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Simple Summary: Non-small cell lung cancer (NSCLC) is the most severe cancer showing a low 5-
year survival rate of metastatic NSCLC, but there are few previous reports for prediction of metastatic
potential and identification of therapeutic targets of lung squamous cell carcinoma (SQCC), a major
type of NSCLC, with different metastatic potential based on metabolic and lipidomic profiling. We
identified metabolites and intact lipid species relevant to lung SQCC metastatic potential, which
could be applied to develop potential biomarkers and therapeutic targets.

Abstract: SQCC is a major type of NSCLC, which is a major cause of cancer-related deaths, and
there were no reports regarding the prediction of metastatic potential of lung SQCC by metabolomic
and lipidomic profiling. In this study, metabolomic and lipidomic profiling of lung SQCC were
performed to predict its metastatic potential and to suggest potential therapeutic targets for the
inhibition of lung SQCC metastasis. Human bronchial epithelial cells and four lung SQCC cell lines
with different metastatic potentials were analyzed using gas chromatography–mass spectrometry
and direct infusion-mass spectrometry. Based on the obtained metabolic and lipidomic profiles, we
constructed models to predict the metastatic potential of lung SQCC; glycerol, putrescine, β-alanine,
hypoxanthine, inosine, myo-inositol, phosphatidylinositol (PI) 18:1/18:1, and PI 18:1/20:4 were
suggested as characteristic metabolites and intact lipid species associated with lung SQCC metastatic
potential. In this study, we established predictive models for the metastatic potential of lung SQCC;
furthermore, we identified metabolites and intact lipid species relevant to lung SQCC metastatic
potential that may serve as potential therapeutic targets for the inhibition of lung SQCC metastasis.

Keywords: lung squamous cell carcinoma; metastatic potential; metabolomics; lipidomics; GC-MS;
DI-MS

1. Introduction

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths
worldwide [1]. In particular, metastasis is a major cause of death attributed to various
types of cancer, including NSCLC, and accounts for about 90% of all cancer cases [2,3].
Early stage non-metastatic NSCLC can be successfully treated through surgical resection
and chemotherapy. However, a significant proportion of NSCLC patients undergo cancer
relapse with metastasis after surgical resection [4,5]. Moreover, nearly 55% of all NSCLC
cases are only diagnosed after the detection of a locally advanced or metastatic tumor [6].
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When NSCLC spread to distinct parts of the body, called metastatic NSCLC, the 5-year sur-
vival rate is less than 10% [7]. Therefore, an identifiable biomarker for metastasis prediction
and improved knowledge of the biological mechanisms controlling metastatic potential are
urgently needed for effective treatment and increasing survival rates of NSCLC.

Among the various types of NSCLC, lung squamous cell carcinoma (SQCC) is the
second most common, following adenocarcinoma (AC) [8]. Lung SQCC has histological
characteristics different from those of other types of NSCLC; it arises most frequently in
larger airways, whereas lung AC and large cell carcinomas occur most frequently in the
lung periphery [9]. Moreover, lung SQCC shows a genomic pattern distinct from that of
lung AC; epidermal growth factor receptor and Kirsten rat sarcoma viral racial oncogene
mutations are typically present in lung AC but not in lung SQCC [10]. In contrast, TP53
somatic mutations are primarily observed in lung SQCC patients but not in lung AC
patients [11]. Due to differences in their histological and genomic characteristics, lung
SQCC is likely to be associated with different biological metabolic pathways and prognostic
factors, compared with other types of NSCLC. Therefore, understanding the biological
mechanisms of lung SQCC metastasis may uncover a suitable method for effectively
inhibiting and treating metastasis.

Cancer metabolism has recently gained major attention in cancer research, and
metabolomics and lipidomics studies have provided comprehensive information to im-
prove our understanding of cancer pathogenesis [12–14]. As cancer progresses, metabolomic
analysis can be used to accurately analyze the changes in the phenotype and associated
biological mechanisms of the tumor, because metabolites are the final downstream prod-
ucts of genes that are differentially expressed in cancer cells [15]. However, there have
been no reports on the prediction of lung SQCC metastasis through metabolomic and
lipidomic analyses. An integrated study of comprehensive metabolite profiling and intact
lipid species profiling for lung SQCC metastasis could provide a systems-level perspective
toward the development of novel therapeutic targets.

In this study, we performed comprehensive metabolite profiling and intact lipid
species profiling of primary human bronchial epithelial cells (HBEpC), and lung SQCC cell
lines (H520, HCC95, SK-MES-1, and H1703), using gas chromatography–mass spectrometry
(GC-MS) and direct infusion-mass spectrometry (DI-MS). We hypothesized that analyz-
ing the metabolites and intact lipid species in lung SQCC cells with varying metastatic
potentials could provide information regarding lung SQCC-specific biomarkers to predict
metastasis and identify biological mechanisms that are activated during cancer progression.
Therefore, the aim of this study was to discover lung SQCC-specific metabolic biomarkers
that may be useful for inclusion in a lung SQCC metastatic potential prediction model
and to reveal the biological mechanisms of lung SQCC metastasis based on integrated
metabolomic and lipidomic analyses.

