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Abstract: In this paper, we present an analysis to identify a sensor location for an inertial measurement
unit (IMU) on the body of a skier and propose the best location to capture turn motions for training.
We also validate the manner in which the data from the IMU sensor on the proposed location can
characterize ski turns and performance with a series of statistical analyses, including a comparison
with data collected from foot pressure sensors. The goal of the study is to logically identify the ideal
location on the skier’s body to attach the IMU sensor and the best use of the data collected for the
skier. The statistical analyses and the hierarchical clustering method indicate that the pelvis is the best
location for attachment of an IMU, and numerical validation shows that the data collected from this
location can effectively estimate the performance and characteristics of the skier. Moreover, placement
of the sensor at this location does not distract the skier’s motion, and the sensor can be easily attached
and detached. The findings of this study can be used for the development of a wearable device for
the routine training of professional skiers.

Keywords: IMU sensor; performance evaluation; stability; alpine skiing

1. Introduction

The sports organizations of today are embracing their roles as entertainment providers [1,2].
Technology, in various forms, has been utilized in sports for many years and plays a particularly
vital role in elite sports. Technological advancements at the elite level may flow down to consumers
and also be used by the entertainment industry [3]. There are new types of gadgets to calculate the
speed of a pitch, the strength of a putt, the arch of a basketball toss and the quality of a serve. These
pro-level gadgets are coming to casual sports and eventually will create a new approach to improve
performance, as well as a new way to entertain in sports [4].

Alpine skiing is one of the most popular sports at the Winter Olympic Games and is highly
competitive; a difference of one hundredth of a second can change the standings. Alpine skiing
is generally characterized by the repetition of ski turns, the basic motion for managing speed and
direction. Consequently, the performance of turns greatly affects overall performance or a racer’s time;
as a result, significant interest has been shown in the use of motion analysis of ski turns to improve
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performance. The biomechanical aspects of ski turns have been studied to understand the fundamental
nature of the turn motion with several devices and methods [5,6]. In this study, we propose a method
based on an inertial measurement unit (IMU) sensor for the analysis of turn performance that can
be conveniently and effectively used by professional skiers while training. Specifically, this paper
defines a professional skier as one who routinely competes in alpine ski competitions certified by the
FÉDÉRATION INTERNATIONALE DE SKI(FIS).

The proposed study is motivated by the needs of professional skiers in the era of big data. It is
well known that the German national soccer team analyzed the data collected during training sessions
and identified individual players’ characteristics and performance. This data-oriented training and
team operation was credited with the team’s victory in the 2014 World Cup [7]. With advancements
in communication, sensors and wearable computing technologies, strong interest has been shown
in the sports world to capture data while training and to use them to improve performance, prevent
injuries and design strategies [8]. To date, ski motion analyses and data collection using sensors or
digital devices have been studied only in controlled laboratory settings. Unlike a one-time experiment,
however, data collection during daily training requires that the device should not distract from training,
and acquisition and analysis must be done in a timely manner to provide rapid feedback to the skier.
In this regard, the choice of which data to collect and how to best use the data while meeting these
requirements is critical. This study is the first step in the development of an on-time feedback system
for the use of professional skiers during their daily training.

Optical video-based motion capture has been widely used to analyze body motion in sports.
For three-dimensional (3D) motion analysis, a marker-based motion capture system also has been used.
These systems are effective for indoor experiments, but the use of such systems for sports performed in
a wide outdoor area with high-speed movements, such as alpine skiing, has some limitations, because
they require multiple cameras and light source settings.

Foot pressure sensors are effective tools that are widely used in ski experiments [9]. However, they
have limitations in capturing motion data during skiers’ daily training. Attachment of pressure
sensors to the boots or bindings may require special equipment or custom boots or bindings.
The insole pad-type sensors also have some issues. Most professional alpine skiers use boots with a
thermo-molded liner, or memory foam, that is precisely shaped for the individual skier’s foot for the
best control of ski during the race. This liner perfectly fits the skier’s foot and, therefore, leaves no
space for any sensors or device inside the boots. Moreover, even if a thin pressure pad can be placed
inside the boots, skiers would be unable to replicate their best performance, because it would still
make the skiers feel uncomfortable. As a result, pressure sensors may be used for experiments, but
they may not be the best solution for everyday routine training.

Recently, IMU sensors, which measure acceleration and angular rotation, have gained attention
for motion analysis in alpine skiing. In this paper, we first present the analysis to identify the best
location to attach the IMU sensor to the skier’s body. The best location is defined as the location
at which the sensor can collect data for the analysis of ski turns, while not interrupting the skiers’
performance. It must also be easy to attach and detach the sensor for convenience in the skiers’
everyday training. To logically identify the optimal IMU location, we conducted experiments with a
professional skier who had experience in the final rounds of FIS-certified competitions. Multiple sets
of data were collected from 16 IMU sensors attached to the skier, as shown in Figure 1, while he
conducted typical on-slope training on an actual alpine race track in Pyeongchang Resort, where the
2018 Winter Olympics will take place. Extensive statistical analyses were performed to identify the
best sensor location. We then show that the data from the proposed location on the body characterize
the ski turn and its performance. To the best knowledge of the authors, this is the first report on
performance analysis with data collected from IMU sensors attached in a full-body configuration on a
professional skier at an actual racing track.
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Figure 1. Sensors attached for full-body measurement.

In summary, we seek to answer the following questions:

1. What is the best location on the body to attach an IMU sensor to capture the key characteristic of
the turns in alpine skiing?

2. From the selected location, how should data be analyzed to evaluate the skier’s performance,
particularly the lateral-asymmetric test and the adaptation effect of training?

The lateral-asymmetry is defined as the discrepancy between left and right turns, and it is often
considered to be a characteristic that affects the performance of ski turns [10]. The adaptation effect
refers to performance improvement that occurs with more trials as skiers become accustomed to slope
conditions, such as snow quality.

