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Abstract: Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach for
diverse diseases and injuries. The biological and clinical advantages of human fetal MSCs (hfMSCs)
have recently been reported. In terms of promising therapeutic approaches for diverse diseases and
injuries, hfMSCs have gained prominence as healing tools for clinical therapies. Therefore, this review
assesses not the only biological advantages of hfMSCs for healing human diseases and regeneration,
but also the research evidence for the engraftment and immunomodulation of hfMSCs based on
their sources and biological components. Of particular clinical relevance, the present review also
suggests the potential therapeutic feasibilities of hfMSCs for musculoskeletal disorders, including
osteoporosis, osteoarthritis, and osteogenesis imperfecta.
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1. Introduction

Mesenchymal stem cells (MSCs) have promising therapeutic applications as they are
known to promote tissue regeneration [1]. Over 40 years ago, MSCs were successfully
obtained from bone marrow [2] and various tissues and organs, such as bone [3], umbilical
cord [4], adipose tissue [5], skeletal muscle [6], synovium [7], and amniotic fluid [8].
Expanded MSCs differentiate into different cell types such as osteoblasts, chondrocytes,
adipocytes, myocytes, epithelial cells, endothelial cells, and neurons, all of which are
applied to treat multiple diseases. Although it is difficult to compare the results of many
studies, each using different isolation methods and cell-culture environments, many studies
generally follow a similar standard procedure, which has led to promising results and
ongoing clinical trials in the field of MSCs.

To combat this inconsistency in experimental procedures, the International Society
for Cell and Gene Therapy, established in 1992 for the translation of cell and gene therapy
research to a clinical setting, proposed a minimal criterion for defining MSCs [9]. According
to these criteria, MSCs must express CD105/endoglin, CD73/ecto 5’-nucleotidase, and
CD90/Thy-1. Furthermore, they should lack the expression of CD45/LCA, CD34, CD14
or CD11b, CD19 or CD79α, and the major histocompatibility complex (MHC) class II cell
surface receptor human leukocyte antigen DR isotype (HLA-DR) [9]. The low expression
of MHC class II and costimulatory molecules in MSCs is responsible for their immune
privileged status [1]. Because the patient’s immune response and immune evasion strategies
are critical for clinical applications, MSCs should maintain immune privilege with safe
healing and clinical regeneration properties.

Musculoskeletal disorders refer to any damage or injury to the bone, muscle, cartilage,
tendons, ligaments, and nerves that affect human activity or the musculoskeletal system.
These disorders include osteogenesis imperfecta, nonunion, cartilage damage, osteoporosis,
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muscle/tendon strain, rotator cuff tendonitis, ligament sprain, and digital neuritis. Clinical
attention using MSCs has gradually earned its significance as an essential therapeutic
approach for treating and healing musculoskeletal and related rare diseases. Among the
various types of MSCs, human fetal MSCs (hfMSCs) are far superior and show several
advantages over adult MSCs. These include exceptional immunosuppressive [10], anti-
inflammatory [11,12], and proliferative effects [13,14], along with greater colony-forming
and osteogenic differentiation capacity [15], osteogenic gene expression [16], and longer
telomere length [17]. In fact, upon exposure to interferon-gamma, hfMSCs show lower
expression of HLA class I and II than that of adult MSCs [11,12]. Additionally, without
apparent change in phenotype, population doublings of hfMSCs were approximately
double those of adult MSCs [13,14].

Because hfMSCs can be isolated from various tissues and organs, such as bone marrow,
liver, lung, kidney, skeletal muscle, pancreas, dermis, thymus, placenta, amniotic fluid [10],
and calvaria, they may apply in various fields and diseases. If there are similarities between
the origin of MSCs and the target tissue, such MSCs will likely be suitable for the target
disease. From this point of view, we believe hfMSCs are one of the best healing sources
available. Further studies on hfMSCs are required, as much as other types of MSCs,
to understand their different aspects like homing without cell loss, immunomodulatory
function with paracrine effects, differentiation and proliferation, and the signaling pathway
of their unique healing mechanism. These will provide us with better opportunities to
overcome various diseases. Although fetal MSCs have more advantages than adult MSCs,
very few studies have reviewed the characteristics of hfMSCs compared to adult MSCs.
Here, we describe the therapeutic function of fetal MSCs by reviewing their sources,
biological features, and clinical trial results; by discussing the future scope of hfMSCs for
the treatment of musculoskeletal disorders.

