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A B S T R A C T   

At present, structural optimization is a highly demanding area of research in engineering. Engi-
neers aim to minimize material in a body while maintaining its usability and safety at the same 
time. Developing a user-friendly program to optimize a structure using the finite element method 
(FEM) is the goal of the current study. With the advent of additive manufacturing, the production 
of complex-shaped designs is showing promise. A detailed optimization algorithm based on solid 
isotropic material with penalization (SIMP) is presented in this paper. UnTop2D: An object- 
oriented Python program with a graphical user interface (GUI) has been developed, which can 
be applied to structures with both structured and unstructured meshes. The mesh is not required 
to be topologically ball and can be imported from professional meshing software. Any selected 
element can be frozen to prevent its removal during optimization, and wall elements can also be 
frozen for real-world scenarios. The optimized structure can be exported as an Abaqus input file 
for structural analysis and STL file for 3D printing. This paper presents several examples to 
demonstrate the effectiveness of the proposed procedure.   

1. Introduction 

The modern trend for engineers is to design safe structures with minimum cost and innovative design. Engineers use finite element 
analysis (FEA) to check whether a structure is safe under applied loading and boundary conditions. By the trial-and-error method, it 
takes a long time to optimize a structure, as each intermediate design, after the removal of materials with less developed stress, has to 
be checked. This technique might not lead to the desired result, as checking the result files manually is physically nearly impossible, 
and the contour plot usually shows banded results. Instead, structural optimization techniques are being implemented. 

There are three types of structural optimization: size, shape and topology. If a block with a circular slot is taken as an example for 
size optimization, the slot’s position remains fixed, while its size is determined by its radius. To optimize the block weight, the slot’s 
radius can be adjusted. However, the structure’s geometry remains unchanged. In the case of shape optimization, if the same block is 
considered, the circular shape may not be a good option. Shapes such as ovals might be more suitable. To control the slot’s shape 
during optimization, parametric curves, such as a closed Bezier curve, can be chosen to optimize the slot’s boundary. The shape design 
variables, in this case, would be the control point locations [1]. 

The question of how to arrange material within a design space to achieve optimal structural performance is a fundamental problem 
in engineering that topology optimization can help address. The initial configuration can be updated using this. Topology optimization 
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can enhance structural efficiency by increasing stiffness while reducing the material used [2]. While this idea was first introduced for 
mechanical design problems, it has since been adopted across various other physical domains, such as fluids [3,4], acoustics [5], 
electromagnetics [6], optics [7,8] and their interdisciplinary combinations. Our current research is limited to mechanical design. 

Over the past few decades, extensive research has been conducted on topology optimization [9,10]. Numerous methodologies have 
been developed to address this area. One such approach is the ground structure method [11–16], which employs an extensive array of 
truss or beam elements within the defined design domain. The design variable, in this case, is the individual cross-sectional area. When 
optimizing, elements with a cross-sectional area of zero or approaching the lower limit of the design variable are removed from the 
design. Another optimization technique is the evolutionary structural optimization (ESO) [17–21]. ESO is an optimization method that 
systematically eliminates inefficient material from a structure to achieve an optimal configuration. It is closely linked to the classical 
fully stressed design approach, where ideal structures have uniform stress levels. A rejection criterion based on local stress levels is 
applied, with materials experiencing low stress being deemed inefficient and removed from the design. Furthermore, a different 
category of topology optimization methods involves using structural boundaries as the design variables. One prominent example of 
this approach is the level-set method [22–25], which was first proposed by Osher and Sethian [26]. Another technique, known as the 
homogenization method [27–29], converts complex structural topology problems into size optimization problems by introducing a 
material density function in each element. This method determines the mechanical properties of materials and can be used to solve 
various topology optimization problems, offering mathematical bounds on theoretical structural performance. 