The contribution of this paper is clear. It presents a method for the effective use of an IMU sensor
to analyze the performance of professional skiers. In addition, the optimal sensor location and methods
of analysis open new opportunities for the development of a personal sporting device using a sensor
and smart phone, such as a training device based on the Internet of Things. This further development
and application are discussed in the last section.

The paper is organized as follows. Section 2 summarizes the research on the motion analysis of
alpine skiing using various devices. Section 3 describes the experimental procedures and methods.
Section 4 presents the analysis of the sensor data to identify the best location on the body to attach an
IMU sensor. Section 5 presents the validation of the proposed location by proving statistically that it
can capture the characteristics. Finally, Section 6 summarizes the study and discusses the potential
uses of IMU sensors in the ski training of professional alpine skiers.

2. Literature

2.1. Motion Analysis Using Different Experimental Devices

Traditionally, biomechanical analysis of motion in alpine skiing has been conducted with video
cameras and force (pressure) sensors. One of the early studies in the biomechanical analysis
of ski turns was conducted by Maxwell and Hull [11], who used transducers to estimate the
strength and loading on the knee during the ski turns. Schaff and Hauser [12] used video-based
analysis to discover significant differences in the biomechanical aspects of the knee joint by turn
techniques. Similarly, Müller et al. [13] used video-based analysis to reveal statistical differences
in the biomechanical aspects of turn techniques between experienced and intermediate skiers.
Yoneyama et al. [14] used a specially-designed system with angle sensors and force plates to compare
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the differences in joint motion and reacting forces in the legs between carving and conventional turns.
Müller and Schwameder [5] used video cameras and force plates to discuss the joint motion of body
parts and the action-reaction forces on a skier’s body when performing carving turns. Scott et al. [15]
used pressure sensors to measure the action of forces between the ski plates and the snow surface.
Vaverka and Vodickova [10] used pressure sensors to measure the forces that act on the legs to discuss
the effects of laterality on performance. For 3D motion analysis, reflective markers are used in addition
to the video-based analysis. Klous et al. [6] used a marker-based motion capture system and force
plates to analyze in 3D space the load placed on the knee by different turn techniques. Park et al. [16]
adopted a marker-based motion capture system to analyze the biomechanical aspects of the legs in 3D
space during ski turns.

Recently, IMU sensors have gained attention for their potential use in motion analysis of ski
turns. Brodie et al. [17] used IMU sensors to analyze the biomechanical aspects of the ski turns.
Krüger and Edelmann-Nusser [18] studied the accuracy of a full-body inertial measurement system in
measuring the motions during alpine skiing in comparison with that of an optical video-based system.
Kondo et al. [19] used IMU sensors to calculate skiers’ joint angles during two different turn techniques.

However, previous research using IMU sensors has intended to analyze ski turns and motions in
one-time only experimental environments. Although those methodologies have allowed for robust
technique analyses, the number of sensor units and total weight of the equipment used appears to
be prohibitive for use in daily training environments or during competitions. These issues have been
addressed in previous studies, such as [20,21]. Unlike the preceding research, the goal of our study is
to identify the best IMU sensor location. We also conduct turn and motion analyses, but as part of the
process of identifying an optimal location.

The work of Marsland et al. [20] is the most similar to this study. Their goal was to determine
whether a single micro-sensor unit attached to the body could be used to effectively identify each of the
main techniques used during a cross-country skiing competition. Although they studied cross-country
skiing and we study alpine skiing, they also tried to identify the best sensor location. However, they
did not perform a comparison analysis of possible sensor locations. Instead, they selected a single
location, the upper back, and argued that it was acceptable by showing that it allowed the sensor to
identify the intended motions of the cross-country skier.

2.2. Performance Analysis Using Different Experimental Devices

A few studies have focused on the performance of turn techniques. Michahelles and Schiele [22]
developed a system called SKIto measure the edge angles, as shown in Figure 3, velocities and foot
pressures to determine the center of mass. This system of different types of sensors was designed to
effectively provide information on the strengths and weaknesses of a skier. Kirby [23] developed a
system called vLinkto measure the acceleration and the angle between the moving direction of the
body and the skis for real-time feedback. Supej [24] developed a system with an IMU sensor to retrieve
a reference trajectory of the skier’s path. Federolf [25] suggested an analytical method based on video
analysis with which to quantify the performance of skiers based on the speed and distance traveled.
Debski [26] introduced a simulation-based trajectory optimization algorithm to suggest the optimal
path for better performance in ski races. Nemec et al. [21] used a machine learning technique to
develop reference postures that can be adopted in coaching and training in alpine skiing.

In summary, previous studies of alpine skiing with measurement devices have mainly focused on
understanding the biomechanical aspects of turn motions. They have attempted to provide insight into
the effects of body motion and posture on performance. In addition, some studies have focused more
on the performance side of ski turns, and although IMU-based measurements have gained attention in
academic research and commercial applications, no study has logically identified the optimal IMU
location for ski training.

The ultimate goal of this study is to offer a foundation for the development of a sensor-based
feedback analyzer that can be used by professional skiers during their daily training.
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3. Description of the Experiment

To identify the best location on the body of a skier to place an IMU sensor, we designed an
experiment in which a professional skier wearing IMU sensors performed a set of downhill turns as a
part of routine on-slope training. Note that the insole type of foot pressure sensor is not appropriate for
use in the everyday training of professional skiers, as discussed in the previous section. However, in
our experiments, we attached the foot pressure sensors inside the special boots and collected weight
shift data from them. Because the skier’s weight shift and turn characteristics can be well identified
from a pressure sensor on the foot, we used the data collected from the foot pressure sensor as the
reference to compare to the data from the IMU sensors to identify the best IMU location on the body.
We confirmed that although the skier did not want to use the foot pressure sensors to collect data
during daily training, due to the time required for wearing the specially-designed boots, he confirmed
in the post-survey that they did not influence his performance during the experiment.