2. Biological Feature of Human Fetal Mesenchymal Stem Cells (hfMSCs)
2.1. Sources of hfMSCs

As mentioned above, hfMSCs have been isolated from various tissues and organs,
including fetal blood [13,14], bone marrow, liver [13,18], lung [18,19], pancreas [20,21],
dermis [22], thymus [23], placenta and amniotic fluid [8,10,24–26], and calvaria. All these
hfMSCs from different sources showed common MSC marker expression but had unique
phenotypes. MSCs differentiate into osteogenic, chondrogenic, myogenic, adipogenic
lineages, and neural cells [10,27]. However, their properties differ depending on their
origin. Initially, hfMSCs were isolated from first-trimester fetal blood, liver, and bone
marrow, and they had similar growth patterns and immunophenotypes [13]. Meanwhile,
hfMSCs derived from the bone marrow, liver, and lungs had higher adipogenic potential
than hfMSCs derived from the fetal spleen [18]. Similarly, the osteogenic differentiation
properties of fetal bone marrow MSCs are greater than those of fetal liver cells [18]. hfMSCs
derived from the second (2nd)-trimester fetal lungs can differentiate into osteogenic and
adipogenic lineages [18]. Human fetal lung-like MSCs have maintained over 40 passages
without changes in their proliferation ability, morphology, and expression of cell markers
like CD13, CD29, CD44, and general MSC markers like CD90 and CD105 [19]. 2nd-trimester
pancreatic MSCs appeared positive for CD44, CD29, CD13, and type I collagen but negative
for CD34 and HLA class II [20]. Pancreas-derived MSCs proliferated for up to 30 passages
and were also differentiated into osteocytes, chondrocytes, and adipocytes through ade-
quate induction [20]. Zhang et al. [21] cultured pancreatic islet endocrine cells—negative
for CD34, CD45, and HLA-DR—which were isolated from the fetal pancreas. Rapidly
expanded MSCs derived from human fetal dermis differentiated into bone, fat, and nerve,
and expanded up to 70 population doublings [22]. Second-trimester hfMSCs from the
thymus were cultured to form colonies and differentiated into chondrogenic, osteogenic,
myogenic, and adipogenic lines, under different conditions of each induction [23]. The
phenotype and multilineage potential of hfMSCs derived from second-trimester amniotic
fluid were comparable to those of adult MSCs [24,25]. Furthermore, hfMSCs derived from
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amniotic fluid have shown the potential to differentiate into cells with neuronal-like mor-
phologies [26]. Amniotic membrane-derived MSCs exhibit cardiomyocyte characteristics
and express the cardiac-specific transcription factor GATA4 [28]. Recently, hfMSCs derived
from fetal calvaria have been discovered and characterized. These cells expanded rapidly
in vitro for up to 24 passages without showing any changes in proliferation ability, morphol-
ogy, and expression of specific MSC markers: positive expressions of CD105, CD90, CD44,
CD29, along with negative expressions of embryonic stem cell markers SSEA-3, TRA-1-81,
and hematopoietic stem cell (HSC) markers CD34 and CD45 (author’s unpublished data)
(Table 1).

Table 1. Information and characteristics of human fetal mesenchymal stem cells (hfMSCs).

Tissue Origin
(Age of Donor)

Biological
Properties

Phenotype
(Positive)

Phenotype
(Negative) Proliferation Ref.

Blood
(Fetus in 16–26

weeks)

CD29, CD44,
CD106, CD105,
CD73, CD49b,

vimentin, laminin,
fibronectin

CD45, CD14,
CD68, CD34,

CD31, HLA-DR,
type I collagen

Faster doubling
time as every

24–30 h compared
to adult

No change until 20
passages

[13]

Bone marrow Adipogenic,
osteogenic

(Bone marrow
derived MSCs >
Liver derived

MSCs)

CD29, CD44,
CD106, CD105,
CD73, CD49b,

vimentin, laminin,
fibronectin

CD45, CD14,
CD68, CD34,

CD31, HLA-DR,
type I collagen

[13,18]

Liver

CD29, CD44, CD54,
CD106, CD105,
CD73, CD49b,

vimentin, laminin,
fibronectin

CD45, CD14,
CD68, CD34,

CD31, HLA-DR,
type I collagen

[18]