2. Materials and Methods
2.1. Chemicals and Reagents

High-performance liquid chromatography (HPLC)-grade methanol was obtained from
Thermo Fisher Scientific (Hampton, NH, USA). HPLC-grade hexanes were obtained from
Honeywell Burdick & Jackson (Muskegon, MI, USA). Myristic-d27 acid, methoxylamine
hydrochloride, and pyridine were obtained from Sigma Aldrich (St. Louis, MO, USA). N,O-
bis(trimethylsilyl) trifluoroacetamide containing 1% trimethylchlorosilane was obtained
from Alfa Aesar (Ward Hill, MA, USA).

2.2. Cell Culture and Sample Collection

The human lung SQCC cell lines, H520 was obtained from the American Type Culture
Collection (ATCC; Manassas, VA, USA), and HCC95, H1703, and SK-MES-1 were obtained
from the Korean Cell Line Bank (Seoul, Korea), and cultured in RPMI 1640 medium (H520,
HCC95, H1703) and Dulbecco’s modified Eagle’s medium (SK-MES-1) supplemented with
10% heat-inactivated fetal bovine serum and 1% penicillin–streptomycin (Hyclone, Logan,
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UT, USA). The HBEpC cells were obtained from PromoCell GmbH (Heidelberg, Germany)
and cultured in an airway epithelial cell growth medium containing 2.46% SupplementMix
(PromoCell GmbH). Cell culture was performed as previously described [16]. Each cell
line was cultured in four biological replicates.

2.3. Cell Migration, Invasion, and Proliferation Assay

Migration and invasion assays were performed three times independently using
Transwell permeable supports (8 µm pore size, 6.5 mm insert; Corning Inc., Corning, NY,
USA) as previously described [16]. Cells were plated at a density of 1 × 105 cells/well.
After 24 h incubation, cells were fixed and stained with crystal violet (Sigma Aldrich).
The stained cells were solubilized with 20% methanol and the optical density at 590 nm
(OD590) was measured using the FlexStation 3 Microplate Reader (Molecular Devices, San
Jose, CA, USA).

Cell proliferation was measured by using a BrdU cell proliferation colorimetric ELISA
Kit (ab126556, Abcam, Cambridge, MA, USA) following the manufacturer’s protocol.
Briefly, cells were seeded into 96-well plates, incubated with 20 µL of 1× BrdU reagent at
37 ◦C and 5% CO2 for 16 h and fixed by provided solution. Fixed cells were incubated with
anti-BrdU monoclonal detector antibody, 1× peroxidase goat anti-mouse IgG conjugate,
and TMB substrate. BrdU incorporation was measured at 450 nm and 540 nm.

2.4. Immunoblotting Analysis

For immunoblotting, cells were prepared in lysis buffer (50 mM Tris-HCl pH 8.0,
150 mM NaCl, 1 mM EDTA, 1% NP-40, and a protease inhibitors cocktail) and centrifuged
for 15 min at 4 ◦C at 13,500 rpm. Whole lysates were mixed with 5× SDS buffer. Proteins
were subjected to SDS-PAGE gel electrophoresis and transferred to 0.45 µm nitrocellulose
membrane. Blocked membranes with 3% BSA were incubated with primary antibody at
4 ◦C for overnight. Following washing with TBS-T, HRP-conjugated secondary antibody
was incubated for 2 h at room temperature. The proteins were visualized with ECL solution
and detected using a luminescent image analyzer (Fuji Film, Tokyo, Japan). Primary
antibodies used for immunoblotting were as follows: anti-β-actin (Santa Cruz, CA, USA;
sc-477778), anti-vimentin (Cell Signaling, MA, USA; 3932S), anti-E-cadherin (Santa Cruz,
sc-8426), anti-AKT (Cell Signaling, 4691S), and anti-p-AKT(T308) (Cell Signaling, 9275S).

2.5. RT-PCR Analysis

For RNA preparation, 500 µL TRIzol was added to cell culture plates. Cells were
detached by using a cell scraper and mixed with 100 µL chloroform. Following centrifu-
gation, 200 µL of the supernatant was transferred to a new tube, mixed with an equal
volume of isopropanol, and centrifuged at 13,500 rpm for 15 min at 4 ◦C. The RNA pellet
was resuspended in 20 µL of ultra-pure distilled water (Invitrogen, CA, USA). Purified
RNA was reverse transcribed using the RevertAid RT Reverse Transcription Kit (Thermo
Fisher Scientific, Inc., Fermetas, MA, USA). Reverse transcription–quantitative polymerase
chain reaction (RT-qPCR) was carried out using ExcelTaq 2X Q-PCR Master Mix (SMOBIO,
Hsinchu, Taiwan). RT-PCR data were normalized with the primers used for RT-qPCR
amplification, and primer sequences were listed in Table S1.