The participant was a 20-year-old male professional skier with a height of 175 cm and a weight
of 73 kg, who had experience competing in an FIS-certified competition and was a member of the
alpine ski team at the Korea National Sports University (KNSU) [27]. Before the measurements began,
the participant was given a full explanation of the research purpose and experimental procedure
and signed Institutional Review Board consent forms to comply with the ethical principles of the
Declaration of Helsinki (1975, revised 1983).

The experiment was conducted on the Rainbow 3 slope at Yongpyeong Resort, Pyeongchang,
Gangwon-do, Korea. The official average slope angle is 41◦. Six poles were installed to simulate the
giant slalom, which has straight distances between 25 and 30 m. In our experiment, we attempted to
install the poles with nearly the same widths and lengths to provide the same environment for left
and right turns, which would be a sufficient condition for determination of the laterality. Figure 2 is a
graphical representation of the experimental setup described above. All of the experiment trials were
recorded with a video camera, as indicated in Figure 2, to validate the turn motions.
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Figure 2. Graphical representation of experimental setup.

Table 1. Specification of the sensors used in experiment

Specification (IMU)
Channel Up to 18 Sensors
Static accuracy ±0.4◦

Dynamic accuracy ±1.2◦

Sampling
frequency

100Hz

Data output Joint angles,
acceleration,
Quaternions

Specification (Foot Pressure)
Channel 13 sensors per

insole
Sensitivity 0.25 N/cm2

Coverage Up to 50%
Range 0.0 ∼ 40.0 N/cm2

Sampling
frequency

50Hz

Principle Capacitive

Figure 2. Graphical representation of the experimental setup.

We used a set of 16 IMU sensors (myoMOTION, Noraxon, Scottsdale, USA) for full-body
measurement. Each sensor can measure linear and angular accelerations in 3D space. The sampling
rate used in our experiment was 100 Hz. For the foot pressure sensor, we used an insole-type sensor
system from Moticon that has 13 distinct sensors. Each sensor measures the force applied in N/cm2.
The sampling rate used in our experiment was 50 Hz. A summary of the specifications is given
in Table 1.
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Table 1. Specifications of the sensors used in the experiment.

Specification (IMU)

Channel Up to 18 sensors
Static accuracy ±0.4◦

Dynamic accuracy ±1.2◦

Sampling frequency 100 Hz
Data output Joint angles, acceleration, quaternions

Specification (Foot Pressure)

Channel 13 sensors per insole
Sensitivity 0.25 N/cm2

Coverage Up to 50%
Range 0.0∼40.0 N/cm2

Sampling frequency 50 Hz
Principle Capacitive

The myoMOTION, a 3D multi-joint motion analysis system using IMU sensors, is one of the most
widely-used IMU sensor systems in academic research. Recent academic work performed with the
system is described in [28]. In the post-processing, to calculate the rotational angles and positions,
the values from the accelerometer, magnetometer and gyroscope must be combined. The data from
the accelerometer and magnetometer are used to determine the initial position, and the gyroscope’s
angular acceleration value is integrated to calculate the angle. To correct the drift error that might
occur during the integration process, a Kalman filter is applied. A more detailed description of the
method can be found in the technical report and specification produced by Noraxon [29,30].

With this setting, the skier performed six turns: three right turns and three left turns. For each
trial, the sensors taped to the skier were tightly secured again to make sure that they were attached to
the body. Then, the position was reset in the proper standing position. Note that the relative rotation
angles and positions were measured from this reset position. An additional turn (to the right) was
performed after the turns without a pole to slow down. This last turn is not included in the analysis.
In summary, a total of six experimental turns for each trial and a total of nine trials were attempted;
the second trial was excluded because we discovered errors in the data collection. As a result, eight
trials of six turns each are used for the analyses. Once the experiments were performed, the data were
collected from the sensors, and post-processing was conducted offline.

4. IMU Location Analysis

Typically, the motion of a ski turn can be decomposed into 3D rotations, as described in Figure 3.

Centrifugal 
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Centripetal 

Force 

Edge 

Angle 

Normal 

Force 

Turn 

Trajectory 

Turn 

Trajectory 

x-axis (Roll) 

y-axis (Pitch) 
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Figure 3. Physics and the rotational axes of the ski turn.
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Among these, the rotation over the x-axis or the roll is considered to be the key motion that affects
the performance of ski turns. This can be easily understood by considering the physics of a ski turn
as the roll generates the centripetal force to resist the centrifugal force that drags the skier out of the
circular path of the ski turn. Consequently, maintaining stable progress by keeping a balance between
the two forces allows postural stability and the performance of ski turns. The significance of the roll
angle and the importance of the roll motion in ski turns are well supported by previous studies [31,32].

The following analyses were preformed to identify the best IMU location to identify the roll angle.
Note that these analyses are complementary and do not replace one another.

1. Pattern correlation analysis;
2. Clustering analysis;
3. Turn detection analysis.

The pattern correlation and cluster analyses were performed to investigate the similarity between
the patterns from the IMU sensors and those from the foot pressure sensors. The turn detection analysis
identifies the IMU location at which the turn patterns are best recognized.