Lung

CD58, CD71, CD29,
CD44, CD54, CD13,

CD90, CD105,
CD73, CD49e

CD45, CD14,
CD31, CD50,

CD106, CD11a,
HLA-DR,

Stable until 40
passages [18,19]

Pancreas
(Pregnancy in

second trimester)

Osteogenic,
adipogenic

CD29, CD44,
CD13, CD90,

CD147, vimentin,
type I collagen

CD45, CD34,
HLA-DR

Stable until 30
passages [20,21]

Dermis Bone, fat, nerve CD90 CD45, CD34, CD38,
CD117, HLA-DR [22]

Thymus
(Pregnancy in

second trimester)

Myoblast,
chondrogenic

osteogenic,
adipogenic

CD71, CD44,
CD54, CD105,
CD90, CD49b,

vimentin

CD45, CD34,
CD38, HLA Class I,

HLA-DR
[23]

Amniotic fluid
(Pregnancy in

second trimester)

Neural pathway,
cardiomyocytes,

osteogenic,
adipogenic

CD29, CD44,
CD105, CD73,
CD90, OCT-4,

vimentin, type I
collagen

CD45, CD14, CD34,
CD31, CD106,
CD11a, CD13,

CD117, HLA-DR

[8,24–26,28]

Calvaria
Osteogenic,

chondrogenic,
adipogenic

CD105, CD90,
CD44, CD29

SSEA-3, TRA-1-81,
CD34, CD45

Author’s
unpublished data

2.2. Biological Components of hfMSCs

While all hfMSCs have similar physical features, they are characterized by differential
morphological phenotypes and genotypes, immune function, proliferation, differentia-
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tion capacity, and aging, depending on their origin. During MSC expansion, they show
fibroblastic morphology, form colonies, and express stem cell indicators in the culture
system. Like adult MSCs, hfMSCs also have molecular genotype and CD expression, even
though their expression shows different characteristics depending on their origin. While
expression of CD45, CD14, CD68, CD34, CD38, CD31, and HLA-DR is lacking in hfMSCs,
expression of CD29, CD44, CD54, CD106, CD105, CD73, CD13, CD90, CD49b, vimentin,
laminin, and fibronectin is generally observed. Interestingly, type I collagen is expressed
in hfMSCs derived from the pancreas and amniotic fluid but not in those derived from
bone marrow and liver [10]. Calvaria-derived hfMSCs showed positive expressions of
CD105, CD90, CD44, and CD29 and negative expressions of CD45 and CD34 (author’s
unpublished data). Furthermore, immune reactive molecules such as HLA Class I and
HLA-DR are either not expressed or were very low in their expression in hfMSCs than in
adult MSCs. This important characteristic of hfMSCs sets them apart from other MSCs. The
hfMSCs derived from blood, liver, and bone marrow express adhesion molecules, including
CD29, CD44, CD106/VCAM-1, CD105/endoglin, and CD73. The undifferentiated state
of these MSCs is uniformly positive for intracellular markers such as fibronectin, laminin,
vimentin, and mesenchymal markers such as SH2, SH3, and SH4 [13]. However, they lack
the expression of CD45, CD34, CD14, CD68, and CD31 [13]. While MSCs account for a
small proportion of the stem cell population, they are more prevalent during the fetal stage
than adulthood. MSCs account for 1: 3000 blood cells and 1:400 bone marrow cells during
the second trimester [8,13]. As a result, fetal MSCs are more abundant in tissues than
adult MSCs.