2.6. GC-MS Analysis

To determine the protein concentration, protein assays were performed as previously
described [16]. For metabolite extraction, 700 µL ice-cold methanol (100%, HPLC grade)
was added to freeze-dried cells and vortexed for 30 s. The mixture was sonicated at 4 ◦C for
30 min and then centrifuged at 3000× g for 3 min at 4 ◦C. The supernatant was transferred
into Eppendorf tubes and filtered through 0.45 µm polytetrafluoroethylene syringe filters
(Membrane Solutions, Kent, WA, USA). Next, 400 µL filtrate was transferred into GC vials,
derivatized, and profiled using GC-MS, as previously described [16]. The experiment was
performed twice with four biological replicates.
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For analysis, the initial oven temperature was set at 70 ◦C and increased to 190 ◦C
(5 ◦C/min), 240 ◦C (6 ◦C/min), 270 ◦C (5 ◦C/min), and finally to 280 ◦C (3 ◦C/min). Elec-
tron multiplier voltage was set at 1141 V. Cellular metabolites were assigned through com-
parison with data in the Nist-Wiley Mass Spectra Library, the Human Metabolome Database
(HMDB; http://www.hmdb.ca/ accessed on 15 Jan 2021), and the Golm Metabolome
Database (GMD; gmd.mpimp-golm.mpg.de/ accessed on 15 Jan 2021).

2.7. DI-MS Analysis

For lipid profiling, lipids were extracted and analyzed using DI-MS, as previously
described [16]. Each sample was prepared in four biological replicates and the experiment
was performed twice. The mass spectrometer was set at a capillary voltage of 35 V in
positive ion mode and −45 V in negative ion mode, tube lens voltage was set at 130 V in
positive ion mode, and −118 V in negative ion mode, and the capillary temperature was
set at 200 ◦C. For the identification of lipid species, LipidBlast by Kind [17], Lipidmaps
(http://www.lipidmaps.org/ accessed on 28 January 2021), and in-house MS/MS library
databases were used. Additionally, MS/MS spectra of authentic reference were used for
the identification of ceramide species [18].

2.8. Data Processing and Statistical Analysis

The raw data files were processed, as previously described [16]. The resulting datasets
were used to construct a heatmap with hierarchical clustering and pathway analysis with
MetaboAnalyst (version 5.0; https://www.metaboanalyst.ca accessed on 20 May 2021) [19].
For heatmap clustering, the resulting datasets were converted to z-score. The row z-score
was calculated as the mean value subtracted from the relative level of each compound and
then divided by the standard deviation of the relative level of each compound. The impact
value threshold of pathway analysis was set to 0.10. Significant differences in the levels of
each metabolite and intact lipid species were evaluated by one-way analysis of variance
(ANOVA) with Tukey’s post hoc test using SPSS software (version 25; IBM, Armonk, NY,
USA). For multivariate statistical analysis, the dataset composed of metabolites and lipids
was mean-centered and scaled to unit variance, and principal component analysis (PCA)
and partial-least-squares-discriminant analysis (PLS-DA) were performed using SIMCA
software (version 15.0.2; Sartorius Stedim Data Analytics AB, Umeå, Sweden).

3. Results
3.1. Cell Migration, Invasion, Proliferation Assay, and p-AKT Expression in Lung SQCC

The metastatic potential, cell motility, and invasiveness of lung SQCC cell lines (H520,
HCC95, SK-MES-1, and H1703) were measured by migration and invasion assay. After
24 h incubation, SK-MES-1 and H1703 displayed higher levels of migration and invasion
than H520 and HCC95 (Figure 1A,B). In addition, the metastatic potential of each lung
SQCC cell line was confirmed by the expression of vimentin and E-cadherin in protein and
mRNA levels (Figure 1C and Figure S1). Overexpression of vimentin and loss of E-cadherin
expression was correlated with increased cancer invasiveness and metastasis [20,21]. Based
on these results, H520 and HCC95 were classified as lung SQCC with low-metastatic
potential, whereas SK-MES-1 and H1703 were classified as lung SQCC with high-metastatic
potential (Figure 1).

http://www.hmdb.ca/
gmd.mpimp-golm.mpg.de/
http://www.lipidmaps.org/
https://www.metaboanalyst.ca
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Figure 1. Migration and invasion properties of different lung squamous cell carcinoma (SQCC) cell lines: (A) representa-
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tested; (C) expression of vimentin and E-cadherin of four lung SQCC cell lines. The actin was used as a loading control. 
Images of the migrated- or invaded-cells were taken at ×100 magnification under a bright-field microscope. Different let-
ters, (a, b, and c) and (α, β, and γ), indicate statistically significant differences of migration and invasion levels among lung 
SQCC cells (p < 0.01). Uncropped blot image for each antibody is presented in Figure. S4. 