4.1. Pattern Correlation Analysis

As mentioned in the Introduction, numerous studies support the effectiveness of foot pressure
sensors in capturing a skier’s turn pattern, especially the roll motion [5,6,10,12,14,15,22]. Therefore, in
this analysis, the roll angle data collected from each IMU sensor are compared to those from the foot
sensors. The upper panel in Figure 4 shows the foot pressure values collected from the foot pressure
sensors. As we are concerned with the pattern of weight shift in the roll motion, the values from left
and right turns are combined to evaluate the pressure ratio. We denote F̂t as the set of the foot pressure
ratio for trial t, consisting of f̂ t(n), which is the n-th time index, such that:

F̂t = { f̂ t(1), f̂ t(2), ..., f̂ t(Nt)} (1)

where Nt is the total number of data points in trial t. Likewise, the data from the IMU sensor at location
l in trial t are denoted as M̂t

l , and each data point is represented as m̂t
l(n), such that:

M̂t
l = {m̂t

l(1), m̂t
l(2), ..., m̂t

l(Nt)} (2)

These datasets are smoothed with a five-point moving average to reduce the data noise, which is
a frequently-used method of signal processing in alpine skiing studies [18,33,34].

To compare the roll motion patterns among the different sensors, we normalize the dataset using
the standard score normalization method, and the following equation is used:

Z =
x− µ̂

σ̂
(3)

where Z is the normalized score of each data point x in a dataset and µ̂ and σ̂ represent the average
and standard deviation of the dataset, respectively. We use the standard score method to normalize
the data, because it is robust to the outliers and extreme values frequently detected in measurements
of dynamic motions, such as those involved in alpine skiing [35]. This method is also common in the
sports research literature, such as in [36,37]. The normalized datasets of the foot pressure ratio and
IMU data are represented as Ft and Mt

l , respectively. The normalized foot pressure ratio is shown in
the lower panel of Figure 4, and the normalized IMU data at each location are shown in Figure 5.
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Figure 4. Total foot forces of Trial 8 and the normalized foot pressure ratio.
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The correlation value, denoted by ρt
l = ρ(Ft, Mt

l ), is then evaluated between the normalized foot
pressure ratio, Ft, and each normalized IMU data, Mt

l at trial t, such that:

ρt
l = ρ(Ft, Mt

l ) =

Nt

∑
n=1

(
f t(n)−µ̂t

F
σ̂t

F

)(
mt

l (n)−µ̂t
Ml

σ̂t
Ml

)
Nt − 1

(4)

where µ̂t
F is the sample mean and σ̂t

F is the sample standard deviation of the dataset Ft. Similarly, µ̂t
Ml

is the sample mean and σ̂t
Ml

is the sample standard deviation of the dataset Mt
l .

Finally, we calculated the correlation between the normalized foot pressure ratio and the
normalized IMU data by Equation (4). Table 2 shows the resultant correlation values for each
body location for each trial. As shown in Table 2, the sensors located on the spine and lower body
(spine, thigh, shank, foot and pelvis) have high correlation values. That is, the roll motion measured at
these parts of the body and the weight shift, which is the key motion of the ski turns, are closely related.

Table 2. Correlation values of roll motion by the sensor locations.

Category Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Mean Median

Head 0.76 0.85 0.79 0.75 0.78 0.76 0.84 0.75 0.78 0.77
Upper Spine 0.71 0.89 0.88 0.88 0.88 0.88 0.93 0.85 0.86 0.88
Lower Spine 0.72 0.43 0.88 0.88 0.88 0.32 0.93 0.85 0.74 0.87

Pelvis 0.74 0.91 0.88 0.88 0.89 0.89 0.92 0.85 0.87 0.88
Upper Arm (L) 0.70 0.71 0.68 0.69 0.72 0.70 0.74 0.70 0.71 0.70
Upper Arm (R) 0.48 0.69 0.73 0.43 0.60 0.44 0.79 0.63 0.60 0.61

Forearm (L) 0.72 0.74 0.72 0.74 0.55 0.73 0.75 0.69 0.70 0.73
Forearm (R) 0.50 0.66 0.70 0.43 0.53 0.42 0.78 0.58 0.58 0.56

Hand (L) 0.40 -0.13 0.51 0.61 0.52 0.21 0.14 0.16 0.30 0.31
Hand (R) 0.49 0.64 0.53 0.50 0.61 0.67 0.48 0.48 0.55 0.52
Thigh (L) 0.69 0.91 0.88 0.88 0.90 0.89 0.92 0.87 0.87 0.89
Thigh (R) 0.74 0.84 0.84 0.80 0.83 0.79 0.89 0.85 0.82 0.84
Shank (L) 0.78 0.89 0.84 0.82 0.84 0.87 0.89 0.85 0.85 0.84
Shank (R) 0.71 0.89 0.87 0.87 0.86 0.88 0.89 0.85 0.85 0.87
Foot (L) 0.73 0.87 0.86 0.82 0.85 0.86 0.88 0.84 0.84 0.86
Foot (R) 0.73 0.90 0.88 0.84 0.86 0.89 0.90 0.85 0.86 0.87

Average 0.66 0.72 0.78 0.74 0.75 0.70 0.79 0.72 0.73 0.75

4.2. Clustering Analysis

We also performed a hierarchical clustering analysis. In the previous correlation analysis, the turn
pattern from each IMU sensor was compared to that from the foot pressure sensors. However, in the
hierarchical clustering analysis, the turn patterns among the IMU sensors and the foot pressure sensors
were compared to one another, and the similarities were measured. One of the goals of this hierarchical
clustering analysis was to validate the pattern data by analyzing the similarity measures. In the
analysis, for the similarity distance, we used correlation distance, which is often used in hierarchical
clustering when the correlations among the objects are known. To cluster the body locations, we
specifically considered the median correlation value of each body location to reduce the effects of
outliers, given the small sample size. This median correlation value is denoted as Rl for each body
location l, where R is between −1 and one. The definition of the correlation distance in the hierarchical
clustering is 1− Rl , and its range is thus between zero and two. For the clustering method, we used
centroid values to measure the distances between the clusters based on Equation (5).

d(r, s) = |xr − xs|, where xr =

Nr
∑

n=1
xr

Nr
(5)
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In this equation, d(r, s) indicates the distance between cluster r and s, where xr is the centroid of
cluster r with Nr objects.