2.3. Immunomodulation of hfMSCs

One of the essential features of MSCs is their hypoimmunogenic property that helps
avoid allogeneic rejection [29]. The HLA system is a cell-surface protein responsible for
regulating the immune system [30]. The expression of HLA class I by MSCs is vital for
protecting them from specific NK cell deletion mechanisms [29]. However, conflicting
evidence exists about the expression of MHC class I by MSCs. While Yokoyama [31] has
reported that fetal MSCs do not express classical HLA class I molecules, Anker et al. [18]
have reported that MSCs derived from all tested fetal tissues express HLA class I [18].
Furthermore, fetal liver MSCs have been reported to express HLA class I, but not HLA
class II. However, HLA class II (HLA-DR) expression could be induced in hfMSCs after
7 days of interferon-gamma (IFN-γ) exposure compared to after 1 d in adult MSCs [11,12].
Neither undifferentiated nor differentiated MSCs elicited an immunological response.
Even after stimulation with IFN-γ, hfMSCs did not activate lymphocytes [11]. These
observations suggest that hfMSCs do not escape alloreactivity and suppress lymphocytes
because they lack HLA class II antigens. Therefore, the exact mechanism by which MSCs
exert their immunosuppressive effects remains unclear [10]. Initially, hfMSCs appeared
less immunogenic than adult MSCs [32]. MSCs secrete active molecules that contribute
to biologically beneficial effects on damaged tissues and organs [33] by enhancing tissue
regeneration and regulating fibrosis, apoptosis, and inflammation [12,34]. Additionally,
MSCs can directly inhibit the proliferation of natural killer and cytotoxic T cells [35].
Specifically, MSCs increase regulatory T cells and indirectly decrease the activity of cytotoxic
T cells [36]. Thus, MSCs have a dual function in immunomodulation: immunosuppression
and the regulation of inflammatory factors such as immune cells with paracrine effects.
However, the paracrine effects of hfMSCs remain to be investigated. The immunological
characteristics of hfMSCs are summarized in Table 2.
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Table 2. Advantages of human fetal MSCs (hfMSCs) over adult MSCs.

Biological Property hfMSCs Adult MSCs Ref.

Immune response
HLA-DR * expression
after 7 d exposure to

IFN-γ

HLA-DR expression
after 1 d exposure to

IFN-γ
[11,12]

Immunogenic Less more [32]

Proliferation
(Population doubling time) 24–30 h 48–72 h [13,14]

Telomere length Longer Shorter [10]

Osteogenic Differentiation Higher Lower [15,16]

Stemness (Colony-forming) hfMSCs two times higher than adult MSCs [15]
* human leukocyte antigen DR isotype.

2.4. Summary

Investigation of the various origins of hfMSCs and their biological properties provide
the therapeutic application of the appropriate clinical treatment of various human diseases.
Although the immune reaction of hfMSCs remains unclear [10], secretion molecules of
hfMSCs, including immunosuppressive factors, contribute to tissue regeneration and
regulate apoptosis and inflammation [12,32–34], suggesting lower side effects in case of
clinical applications.

3. Preclinical and Clinical Investigation of hfMSCs
3.1. Feasibility of hfMSCs for the Treatment of Musculoskeletal Disorders

Proliferation, differentiation, environmental conditions, and aging of MSCs influ-
ence their function. Fetal blood-derived MSCs are readily expandable in vitro with a
population doubling time of 24–30 h, compared to at best 48–72 h for their adult counter-
parts, and display no apparent change in phenotype after 20 passages or 50 population
doublings [13,14]. The hfMSCs not only have approximately twice the colony-forming
unit-fibroblast capacity of adult MSCs, which is an essential MSC characteristic, but this
also translates into superior osteogenic capacity, with higher levels of calcium deposition
and alkaline phosphatase activity [15]. Guillot et al. [16] compared the basal expression of
osteogenic genes in the first-trimester liver, blood, and bone marrow MSCs to adult bone
marrow MSCs and found that hfMSCs had higher expression levels of all 16 osteogenic
genes. Under appropriate conditions, they produce a broad spectrum of differentiated
connective tissues, including bone, cartilage, adipose tissue, and myelosupportive stroma.

However, it has been suggested that their differentiation capacity varies depending
on the tissue source [18,37]. The hfMSCs can also differentiate into skeletal muscle [38–40]
and adipocytes [41]. Choi et al. [42] showed an intriguing application of hfMSCs wherein
they used fetal cartilage-derived cells for cartilage regeneration. They suggested that fetal
cartilage-derived progenitor cells have stem cell properties to some extent and are more
active in terms of proliferation and chondrogenic differentiation than young chondrocytes
or other MSCs [42]. Adult tissue-derived MSCs lose multipotency after 20–40 passages in
culture and either commit to the osteoblast lineage or undergo senescence [43,44]. This
MSC aging process is more observable with increased culture time and donor age [43,45,46].
Older HSCs have a diminished self-renewal capacity and decreased numbers of progeny
cells. Similar qualitative effects of aging have been observed with MSCs [45]. Further
evidence for the aging of MSCs comes from studies of osteoblasts. It was observed that
cell proliferation, levels of osteoblast markers, telomere length, and replicative lifespan all
decreased with increasing bone age [17]. In addition, telomere length was longer in MSCs
derived from fetal tissues than adult tissues. These findings imply that hfMSCs should
have an advantage over adult stem cells in cell replacement therapies [10].
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As mentioned above, similar to adult MSCs, hfMSCs are isolated from various tissues.
However, compared to adult MSCs, they are found at a higher frequency in the different
tissues [13,18]: especially in the case of the MSC populations derived from the amniotic
fluid, placenta, and umbilical cord [47,48]. Altogether, fetal MSCs have an advantage over
adult MSCs in proliferation (passage, population doubling time, senescence), differentiation
(osteogenic, chondrogenic, and adipogenic lineages), stemness (colony-forming), and
immune response (immune evasion, paracrine effect). Therefore, priority should be given
to hfMSCs in clinical trials.