Overexpression of phosphorylated AKT (p-AKT) was observed in high-metastatic 
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A total of 116 identified metabolites and intact lipid species were visualized by the 
constructed heatmap (Figure 2). The results of hierarchical clustering analysis showed that 
the normal group (HBEpC) and the four lung SQCC groups were clustered separately. 
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line were different. An overview of the metabolic and lipidomic profiles of each cell line 
is represented by the metabolic and lipidomic patterns in the heatmap. 

3.3. PLS-DA for the Prediction of Metastatic Potential of Lung SQCC 
PCA was performed to visualize group separations using a total of 116 identified 

metabolites and lipids obtained from the metabolic and lipidomic profiling of HBEpC and 
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Figure 1. Migration and invasion properties of different lung squamous cell carcinoma (SQCC) cell lines: (A) representative
images of cell migration and invasion in the four investigated lung SQCC cell lines; (B) quantified data (mean ± SEM) from
three independent experiments demonstrating the migration and invasion potential of the four lung SQCC cell lines tested;
(C) expression of vimentin and E-cadherin of four lung SQCC cell lines. The actin was used as a loading control. Images of
the migrated- or invaded-cells were taken at ×100 magnification under a bright-field microscope. Different letters, (a, b)
and (α, β, and γ), indicate statistically significant differences of migration and invasion levels among lung SQCC cells (p <
0.01). Uncropped blot image for each antibody is presented in Figure S4.

As shown in Figure S2, the highest cell proliferation was observed in the high-
metastatic lung SQCC cell line (H1703), followed by low-metastatic lung SQCC cell lines
(H520 and HCC95) and normal cell line (HBEpC). The lowest cell proliferation was ob-
served in the SK-MES-1 cell line.

Overexpression of phosphorylated AKT (p-AKT) was observed in high-metastatic lung
SQCC cell line (H1703), and relatively reduced expression was observed in low-metastatic
lung SQCC cell lines (H520 and HCC95), as shown in Figure S3.

3.2. Comprehensive Metabolite and Intact Lipid Species Analyses

The metabolites and intact lipid species in HBEpC and four lung SQCC cell lines (H520,
HCC95, SK-MES-1, and H1703) were comprehensively profiled. A total of 54 metabolites
and 62 lipids were identified by GC-MS and DI-MS, respectively (Tables S2–S4).

A total of 116 identified metabolites and intact lipid species were visualized by the
constructed heatmap (Figure 2). The results of hierarchical clustering analysis showed that
the normal group (HBEpC) and the four lung SQCC groups were clustered separately. This
separation implies that the profiles of metabolites and intact lipid species in each cell line
were different. An overview of the metabolic and lipidomic profiles of each cell line is
represented by the metabolic and lipidomic patterns in the heatmap.

3.3. PLS-DA for the Prediction of Metastatic Potential of Lung SQCC

PCA was performed to visualize group separations using a total of 116 identified
metabolites and lipids obtained from the metabolic and lipidomic profiling of HBEpC and
four lung SQCC samples. The PCA-derived score plots showed that the normal cells and
the four lung SQCC samples were clearly separated into PC 1 and PC 2, which accounted
for 31.7% and 24.6% of the total variance, respectively (Figure S5).
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Figure 2. Heatmap demonstrating the relative levels of metabolites and intact lipid species in human bronchial epithelial
cells (HBEpC) and four lung squamous cell carcinoma cell lines (H520, HCC95, SK-MES-1, and H1703). (n = 4, four biological
replicates). To indicate the relative levels, the values of biological replicates were represented as mean values of technical
replicates in each biological replicate. The row z-score for each compound was used to color code in the heatmap: low
concentration compounds were colored as blue, and high concentration compounds were colored as red.

PLS-DA was performed to maximize the intergroup separation of each sample. The
variable influence on projection (VIP) values derived from the PLS-DA models reflected the
influence of each component towards building the predictive model. Metabolites and intact
lipid species with VIP values > 1.0 were regarded as compounds that strongly contributed
to the ability to predict metastatic potential [22].
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As shown in Figure 3, there was clear discrimination between each group: normal
cell versus low-metastatic cell lines (Figure 3A), normal cell versus high-metastatic cell
lines (Figure 3C), and low-metastatic cell lines versus high-metastatic cell lines (Figure 3E).
A permutation test was performed to validate each PLS-DA model. The results of the
permutation test with R2Y intercept <0.4 and Q2Y intercept <0.05 indicated that the model
was valid. As shown in Figure 3B,D,F, all PLS-DA models in this study satisfied the criteria
of R2Y intercept <0.4 and Q2Y intercept <0.05 values.
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Figure 3. Partial least-squares discriminant analysis (PLS-DA)-derived score plots and permutation test. PLS-DA-derived
score plot (A) and plots from permutation test (B) of normal versus low-metastatic potential cell lines; PLS-DA-derived
score plot (C) and plots from permutation test (D) of normal versus high-metastatic potential cell lines; PLS-DA-derived
score plot (E) and plots from permutation test (F) of low-metastatic potential versus high-metastatic potential cell lines.