The result is described in Figure 6. From the result, it can be inferred that the IMU sensors located
on the spine and legs and those of the foot pressure sensors (indicated in the red box in the figure)
produced very similar data patterns. Note that the correlation values of these locations in Table 2 are
over 0.80, which is conventionally acceptable for judging the existence of a strong correlation [38,39].
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Figure 6. Hierarchical clustering result of IMU sensors based on the correlation distance.

4.3. Turn Detection Analysis

The previous analyses identified the IMU sensors on the spine and lower body as good candidates.
In the final analysis, we tested how well these candidate sensors can recognize ski turns. We first
define the term turn-detection, which compares the actual number of turns and the turns detected by
the sensors. To measure this turn-detection, the zero-crossing method is used, which can be explained
by the example in Figure 7. Figure 7 is the roll angle from the IMU on the pelvis in Trial 8. A negative
value of the roll indicates that the skier was leaning to the left, and a positive value indicates that the
skier was leaning to the right. Considering the data pattern of the plot, the turn can be defined as the
interval between two zeros or the two zero-crossings.
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Figure 7. Plot of IMU data at the pelvis in Trial 8.
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As an example of the turn-detection measure, seven turns are recognized by counting the
zero-crossings in the data of Figure 7, and the actual number of ski turns is seven. Therefore, in
this case, we quantify that the turn is identified in all seven instances: 7/7 = 100%. If more or fewer
turns are identified, the turn-detection measure will be more or less than 100%, respectively. The result
of the turn-detection measurement for each sensor in each trial is listed in Table 3.

Table 3. Turn-detection of the sensor locations.

Location Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Total (Avg.)

Upper Spine 100% 100% 100% 129% 100% 100% 100% 100% 104%
Lower Spine 100% 0% 100% 100% 100% 0% 100% 100% 75%

Pelvis 100% 100% 100% 100% 100% 100% 100% 100% 100%
Thigh (L) 129% 100% 100% 100% 100% 100% 100% 100% 104%
Thigh (R) 200% 129% 114% 100% 171% 114% 286% 171% 161%
Shank (L) 86% 100% 100% 100% 100% 100% 100% 100% 98%
Shank (R) 100% 100% 100% 100% 100% 100% 100% 100% 100%
Foot (L) 100% 100% 100% 100% 100% 100% 100% 100% 100%
Foot (R) 100% 100% 100% 100% 100% 100% 100% 100% 100%

From this table, it can be seen that the pelvis, right shank and left and right feet are the good
candidate locations that show 100% turn-detection. However, we select the pelvis as the best location
for the IMU sensor, because it is the location at which the skier felt the least distraction. Furthermore,
the feet or shanks require a pair of sensors on each side of the leg, which demands additional effort
for attachment and detachment of the sensors and for analysis of the data. In addition, our survey
indicates that the IMU sensors attached to the feet (the ski plates) distracted from the performance of
ski turns and that the pelvis was considered to be the most convenient and least distracting location,
as indicated in Table C1 in Appendix C. Figure 8 shows the data from the IMU sensor attached to the
pelvis for the eight valid trials.
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Figure 8. The roll angle pattern from the IMU at the pelvis: x- and y-axes represent the time and angle
of the roll motion, respectively.
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5. Skiing Performance Analysis and Validation

From the sensor location analysis, we identified that the pelvis is the best location on the body to
attach an IMU sensor for the detection of turn characteristics regarding performance. The next question
is “Can the proposed IMU sensor location capture the turn characteristics regarding the performance?”
Answering this question could also validate that the pelvis is the best location for an IMU during
skiers’ daily training. We conducted two performance analyses based on the data collected from the
IMU sensor at the pelvis:

1. Lateral-asymmetric performance test;
2. Test for the adaptation effect of training.

5.1. Lateral-Asymmetric Performance Test

Lateral-asymmetry, which defines the discrepancy between left and right turns, is often considered
to be a characteristic that affects the performance of ski turns [10]. Before the experiment, we first
conducted an in-depth interview with the skier to determine his known turn characteristics. We then
attempted to analyze whether the data captured from the pelvis can identify the characteristics. From
the interview, the participant mentioned that he was less confident on right turns (where the outer
leg is the left leg) than left turns due to the aftereffects of inveteratedisc surgery on the left lumbar as
listed in Table C1 in Appendix C. Although we cannot determine the effects on left and right turns in
an absolute numerical value, we can at least speculate that there might be a difference between left
and right turns in terms of time and stability. Therefore, it is reasonable to hypothesize that there is a
difference or lateral-asymmetry in the performance of left and right turns.

For the hypothesis tests based on the IMU sensor, the time duration of each turn is used for the
performance measure. For the hypothesis test based on the foot pressure sensor, the maximum foot
pressure ratio is used for the performance measure. The time duration of each turn and the maximum
foot pressure ratio of each turn are summarized in Table 4.

Table 4. Summary of performance analysis.