The musculoskeletal disorders, including osteoporosis, osteoarthritis, and osteogene-
sis imperfecta, are expected to be improved by the treatment of hfMSCs. First, the excellent
differentiation and proliferation ability of hfMSCs should be helpful for bone regeneration.
Second, inflammation in osteoarthritis is a major factor associated with cartilage loss and
symptoms of the disease such as joint pain, swelling, and stiffness, indicators of synovi-
tis [49]. In this case, hfMSCs would control inflammation through the paracrine effect of
hfMSCs anti-inflammatory factors, even though the study of secretion molecules of hfM-
SCs requires further investigation. Third, osteogenesis imperfecta, commonly diagnosed
prenatally, is a disorder of type 1 collagen with a prevalence of 1/20,000 [32]. To date, two
case studies of prenatal transplantation of allogenic human first-trimester liver-derived
MSCs in type III and type IV osteogenesis imperfecta patients have been published [50,51].
Although there have been very few clinical trials, the products show no new fracture and
improved growth velocity [50,51]. These results support the future possibility of hfMSCs
for developing regenerative therapeutics.

3.2. Preclinical Research of hfMSCs

One of the most critical characteristics of MSCs is their ability to secrete molecules for
cell-to-cell communication. They interact with target cells with the help of this secretome,
which includes molecules for inflammatory response, growth factors, and the senescence-
associated secretory phenotype.

Wang et al. analyzed the fetal MSC secretome and suggested that the autocrine/
paracrine effect of hfMSCs may have contributed to their enhanced proliferation and differ-
entiation abilities [52]. They also found that the fetal MSC secretome treatment significantly
reduced senescence-associated β-galactosidase expression and activity, and enhanced cell
proliferation and osteogenic differentiation potential of adult MSC secretome [52]. Xu et al.
described the immunogenicity of using the human MSC secretome on rat cells and the
effects of the secretome on osteogenic differentiation of rat bone marrow-derived MSCs [53].
Arjmand et al. attempted co-transplantation of hfMSCs and HSCs in type 1 diabetic mouse
model. They suggested that hfMSCs are a valuable source for cell therapy and that co-
transplantation of MSCs can improve the therapeutic effects of HSCs [54]. Based on these
preclinical investigations showing that hfMSCs improve replicative senescence and can
differentiate into cardiac lineages [55], the role of fetal MSC secretome should further be
investigated in clinical trials: especially for distraction osteogenesis and in type 1 dia-
betic mice [52–54]. Exosome-based research and therapies are expected to promote MSC
functions such as proliferation, differentiation, and immune reactions. MSC-exosomes
have been recognized as powerful tools in bionanomedicine, wherein they are involved
as nanocarriers, for drug loading, and for tissue engineering [56]. MSC-exosomes have
broad applications due to their regenerative and immunomodulatory properties [57–61].
hfMSCs-exosome also has these similar properties by canonical secretory proteins such
as cytokines and growth factors. In recent years, hfMSC-exosomes have been reported
in various fields such as angiogenesis [62], cutaneous wound healing [63], and impaired
natural killer cell function [64]. Komaki et al. [62] suggested that exosomes play a role in a
proangiogenic activity, which is a novel therapeutic approach for treating ischemic diseases.
Wang et al. [63] proposed that fetal dermal MSC-exosomes may promote wound healing
by activating the adult dermal fibroblast cell motility and secretion ability via the Notch
signaling pathway. These may shed light on new aspects of therapeutic strategies based
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on fetal dermal MSC-exosomes for treating skin wounds. Fan et al. [64] reported that fetal
liver MSC-exosomes inhibit the proliferation, activation, and cytotoxicity of NK cells and
regulate NK cell function via exosome-associated TGF-β [64].