Based on the PLS-DA-derived loading plots and VIP values > 1.0, glyceric acid, glycerol, hy-
droxyproline, inosine, lactose, linoleic acid, phenylalanine, plasmenyl-phosphatidylethnolamine
(PE) 16:0/18:1, phosphatidylinositol (PI) 18:1/20:4, phosphatidylserine (PS) 18:0/18:0, and
putrescine were revealed as the major contributing predictive metabolites between the
normal cell (HBEpC) and low-metastatic cell lines (H520 and HCC95) (Figure 4A).
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β-Alanine, aspartic acid, glycerol, hypoxanthine, inosine, myo-inositol, lactic acid,
linoleic acid, 1-monopalmitin, phosphatidylcholine (PC) 18:1/20:1, PI 16:1/18:1, PI 18:1/18:1,
PI 18:1/20:4, PS 18:1, 22:0, putrescine, tryptophan, tyrosine, and valine were found to be
the major contributing metabolites for prediction between the normal cell (HBEpC) and
high-metastatic cell lines (SK-MES-1 and H1703) (Figure 4B).

β-Alanine, hypoxanthine, inosine, linoleic acid, myo-inositol, PC 16:1/20:3, PI 18:1/20:4,
PI 18:1/18:1, plasmenyl-PC 16:0/22:4, and PS 16:0/16:0 were found to be the major con-
tributing metabolites for prediction between low-metastatic cell lines (H520 and HCC95)
and high-metastatic cell lines (SK-MES-1 and H1703) (Figure 4C).

Cancers 2021, 13, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 4. PLS-DA-derived loading plots: (A) PLS-DA-derived loading plot of normal versus low-
metastatic potential cell lines; (B) PLS-DA-derived loading plot of normal versus high-metastatic 
potential cell lines; (C) PLS-DA-derived loading plot of low-metastatic potential versus high-meta-
static potential cell lines. 

Overall, β-alanine, aspartic acid, glyceric acid, glycerol, hydroxyproline, hypoxan-
thine, inosine, lactic acid, lactose, linoleic acid, 1-monopalmitin, myo-inositol, phenylala-
nine, PC 18:1/20:1, PI 16:1/18:1, PC 16:1/20:3, PI 18:1/18:1, PI 18:1/20:4, plasmenyl-PE 

Figure 4. PLS-DA-derived loading plots: (A) PLS-DA-derived loading plot of normal versus low-
metastatic potential cell lines; (B) PLS-DA-derived loading plot of normal versus high-metastatic po-
tential cell lines; (C) PLS-DA-derived loading plot of low-metastatic potential versus high-metastatic
potential cell lines.

Overall, β-alanine, aspartic acid, glyceric acid, glycerol, hydroxyproline, hypoxan-
thine, inosine, lactic acid, lactose, linoleic acid, 1-monopalmitin, myo-inositol, phenylala-
nine, PC 18:1/20:1, PI 16:1/18:1, PC 16:1/20:3, PI 18:1/18:1, PI 18:1/20:4, plasmenyl-PE
16:0/18:1, plasmenyl-PC 16:0/22:4, PS 16:0/16:0, PS 18:0/18:0, PS 18:1/22:0, putrescine,
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tryptophan, tyrosine, and valine were suggested as characteristic metabolites or intact lipid
species for the prediction of metastatic potential in the four lung SQCC cell lines. The
metabolites, and intact lipid species of VIP values > 1.0 derived from each PLS-DA model
were listed in Table S5. Among the characteristic metabolites or intact lipid species, the
relative levels of glycerol, putrescine, β-alanine, hypoxanthine, inosine, myo-inositol, PI
18:1/18:1, and PI 18:1/20:4 were relatively decreased (glycerol and putrescine) or increased
(β-alanine, hypoxanthine, inosine, myo-inositol, PI 18:1/18:1, and PI 18:1/20:4) in the four
lung SQCC cell lines compared to normal cells. Especially, the relative levels of inosine
and PI 18:1/20:4 were differentially observed according to low (H520 and HCC95) and
high (SK-MES-1 and H1703) metastatic potentials in lung SQCC. Those two compounds
were selected as potential biomarkers to differentiate the lung SQCC according to different
metastatic potentials.