Turns Turn 1 (R) Turn 3 (R) Turn 5 (R)

Attributes Time
Duration
(s)

Max
Pressure
Ratio

Time
Duration
(s)

Max
Pressure
Ratio

Time
Duration
(s)

Max
Pressure
Ratio

Trial 1 2.32 0.89 2.07 0.85 2.69 0.85
Trial 2 2.25 0.94 1.71 0.88 1.86 0.78
Trial 3 2.49 0.80 2.02 0.72 1.94 0.72
Trial 4 2.62 0.93 1.79 0.78 2.14 0.77
Trial 5 2.34 0.93 1.81 0.77 1.74 0.76
Trial 6 2.30 0.92 1.80 0.83 2.05 0.70
Trial 7 2.28 0.83 1.85 0.82 1.74 0.67
Trial 8 2.39 0.89 1.97 0.69 1.75 0.66

Turns Turn 2 (L) Turn 4 (L) Turn 6 (L)

Attributes Time
Duration
(s)

Max
Pressure
Ratio

Time
Duration
(s)

Max
Pressure
Ratio

Time
Duration
(s)

Max
Pressure
Ratio

Trial 1 2.05 0.81 1.62 0.92 3.10 0.97
Trial 2 1.82 0.88 1.57 0.83 1.50 0.89
Trial 3 1.80 0.88 1.62 0.83 1.55 0.87
Trial 4 1.72 0.87 1.57 0.87 1.39 0.89
Trial 5 1.61 0.81 1.52 0.76 1.46 0.87
Trial 6 1.85 0.76 1.39 0.85 1.74 0.84
Trial 7 1.80 0.87 1.51 0.88 1.53 0.88
Trial 8 1.77 0.86 1.42 0.89 1.50 0.90
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With these data, two hypothesis tests are performed. The first hypothesis is that no time difference
exists between left and right turns, such that:

H0 : µ∗L = µ∗R vs. H1 : µ∗L 6= µ∗R (6)

That is, µ∗L and µ∗R are the true mean of the left and right time durations, respectively. The second
hypothesis is that there is no difference in the foot pressure between left and right turns, such that:

H0 : µ+
L = µ+

R vs. H1 : µ+
L 6= µ+

R (7)

where µ+
L and µ+

R are the true mean of the left and right maximum foot pressure ratio, respectively.
Specifically, the foot pressure on the right foot should be higher in left turns, and vice versa, allowing
us to capture the maximum foot pressure ratio of the right foot for each left turn and the maximum
pressure ratio of the left foot for each right turn. Then, these maximum values are compared for the
hypotheses testing.

Because we had three left turns and three right turns for each trial and a total of eight trials, a total
of 24 left turns and 24 right turns were available. With this comparably small sample size, we planned
to conduct two-sample t-tests. Kolmogorov–Smirnov tests (K-S tests) were conducted first to check the
normality of the population data. A variance test was also conducted to check whether the population
variances were equal for the accurate calculation of t-statistics. The detailed procedures are described
in Appendix A. We proved the normality of the population data in Appendix A.1. Furthermore, we
showed that the population variances in time duration data for left and right turns are equal, while the
population variances of the foot pressure ratio for left and right turns are not equal in Appendix A.2.

We conducted two-sample t-tests with a significance level (α) of 0.05.

• Hypothesis test for the time duration:

In the hypothesis test from Equation (6), the null hypothesis, H0, is that there is no significant
difference in the time duration between left and right turns (µ∗L = µ∗R). The alternative, H1, is
that there is a significant difference in the time duration between left and right turns (µ∗L 6= µ∗R).
Because the population variances of the time duration data for left and right turns are equal, the
test statistic, T∗0 , is defined as the following Equation (8). In this equation, µ̂∗L and µ̂∗R indicate the
sample means of the time duration in left and right turns, whereas s∗L

2 and s∗R
2 indicate the sample

variances of the time duration in left and right turns. n∗L and n∗R are the number of samples for
each dataset.

T∗0 =
µ̂∗L − µ̂∗R

Sp

√
1

n∗L
+ 1

n∗R

where Sp =

√
(n∗L − 1)s∗L

2 + (n∗R − 1)s∗R
2

n∗L + n∗R − 2
(8)

Finally, the calculated test statistic is 4.27, and its absolute value, |T∗0 |, is larger than
t0.025(n∗L + n∗R − 2 = 46) ∼= 2.01, such that it falls into the rejection region. Thus, the null
hypothesis that there is a significant difference in the time duration between left and right
turns is rejected.

• Hypothesis test for the maximum foot pressure ratio:

Following the hypothesis test of Equation (7), the null hypothesis, H0, is that there is no
significant difference in the maximum foot pressure ratio between left and right turns (µ+

L = µ+
R ).

The alternative, H1, is that there is a significant difference in the maximum foot pressure ratio
between left and right turns (µ+

L 6= µ+
R ). Because the population variances of the maximum

foot pressure ratio data for left and right turns are not equal, the test statistic, T+
0 , is defined

as Equation (9). In this equation, µ̂+
L and µ̂+

R indicate the sample means of the maximum foot

pressure ratio in left and right turns, whereas s+L
2 and s+R

2 indicate the sample variances of the
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maximum foot pressure ratio in left and right turns. n+
L and n+

R are the number of samples for
each dataset.

T+
0 =

µ̂+
L − µ̂+

R√
s+L

2

n+
L
+

s+R
2

n+
R

, where the degree of freedom v+ =

(
s+L

2

n+
L
+

s+R
2

n+
R

)2

( s+L
2

n+L

)2

n+
L −1

+

( s+R
2

n+R

)2

n+
R−1

(9)

Finally, the calculated test statistic is 2.62, and its absolute value, |T+
0 |, is larger than

t0.025(v+ = 35) ∼= 2.03, such that it falls into the rejection region. Thus, the null hypothesis
that there is a significant difference in the maximum foot pressure ratio or the balance in weight
shifts between left and right turns is rejected.

A summary of the two hypothesis tests is presented in Table 5. With a significance level (α) of 0.05,
both null hypotheses are rejected. That is, both tests indicate a difference between left and right turns.

Table 5. Summary of hypothesis tests for the lateral-asymmetric performance analysis.

IMU Sensor Foot Pressure Sensors

Null (H0) µ∗L = µ∗R Null (H0) µ+
L = µ+

R
Alternative (H1) µ∗L 6= µ∗R Alternative (H1) µ+

L 6= µ+
R

Critical points (α = 0.05) 2.01 Critical points (α = 0.05) 2.03
t-statistics 4.27 t-statistics 2.62
Results H0 rejected Results H0 rejected

In summary, the two hypothesis tests show a significant difference or lateral-asymmetry in the
performance measures, the time duration and the maximum foot pressure ratio. Because the results
are identical, it can be statistically inferred that the IMU sensor at the pelvis is as capable of analyzing
the lateral asymmetric performance as the foot pressure sensors.