3.3. Clinical Trials Involving hfMSCs

Although several clinical trials on hfMSCs are underway, very few have been pub-
lished. To date, only a few clinical trials involving hfMSCs can be found at clinicaltrials.gov,
and only limited information is available on the cell sources and trial conditions to under-
stand the effects and results. Two clinical trials involving fetal MSCs in prenatal cellular
therapy for osteogenesis imperfecta have been reported to target type III and type IV OI.
These trials involved transplantation of allogeneic MSCs derived from the human fetal
liver in the first-trimester (Table 3). They obtained promising outcomes, no new fractures,
and improved growth velocity (Figure 1) [50,51].

Table 3. Treatment information of four cases of osteogenesis imperfecta (OI).

Year Patient Mutation Source
OI

Phenotype
Cell Number (×106)

Outcome Ref.
Prenatal Postnatal

2005 A COL1A2,
Gly33743Asp

Fetal liver
(10 weeks) III/IV 6.5 hfMSCs

at 32 weeks [50]

2014
B

COL1A2,
Gly33743Asp;
Gly913Asp

Fetal liver
(7 weeks 3
days and
10 weeks)

III
6.5 hfMSCs at

31 weeks
(5/kg)

42 at 8 years
and 2 months

(2.8/kg)

No new fractures,
improved growth

velocity

[51]C
COL1A2,

Gly33743Asp;
Gly130Asp

IV 4 hfMSCs at 31
weeks (30/kg)

88 at 19
months and 11
days (10/kg)

No new fractures,
improved growth

velocity

D
COL1A2,

Gly33743Asp;
Gly915Asp

II/III None None Deceased at 5
months of age
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Applegate et al. reported about bioprocessing of human fetal cells for tissue engi-
neering of skin. They used fetal skin cells with collagen scaffolds, showing a distinction
of the fetal skin cells compared to the conventional MSCs in the technical requirements
such as collection, culture expansion and storage, and therapeutic feasibility, including skin
formation and immunologic reaction. Their cells were made from a master and working cell
bank, which confirmed the consistency and safety of cells in the preparation of whole-cell
tissue-engineering products [65].

4. Future Prospects and Conclusions

The current review highlights the potential application of hfMSCs in the handling of
musculoskeletal disorders. The currently reported studies provide evidence for source-
dependent differences and similarities based on the hfMSCs origin. Even though hfMSCs
have better characteristics than adult MSCs, there are only a few clinical trials for muscu-
loskeletal disorders, including rare skeletal diseases.

4.1. Future Prospects of hfMSCs

Even though hfMSCs are relatively new in the field of MSCs, they have gained promi-
nence due to their therapeutic potential and their enhanced multipotency, proliferation,
and differentiation capacity compared to adult MSCs. Diverse sources of hfMSCs are
available, so it is possible to obtain appropriate and suitable cells for treating target diseases
and defects without any side effects. Although adult MSCs have several disadvantages
compared to hfMSCs, they have proven to be important therapeutic tools. Similarly, we
hope that hfMSCs-based treatments prove to be successful in the field of customized and
regenerative medicine and to help in the treatment of rare diseases. An essential factor in
cell therapy is immune evasion, which can regulate cellular safety and efficacy to evade the
host’s immune response. Thus, it is crucial to further investigate the biological properties of
hfMSCs, such as paracrine effects, homing to target locations of injuries and diseases, and
immunomodulation, in order to better apply these MSCs as therapeutics. We believe that
the disadvantage of hfMSCs compared to other MSCs is the ethical issue, such as protecting
human subjects in clinical trials and proper control of stem cells sources for the research.
To overcome such adversity, detailed regulations or guidelines should be established in the
near future, like those of embryonic stem cells. Once all of these aspects of hfMSCs come
to light, we will be in a better position to employ hfMSCs as therapeutic tools in clinical
settings.

4.2. Conclusions

Ethical issues in hfMSCs research and treatment need to be discussed. However, the
regulations and guidelines from those discussions must also ensure the scientific ventures,
along with development of appropriate clinical treatment. hfMSCs have advantages such as
higher cell fraction with robust cell proliferation, differentiation capacity, and low immuno-
genicity over other types of MSCs. We believe that the hfMSCs have therapeutic potential
for musculoskeletal disorders, including osteoporosis, osteoarthritis, and osteogenesis
imperfecta.
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