3.4. Pathway Analysis

To identify key metabolic pathways associated with lung SQCC metastasis, the signif-
icantly affected metabolites detected in lung SQCC cell lines were uploaded to Metabo-
Analyst [19]. The top eight ranked metabolic pathways with significant cutoffs (p < 0.05)
and high impact scores were considered to be associated with the metastatic potential
of lung SQCC (Table 1). Among them, alanine, aspartate, and glutamate metabolism
showed the highest impact value (0.55) and glycine, serine, and threonine metabolism
also showed the high impact values (0.42). Arginine and proline metabolism, β-alanine
metabolism, aminoacyl-tRNA biosynthesis, glycerolipid metabolism, cysteine, and me-
thionine metabolism, and phenylalanine metabolism were associated with lung SQCC.
Figure 5 indicates the major changes of metabolism based on metabolites from pathway
analysis and each PLS-DA model with VIP value >1.0. The lipid pathway indicated the
glycerophospholipid biosynthesis based on the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway database, and Figure 6 indicates alteration of lipid pathway based on
intact lipid species from each PLS-DA model with VIP value > 1.0. The lipid pathway
shows that some PI species indicated an increasing tendency with lung SQCC. In addition,
characteristic metabolites and intact lipid species (glycerol and putrescine, β-alanine, hy-
poxanthine, inosine, myo-inositol, PI 18:1/18:1, and PI 18:1/20:4) of lung SQCC metastasis
based on the procedure of PLS-DA model including VIP cutoff, and loading plot results
were indicated with yellow box (Figures 5 and 6).
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ANOVA with a Tukey’s post hoc test, and different letters (a, b, c, and d) represent statistically significant differences of 

Figure 5. Schematic of metabolism in human bronchial epithelial cells (HBEpC) and four lung squamous cell carcinoma
cell lines (H520, HCC95, SK-MES-1, and H1703). The indicated metabolism was modified from the KEGG database
(http://www.genome.jp/kegg/ accessed on 5 March 2021). The metabolites on the pathway were selected by associated
pathway analysis using Metaboanalyst and each PLS-DA model with a VIP value over 1.0. Each graph shows mean values
with error bars indicating standard deviation (SD) (n = 8, four biological replicates, and two technical replicates for each
group). The Y-axis of each data represents the normalized peak intensity. Significant differences were evaluated using
ANOVA with a Tukey’s post hoc test, and different letters (a, b, c, and d) represent statistically significant differences
of relative levels of each metabolite among samples (p < 0.05). Relative levels of each metabolite were represented with
different colors according to the cell’s metastatic potential (green, normal cells; blue, low-metastatic potential of lung SQCC;
red, high-metastatic potential of lung SQCC). TCA; tricarboxylic acid.
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Figure 6. Schematic of lipid pathway in human bronchial epithelial cells (HBEpC) and four lung squamous cell carcinoma
cell lines (H520, HCC95, SK-MES-1, and H1703). The indicated lipid pathways were modified from the KEGG database
(http://www.genome.jp/kegg/ accessed on 5 March 2021). Indicated lipid species on the pathway were selected by each
PLS-DA model with a VIP value over 1.0. Each graph shows mean values with error bars indicating SD (n = 8, four
biological replicates, and two technical replicates for each group). The Y-axis of each data represents the normalized
peak intensity. Significant differences were evaluated using ANOVA with a Tukey’s post hoc test and different letters
(a, b, c, and d) represent statistically significant differences of relative levels of each intact lipid among samples (p < 0.05).
Relative levels of each lipid were represented with different colors according to the cell’s metastatic potential (green,
normal cells; blue, low-metastatic potential of lung SQCC; red, high-metastatic potential of lung SQCC). Cer, ceramide;
CDP-DAG, cytidine diphosphate diacylglycerol; DAG, diacylglycerol; LPA, lysophosphatidic acid; PA, phosphatidic acid;
PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PGP, phosphatidylglycerophosphate;
PI, phosphatidylinositol; PS, phosphatidylserine; Pm-CoA; palmitoyl-CoA; S1P, sphingosine-1-phosphate.
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Table 1. Key metabolic pathways associated with lung squamous cell cancer metastasis.

No. Metabolism Interaction Metabolite Total 1 Hits 2 p 3 Impact 4

1 Alanine, aspartate and
glutamate metabolism

Alanine, asparagine, aspartic acid,
fumaric acid, glutamic acid, succicnic acid 24 6 7.58 × 10−6 0.55

2 Glycine, serine, and
threonine metabolism

Aspartic acid, cysteine, glycine, glyceric
acid, serine, threonine, tryptophan 48 7 5.42 × 10−5 0.42

