extracted [bc]/,ms’. for a negative (normal) and two positive

breast resection margins: ductal carcinoma in situ (DCIS) and

invasive ductal carcinoma (IDC). The margin images shown in (a),

(e), and (i) were obtained using the full 450–600 nm spectrum. The

images shown in (b), (f), and (j) were extracted using the optimized

solution for 8 wavelengths: 470, 480, 490, 500, 510, 560, 580, and

600 nm. The images shown in (c), (g), and (k) were extracted using

Table 6. Comparison of the percent difference between median adipose and malignant tissue and fibroglandular and malignant
tissue to the percent change of extractions using the optimized wavelengths and evenly spaced wavelengths to the full 450–
600 nm spectrum.

Medians % Difference Extraction % change from full 450–600 nm spectrum

Full spectrum (450–600) Optimized 8 ls Semi-evenly spaced 8 ls

A vs. M FG vs. M A FG M A FG M

[THb] 240.66 225.16 8.90 10.48 2.63 215.09 5.64 21.28

[bc] 9.90 29.54 24.54 28.74 20.76 22.74 235.39 26.79

,ms’. 236.89 22.83 1.15 11.72 2.21 18.05 26.88 27.89

[THb]/,ms’. 22.75 262.18 1.84 21.40 0.43 240.43 229.04 240.45

[bc]/,ms’. 13.07 287.48 25.75 223.18 21.99 225.36 285.15 212.12

[THb]: total hemoglobin; [bc]: b-carotene; ,ms’.: reduced scattering coefficient; A: adipose tissue; FG: fibroglandular; M: malignant tissue; Positive percent difference
indicates that the benign tissues (A and FG) had greater extracted values; negative percent difference means the malignant sites were greater. A positive extraction
percent change indicates an over-estimation of the extracted parameters while a negative percent change indicates an under-estimation of the parameters.
doi:10.1371/journal.pone.0061767.t006
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the evenly spaced 8 wavelengths used in a previous system: 400,

420, 440, 470, 500, 530, 570, and 600 nm. The correlation

coefficients for the images extracted with optimized 8 wavelengths

(as compared to the images extracted using the full 61-wavelength

set) were 0.98, 0.96, and 0.95 for the normal, DCIS, and IDC

margins, respectively. The correlation coefficients for the evenly

spaced 8 wavelengths were 0.77, 0.81, and 0.53. Histograms are

shown in (d), (h), and (l) to compare the extracted [bc]/,ms’.
using 61 wavelengths versus just 8 wavelengths with and without

optimization. Wilke et al. reported using a threshold of 6 for the

[bc]/,ms’. ratio for classifying negative and positive margins [7].

If 98% of the pixels that make up the margins have a ratio ,6, the

margin is then classified as positive. The histogram shows that with

the optimized 8 wavelengths, the contrast in breast margins is

preserved. Without the optimization, some contrast is lost. These

margin maps can potentially help surgeons identify suspicious ‘‘hot

spots,’’ where cancer cells may be present at the surface of the

excised specimen.

Wilcoxon Rank Sum tests were performed to compare the

Monte Carlo extracted optical properties using the full 61 and

reduced wavelengths, both the optimized and evenly spaced 8.

The boxplots of the comparisons are shown in Figure 8. The

histologically normal samples were comprised of 320 adipose and

24 fibroglandular samples (total N=344) compared to the 38

malignant samples. The extractions of [THb], [bc], and ,ms’.
using the optimized 8 and 61 wavelengths were not significantly

Figure 6. Bland-Altman plots of MC extractions using various wavelength combinations. Bland-Altman plots assessing the agreement of
MC extractions of [THb], [bc], ,ms’., [THb]/,ms’., and [bc]/,ms’. in adipose, fibroglandular, and malignant tissue types using the full spectrum
versus the optimized reduced wavelength spectrum with 8 wavelengths (470, 480, 490, 500, 510, 560, 580, 600 nm) shown in black and the regularly
spaced intervals (400, 420, 440, 470, 500, 530, 570, 600 nm) shown in red. The solid lines indicate the mean difference (bias) between the extractions;
the dashed lines indicate the 95% limits of agreement.
doi:10.1371/journal.pone.0061767.g006
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different for all tissue types. The findings from an observational