5.2. Test for the Adaptation Effect of Training

We also conducted an analysis to validate whether the IMU sensor can capture the adaptation
effect of training on performance. For the analysis, we conducted another interview with the participant
after the experiments regarding self-assessment of the performance of each trial, as listed in Table 6.
In the self-assessment, we let the skier evaluate the performance of each trial on a scale of one to 10
(one is the worst, and 10 is the best). Notice that as indicated earlier, the data from the IMU during
the second experimental attempt were not properly collected, and the second attempt is therefore
indicated with an asterisk in the table. However, we included the self-assessment in the table and
considered the fact that the skier made the attempt during the experiment in the analysis, because
the adaptation effect depends on the number of trials. Specifically, although there is no record for the
second attempt, we considered the second attempt to give a total of nine attempts. As indicated in
Table 6, the skier mentioned in the interview that his performance seemed to improve as more trials
were performed, because he grew accustomed to the experimental devices and the slope conditions,
such as the snow quality, as the trials proceeded. Because the self-assessment is independent from the
failure of our actual second experiment, we included the self-assessment score for the actual second
trial (marked *).

Based on this result, the following hypothesis is made: the skier adapted to the test environment,
and his turn performance improved as the experiment proceeded. Figure 9 shows the time duration
for each trial based on Table 4. Each dot indicates the time duration, and the line depicts the linear
regression result. As mentioned above, in Figure 9, the second attempt marked with an asterisk on the
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x-axis does not have data, but we considered the fact that an attempt was made; therefore, there is a
total of nine experimental trials. The correlation value is −0.696. This result indicates that the time
duration data collected from the IMU at the pelvis captured the adaptation effect. The validation of
the correlation analysis is explained in Appendix B.

Table 6. Self-assessment score for each trial.

Trial Trial 1 * Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8

Self-assessment (out of 10) 2.5 3.5 3.5 4.5 5 5 5 5 6
Time duration 13.85 N/A 10.71 11.42 11.23 10.48 11.13 10.71 10.80

Note: N/A = not available.
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Figure 9. Plot of the correlation analysis between trial number and total time duration.

6. Conclusions

In this paper, we first present an analysis in which the best location of an IMU sensor on the skier’s
body was identified. The best location is defined as the body part at which the sensor can effectively
collect the data for the analysis of a turn motion without interrupting the skier’s performance. It must
also allow easy attachment and detachment of the sensor for the convenience of daily training.

In the series of analyses, we identified the pelvis as the best location to attach the IMU sensor,
because the data collected from this location effectively address the performance measure and the
characteristics of the skiers. The pelvis was also the preferred location of the skier, because it creates
less of a distraction for the skier during a race.

Although the test was performed with only one participant, and we understand that more
objective conclusions could be drawn from more participants, an experiment with a single participant
still has value. Some studies of alpine skiing have been based on single-subject experiments,
including [14,15,17,19], and analyzing an experiment with a single subject is not unusual in ski
research. Another rationale for performing our experiment with a single subject is that the results can
provide the direction for future multiple-subject experiments.

Moreover, in the era of smartphones and numerous new wearable devices, as described in [40],
the findings of this study are significant. They can lay the ground work for the development of a new
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wearable device for ski training. The proposed analysis methods can be easily adopted, because they
are not computationally demanding. Therefore, they can be used to design a system to give numerous
types of feedback for skiers’ performance during training.

In summary, the value of our research comes from its use of a professional skier and its
establishment of new possibilities for performance analysis in alpine skiing using IMU sensors.
Because the effectiveness of IMU sensors in the analysis of ski turns is analytically proven, the effects of
other signals of the IMU sensor, including angular/linear velocities and accelerations, on performance
and the yaw motion analysis of ski turns can be interesting research topics. We reserve these topics for
future study.
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Abbreviations

The following abbreviations are used in this manuscript:

IMU Inertial measurement unit

FIS FÉDÉRATION INTERNATIONALE DE SKI

3-D 3-dimensional

IoT Internet of Things

KNSU Korea National Sports University

K-S test Kolmogorov–Smirnov test

CV Critical value

Appendix A: Hypothesis Tests for Lateral-Asymmetry Analysis

A.1. K-S Test

We conducted K-S tests to check the normality of the two data samples: time duration and
maximum foot pressure ratio. The K-S test is basically a type of hypothesis test with a null hypothesis
that the sample data come from a population with a standard normal distribution. The alternative
hypothesis is that the sample data are not from a standard normal distribution. By means of the K-S
test, the null hypothesis is rejected if the K-S statistic is larger than the critical value (CV). The critical
value in this test is 0.269 for 24 sample data with a significance level α = 0.05 [41]. Finally, the results of
the K-S tests are listed in Table A1, and Figure A1 is the graphical representation of the results. Note
that the K-S statistic is the absolute value of the maximum difference between the empirical cumulative
distribution function (cdf) and the hypothesized cdf, such that:

D∗ = max
x

(∣∣F̂ (x)− G (x)
∣∣) (A1)

That is, in Equation (A1), D∗ is the K-S statistic, F̂(x) is the empirical cdf and G(x) is the
hypothesized cdf, where x indicates the data point. The F̂(x) and G(x) are compared in Figure A1.
More details on the K-S can be found in [41,42].
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Finally, because the K-S statistics in Table A1 are less than the critical value, the normality of the
sample data is now confirmed.

Table A1. Summary of the K-S test result.