3 Arginine and proline
metabolism

Aspartic acid, creatinine, fumaric acid,
glutamic acid, hydroxyproline, proline,

putrescine,
77 7 1.09 × 10−3 0.27

4 β-Alanine metabolism β-Alanine, aspartic acid, uracil 28 3 2.13 × 10−2 0.26

5 Aminoacyl-tRNA
biosynthesis

Alanine, asparagine, aspartic acid,
cysteine, glutamic acid, glycine,

isoleucine, leucine, lysine, methionine,
serine phenylalanine, proline, threonine,

tryptophan, tyrosine, valine

75 17 3.55 ×
10−14 0.23

6 Glycerolipid metabolism Glyceric acid, glycerol,
glycerol-3-phosphate 32 3 3.04 × 10−2 0.22

7 Cysteine and methionine
metabolism

Alanine, asparagine, cysteine, methionine,
serine 56 5 6.42 × 10−3 0.18

8 Phenylalanine
metabolism

Fumaric acid, phenylalanine, succinic
acid, tyrosine 45 4 1.50 × 10−2 0.12

1 Total is the total number of compounds in the metabolism. 2 Hits is the matched number of compounds from the uploaded data set. 3 p is
the p value calculated from the pathway analysis. 4 Impact is the cumulative percentage from matched metabolites in each total pathway.
The threshold of 0.1 was set to filter less important pathways.

4. Discussion

In this study, we investigated alterations in the metabolites, intact lipid species, and
biological pathways associated with lung SQCC metastasis. In particular, glycerol, pu-
trescine, β-alanine, hypoxanthine, inosine, myo-inositol, PI 18:1/18:1, and PI 18:1/20:4
were proposed as characteristic metabolites for the prediction of metastatic potential in
lung SQCC.

In normal cells, glycerol and putrescine showed higher levels, compared with those in
lung SQCC cells. Glycerol is converted to glycerol-3-phosphate and glycerol-3-phosphate
is essential for cell proliferation and growth [23]. The increased glycerol-3-phosphate
level was reported in the lung SQCC tissue, compared to normal tissue [24]. In our study,
increased levels of glycerol-3-phosphate were observed in the lung SQCC lines with high-
metastatic potential, compared with those in normal cells. The increased conversion of
glycerol to glycerol-3-phosphate may induce rapid proliferation in lung SQCC.

Putrescine was a major polyamine of interest in this study; polyamines are known to be
necessary for normal and tumor cell proliferation because of their role in the maintenance
of oxidative homeostasis, cell membrane structure, and various cellular processes [25–27].
The synthesis of polyamines has been shown to be frequently dysregulated in cancer [25].
Increased levels of spermidine and spermine, two products of putrescine, have previously
been observed in lung cancer [28,29]. In our study, decreased levels of putrescine in lung
SQCC were thought to be due to the increased production of spermidine and spermine.

The high energy demand associated with the rapid proliferation of cancer cells leads
to abnormal alterations to numerous metabolic pathways. Our metabolic pathway analysis
revealed that alanine, aspartate, and glutamate metabolism, and β-alanine metabolism
were associated with lung SQCC. β-Alanine is formed from aspartic acid by GAD1 (glu-
tamic acid decarboxylase 1) and is subsequently metabolized to malonic semialdehyde for
fatty acid synthesis or directly converted to pantothenic acid for coenzyme A biosynthe-
sis [30,31]. In human oral squamous cell carcinoma and lung AC, the GAD 1 overexpression
was established and revealed that related to invasiveness and metastasis [32,33]. In our
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results, significantly increased levels of aspartic acid and β-alanine were observed in lung
SQCC. Aspartic acid was reported to have the role of transferring electrons between the
cytosol and mitochondria for cell proliferation and is essential for purine and pyrimidine
synthesis [34,35]. In cancer cells, the addition of aspartic acid showed an increased prolifer-
ation rate of cancer cells such as melanoma cells, lung cancer cells, cervical cancer cells, and
glioblastoma cells, even though it inhibited electron transport chain function [36]. There-
fore, the elevated β-alanine levels in lung SQCC may have resulted from increased aspartic
acid and GAD1 levels, contributing to activation of energy production for metastasis.

As building blocks for DNA and RNA, purine derivatives are responsible for nucleic
acid synthesis and energy production. Our study revealed that hypoxanthine and inosine
concentrations were increased with increasing metastatic potential. In the previous study,
higher levels of hypoxanthine and inosine were observed in lung SQCC tissue, compared
to normal tissue [24]. Significantly higher levels of adenosine triphosphate (ATP) and
adenosine diphosphate (ADP) were suggested as characteristic of lung SQCC tissues
versus lung adenocarcinoma and large cell carcinoma [37]. The accumulation of those
purine derivatives might be characteristics of lung SQCC, compared to other types of lung
cancer. In addition, we observed higher cell proliferation in low-metastatic (H520 and
HCC95) and high-metastatic (H1703) cell lines, compared to normal cell lines (HBEpC) by
BrdU cell proliferation assay. Higher levels of hypoxanthine and inosine in high-metastatic
(H1703) cell lines might contribute to the increase of DNA synthesis resulted in an increase
in cell proliferation. However, the lowest cell proliferation was observed in the SK-MES-1
cell line. There was no correlation between the higher levels of hypoxanthine/inosine and
cell proliferation in the SK-MES-1 cell line.