study on the effects of tissue heterogeneity reported by Kennedy

et al were also duplicated [17]. [THb] and ,ms’. were both

significantly increased in the malignant samples compared to the

normal samples. Using the evenly spaced 8 wavelengths that were

selected empirically for a previous system, the extracted ,ms’. is

most notably underestimated for malignant samples while the

[THb] and the ratio [bc]/,ms’. are overestimated. These are

consistent with the Bland-Altman plots shown in Figure 6. Without

wavelength optimization, the contrast between benign and

malignant samples for [THb] and ,ms’. is not retained as

wavelength numbers are reduced to the 8 evenly spaced

wavelengths. Although these results show that a reduced wave-

length set can be used in place of the full wavelength spectrum to

obtain optical contrast in previously acquired breast tissue data,

which have disproportionally large number of adipose normal

tissue, the main goal of this study is not to show the predictive

power for separating normal from tumor, but rather it is to find

a reduced number of wavelengths that can be used to extract

reasonably similar tissue parameters compared to the full

spectrum. With the ability to extract similar tissue parameters

from previous clinical studies reported by Wilke et al. and

Kennedy et al., we expect to have similar success in classification

in future studies with a new compact device with the optimized

wavelengths implemented.

4. Wavelength Optimization Improves Extraction
Accuracy in Phantoms
Figure 9 compares the extraction accuracy in the multi-absorber

liquid phantom study using the full 450–600 nm range, the

optimized wavelengths, and the evenly spaced wavelengths that

were chosen empirically for a previously reported system [22]. The

RMS errors for the extraction of [Hb], [Cr], and ,ms’. using the

61 wavelengths in the 450–600 nm range were 4.764.4%,

3.863.8%, and 3.762.4%, respectively. However, using the 8

evenly spaced wavelengths without any optimization, the RMS

errors are 15.3612.5% for [Hb], 10.769.9% for [Cr], and

10.561.9% for ,ms’.. With the optimized 8 wavelengths, the

RMS errors of extracted [Hb], [Cr], and,ms’. were decreased to

6.665.6%, 4.163.7%, and 4.963.0%, respectively. These errors

are not significantly different from the errors from the full 450–

600 nm spectrum. Referring back to Table 6 for an approxima-

tion of acceptable errors, these phantom results show the benefit of

wavelength optimization for extracting hemoglobin and a b-
carotene substitute while maintaining optical contrast, which is of

utmost importance for our application.

Figure 7. Example spectral images of negative and positive margins obtained with and without optimization. Representative margin
maps of [bc]/,ms’. for normal (A–C), ductal carcinoma in situ (E–G), and invasive ductal carcinoma (I–K) using the full 450–600 nm spectrum, the
optimized 8 wavelengths, and the un-optimized evenly spaced 8 wavelengths. Corresponding correlation coefficients for the 61-wavelength spectra
and the reduced 8-wavelength spectra are shown. Distribution of the extracted bc/ms’ are shown in (D), (H), and (L) for each case, along with the
threshold values used in the predictive model to separate positive from negative margins.
doi:10.1371/journal.pone.0061767.g007
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Conclusions
A method that combines a genetic algorithm and inverse Monte

Carlo reflectance model was applied and validated in an

independent clinical dataset to systematically select wavelengths

and bandwidths in the design of a spectral imaging system for the

application of breast tumor margin assessment. The development

of this method was motivated by the system design for a compact,

cost-effective spectral imaging system, which features a white LED

with bandpass filters. We demonstrate that at least 5 wavelengths

are required to extract oxy- and deoxy-Hb, bc, and ms’ for this

acquisition geometry. We found that the minimum number of

wavelengths to retain optical contrast obtained from a full 450–

600 nm set is 8 wavelengths. Designing a system with additional

wavelengths up to 12 provides minimal improvements in

extraction errors at a potentially higher cost of increasing system

footprint, data acquisition time, and system design complexity.

Additionally, a two-absorber turbid phantom study showed

improved quantitative accuracy for optimized wavelength sets.

This method may be adapted to the optimization of other

quantitative spectroscopic imaging instruments in clinical applica-

tions beyond breast tumor margin assessment.

Figure 8. Comparison of Monte Carlo extractions of normal and cancerous tissue parameters. Comparison of the MC extractions of
[THb], [bc], ,ms’., [THb]/,ms’., and [bc]/,ms’. in adipose, fibroglandular, and malignant tissue types using full spectrum versus the optimized
reduced wavelength spectrum and evenly spaced spectrum with 8 wavelengths. Sample sizes are Normal (N) = 344, and Tumor (T) = 38.
doi:10.1371/journal.pone.0061767.g008

Figure 9. Multi-absorber phantom optical properties extracted with and without optimization. Comparison of extraction accuracy for
[Hb], [Cr], and ,ms’. using the full 450–600 nm spectrum, the optimized wavelength solution, and the evenly spaced wavelengths selected
empirically for a previously reported system.
doi:10.1371/journal.pone.0061767.g009
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