K-S Test K-S Statistics CV (α = 0.05)

Time duration (R) 0.146 0.269
Time duration (L) 0.231 0.269

Foot pressure ratio (R) 0.106 0.269
Foot pressure ratio (L) 0.186 0.269
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Figure A1. Plot of the empirical cumulative distribution function (cdf) and the standard normal cdf for
a visual comparison of the K-S test result.

A.2. Checking the Variance of Population Data

Once we confirmed the normality of the sample data, the next step was to check whether the
population variances of two comparing samples are basically the same to conduct a two-sample
t-test. Consequently, we conducted a hypothesis test with the null hypothesis that the two population
variances are basically the same and an alternative that the two population variances are not the same.
This test is often called a two-sample F-test, and the two samples compared are left and right data in
each category, the time duration and the maximum foot pressure ratio. The equations below are the
basic form of our hypothesis tests and the test statistics F0. σ2

L and σ2
R are the population variances of
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the test attribute of left and right turns, whereas s2
L and s2

R are the sample variances of the test attribute
of left and right turns.

H0 : σ2
L = σ2

R vs. H1 : σ2
L 6= σ2

R and F0 =
s2

L
s2

R
(A2)

Because there are 24 data points for each sample, with a significance level α = 0.05,
F0.975(nL − 1 = 23, nR − 1 = 23) = 0.43 and F0.025(nL − 1 = 23, nR − 1 = 23) = 2.31.

• Hypothesis test for the variances of the time duration data:

Following Equation (A2), the null hypothesis, H0, is that there is no significant difference in the
population variances of the time durations between left and right turns σ∗L

2 = σ∗R
2. The alternative,

H1, is that there is a significant difference in the population variances of the time durations
between left and right turns σ∗L

2 6= σ∗R
2. Finally, the calculated test statistic, F∗0 , is 0.743, that the null

hypothesis cannot be rejected because F0.975(23, 23) = 0.43 < F∗0 = 0.743 < F0.025(23, 23) = 2.31.

Thus, there is no significant difference in the population variances of the time duration between
left and right turns.

• Hypothesis test for the variances of the maximum foot pressure ratio:

Following Equation (A2), the null hypothesis, H0, is that there is no significant difference in the
population variance of the maximum foot pressure ratio between left and right turns σ+

L
2
= σ+

R
2.

The alternative, H1, is that there is a significant difference in the population variance of the
maximum foot pressure ratio between left and right turns (σ+

L
2 6= σ+

R
2). Finally, the calculated test

statistic, F+
0 , is 3.40 that the null hypothesis is rejected because F0.025(23, 23) = 2.31 < F+

0 = 3.40.

Thus, there is a significant difference in the population variances of the maximum foot pressure
ratio between left and right turns.

In summary, the result of the K-S test shows that the normality of the population data is
guaranteed by the sample data of the time duration and the maximum foot pressure ratio. In the
hypothesis tests for the variances, the results show no difference in the population variances of the
time duration, whereas a significant difference was seen in the population variances of the maximum
foot pressure ratio.

Appendix B: Adaptation Effect of Training

To confirm the correlation between two factors with a comparably small sample size of eight,
we conducted a hypothesis test by comparing the t-statistic with a t-distribution of n− 2 degrees of
freedom, where n indicates the number of samples. The two factors for comparison are the number of
trials and the time duration. For the general form of our hypothesis test, the null hypothesis is that
there is no correlation between the two factors, and the alternative is that there is a correlation between
the two factors. The equations below are our hypothesis test and its test statistics T∗. ρ∗ is the true
correlation between two factors. r∗ is the sample correlation value calculated from the data of n∗ = 8
samples. For the significance level, we used an α value of 0.10 for the two-sided t-test.

H0 : ρ∗ = 0 vs. H1 : ρ∗ 6= 0 and T∗ =
r∗
√

n∗ − 2√
1− r∗2

(B1)

• Hypothesis test for the number of trials vs. time duration:
In the hypothesis test from Equation (B1), the null hypothesis, H0, is that there is no significant
correlation between the number of trials and the time duration. The alternative, H1, is that there
is a significant correlation between the number of trials and the time duration.
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Finally, the calculated t-statistics is | − 2.373| = 2.373 with r∗ = −0.696 and the degree of freedom
n∗ − 2 = 6; with a significance level (α) of 0.10, T0.05 = 1.943. Because T0.05 = 1.943 < T∗ = 2.373,
the null hypothesis is rejected. By this analysis, the causal relationship between the number of
trials and the time duration is confirmed.

Appendix C: Summary of the Survey

We conducted two surveys, Part 1 before and Part 2 after the experiment. A self-assessment of
performance was conducted after each trial.

Table C1. Summary of the survey.

Question 1: Are there any personal characteristics that might affect the performance?

• It is quite demanding to maintain against the forces acting on the left foot or leg, because of the
aftereffects of inveteratedisc surgery on the left lumbar.
• For the best performance, some period of adaptation to the experimental equipment and the course
would be required.
• Thorough inspection of the snow surface is mandatory for the best performance (i.e., distribution
and quality of snow on the surface).
• Because I could not thoroughly inspect the experimental course, I expected that this would have a
negative effect on performance.

Question 2: Are there any comments for the experiments?

• Because the experimental course was short and enough time was given for rest after each trial, there
was less effect of fatigue when performing the turns during the whole experiment. Rather, I felt that
my performances improved as I gradually adapted to the experimental devices and factors, such as
snow quality and snow distribution.
• I believe that the performance was greatly affected by the quality of the snow among many other
factors that might affect performance.
• In my point of view, there was more snow on the surface than ice, which is not a favorable
environment to perform carving turns.
• The pressure sensors in the boots did not influence significantly the performance during the
experiments. However, I do not want to use them for daily training.
• The IMU sensors attached to the feet distracted from the control of skis while performing the turns.

Question 3: Evaluate yourself in a range from one to 10 (10 for the best) for each trial.

• Please refer to Table 6 in Section 5
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