An important factor to shape characteristics of cancer metastasis is cell motility such
as invasion and migration [38]. The upregulation of vimentin and downregulation of
E-cadherin expression are indicators of cancer invasiveness and metastasis [20,21]. In
our study, high-metastatic (H1703 and SK-MES-1) cell lines showed higher expression of
vimentin and loss of E-cadherin, compared to low-metastatic cell lines. In colorectal cancer
cells, knockdown of phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoim-
idazole succinocarboxamide synthetase (PAICS) induced higher levels of E-cadherin and
lower levels of vimentin [39]. PAICS, an de novo purine biosynthesis enzyme, was over-
expressed in lung SQCC, breast cancer, and colorectal cancer cells [39–41]. It is implied
that enhanced purine biosynthesis is characteristics of cancer cells and their metastasis.
In normal cells, hypoxanthine and inosine are metabolized to uric acid by xanthine oxo-
reductase through purine metabolism. However, cancer cells, which require a high rate of
DNA synthesis, activate de novo purine synthesis by disrupting purine metabolism via a
decrease in xanthin oxo-reductase [42–44]. Thus, the increased levels of hypoxanthine and
inosine in lung SQCC cells could be potentially due to the alteration of purine metabolism
to enable the rapid proliferation and metastasis of lung SQCC. Particularly, the relative level
of inosine would be considered a potential biomarker for estimating lung SQCC metastasis
due to the subsequently increasing level according to different metastatic potentials of
lung SQCC.

The lipid pathway analysis revealed that some PI species showed an increased level
of tendency correlated with lung SQCC. Particularly PI 18:1/18:1 and PI 18:1/20:4, which
showed the highest levels in high-metastatic cell lines. There was a report that the increased
levels of PI species in SQCC tissue, compared to normal lung tissue from patients [45].
In addition, significantly higher levels of PI species were reported in lung SQCC com-
pared to lung adenocarcinoma tissue [46]. PI species are known as the precursors of
phosphatidylinositol-3,4,5-trisphosphate (PIP3), which regulates cell growth, proliferation,
and migration [47,48]. PIP3 is synthesized by phosphatidylinositol-3-kinase (PI3K), and it
serves as a docking site to recruit Akt to the cellular membrane, where Akt is activated by
PDK1 and PDK2 [49]. It is also known that PI3K/Akt signaling regulates tumor growth
and metastasis [50,51]. We observed higher expression of p-AKT in high-metastatic cell
lines (H1703). Lower expression of p-AKT in SK-MES-1 might be due to activating other
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pathways such as SGK, S6K, and PKC pathway through PI3K signaling [52]. Our results
revealed that the levels of most PI species were increased in lung SQCC samples, compared
with those in HBEpC. In particular, PI 18:1/18:1 and PI 18:1/20:4, together with myo-inositol
(a precursor to PI), were significantly increased in cell lines with high-metastatic potential.
It may imply the increased PI species enhance the lung SQCC growth and metastasis. In
particular, the distinct difference level of PI 18:1/20:4 was observed according to different
metastatic potentials in lung SQCC. Therefore, it is suggested that increased PI species
induced enhanced metastasis of SQCC cells via PI3K/Akt signaling.

Altered gene expression is closely related to cancer metabolism including lipid
metabolism [53]. There was a report that glycerophospholipid metabolism, fatty acid
metabolism, and eicosanoid signaling were significantly enriched in lung adenocarcinoma
compared to normal tissue [54]. In addition, the MYC gene has been known as an oncogene
that promotes cancer cell growth and proliferation [55]. In a previous study, PI 18:0/18:2
and PI 18:0/20:3 were mostly increased in MYC gene-activated lymphoma, compared to
inactivated lymphoma [56]. PC levels were also increased in MYC-activated lung tumor
tissue, compared to inactivated tumor tissue [57]. It is implied the MYC gene expression
would regulate the levels of glycerophospholipids. Overexpression of the MYC gene was
also observed in lung SQCC tissue, compared to lung adenocarcinoma tissue [58]. PI
species increased in the lung SQCC cells, compared to normal cells in our study. Thus, it
is speculated that increased levels of PI species in lung SQCC might be controlled by the
MYC gene.

We performed an integrated comprehensive metabolite and intact lipid species profil-
ing analysis to reveal the major metastasis-related metabolites and intact lipid species in
lung SQCC. This study constructed validated PLS-DA models of characteristic metabolites
and intact lipid species to predict the metastatic potential of lung SQCC and identified
therapeutic targets for the inhibition of lung SQCC metastasis. Our approach provides
meaningful insights into lung SQCC metastasis-related biological pathways.

5. Conclusions

This study aimed to develop the prediction model for lung SQCC metastasis and
identify therapeutic targets for the inhibition of lung SQCC metastasis. This is the first
report of integrated comprehensive metabolomic and lipidomic profiling in the lung SQCC
according to different metastatic potentials. Since this study employed in vitro samples,
the proposed therapeutic targets need to be validated by in vivo and clinical studies in
the future.
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