SIMP is one of the main existing methods. This is the most used FEA-based topology optimization method that emerged as an 
alternative to the homogenization method in order to avoid composite materials in final domains [30]. Rozvany et al. [31] coined the 
name SIMP. In this method, the structure is discretized into small elements whose material properties are assumed constant across the 
element and are calculated as material properties multiplied by relative material densities to the power penalization number. Relative 
material densities are continuous, varying from 0 to 1. In practice, an infinitesimal number is used instead of 0 for numerical stability 
representing void material. Moreover, 1 means 100% material in an element. These relative material densities are solved through some 
calculus operations for a given objective (e.g., compliance minimization). In 2001, Sigmund [32] implemented an educational 99-line 
MATLAB code for compliance minimization problems for statically loaded structures with square elements. The 99-line MATLAB code 
inspired many researchers to work on the SIMP algorithm. Later, the code was enhanced to an 88-line MATLAB code [33] with 
improved performance and an added density filter. Talischi et al. [34] presented a MATLAB code for structural topology optimization 
featuring a finite element routine based on isoparametric polygonal elements. They focused on utilizing unstructured meshes within 
arbitrary domains, an area that had taken little attention before. Bochenek and Tajs-Zielinska [35] extended the concept of cellular 
automata to an unstructured grid of cells related to non-regular finite element meshes. 

In our current work, we have developed a general tool named UnTop2D for topology optimization based on the SIMP method to 
optimize two-dimensional problems. Quadrilateral (Q4) plain stress element is used. The software can import any Q4 mesh, whether 
structured or unstructured, from professional software such as Abaqus, Ansys, Nastran or Gmsh. The mesh does not need to be to-
pologically ball so that the design domain can be of any shape, regular or irregular. The GUI allows users to set boundary conditions, 
loads and optimization parameters easily. The program has a mesh check tool additionally. 

During the optimization process, calculating element stiffness matrices becomes a crucial step. Unstructured meshes necessitate a 
higher computational cost for these calculations. To address this challenge, stiffness matrices are computed during the first optimi-
zation iteration and stored in the memory. Subsequent iterations draw data from these stored matrices, incurring a memory cost while 
significantly conserving computational resources. Real-time tracking of structural compliance and the maximum change in relative 
material density during optimization is possible with the graphs to facilitate monitoring of optimization convergence. Each optimi-
zation iteration is visualized graphically and can be saved within the project directory. This feature is particularly advantageous for 
research and analysis, eliminating the need for optimization calculations each time. 

The tool offers the flexibility to designate specific elements as ‘frozen’, preventing their removal during optimization. Users can also 
choose to freeze elements - those adjacent to the design domain walls. Unlike previous literature, which often lacked emphasis on 
postprocessing, our approach incorporates a filtering technique. This technique eliminates insignificant elements from the structure 
after optimization, enabling export to Abaqus for further structural analysis or to STL format for 3D printing. 

Fig. 1. A structured mesh.  
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2. Structured and unstructured meshes 

A regular design domain is rectangular and has no holes or cuts. It can be discretized using a structured mesh. On the contrary, an 
irregular design domain is not rectangular and may have holes or cuts. It cannot be discretized using a structured mesh, so an un-
structured mesh is typically required. 

Structured meshes are characterized by a predetermined and periodic node-element connectivity pattern. This means that the same 
pattern of elements is repeated throughout the mesh, as shown in Fig. 1. Unstructured meshes, on the other hand, do not have a 
periodic connectivity pattern. The number of elements connected to a node can vary, and the internal angles of the quadrilaterals can 
also change. This is because unstructured meshes are designed to conform to the geometry of the domain and other constraints, as 
shown in Fig. 2. The size of the elements in an unstructured mesh can also vary significantly across the mesh. In the close-up view of the 
top-left circular opening, node A is connected to three elements, node B to five elements and node C to four elements. More details can 
be found in Ref. [36]. 

3. Optimization problem 

The optimization goal is to minimize the compliance c of the design domain for a given value of volume fraction f . The volume 
fraction is the ratio of the structure’s material volume to the design domain’s volume. 

The optimizer finds the elements’ relative material densities xe for the following objective in Equation (1) [32]. 

minimize  c(x) = UT KU =
∑N

e=1
(xe)

pue
T k0ue (1) 

Here, U is the global displacement vector, K is the global stiffness matrix, x is the vector containing elements’ relative material 
densities xe, p is the penalization power (taken as 3 for a Poisson’s ratio 1/3), ue is the nodal displacement vector of elements, k0 is the 
element stiffness matrix, and N is the total element number. Tfhe maximum value of xe is 1, which represents solid material in an 
element. Any value of xe less than 1 can be considered a porous element. p accelerates the optimization by suppressing the contribution 
of xe that is less than 1. 

During individual iteration, the following constraints in Equations (2)–(4) are to be satisfied. 

V(x)/V0
= f (2)  

KU =F (3)  

0< x min ≤ xe ≤ 1 (4)  

Here, V(x) is the material volume, V0 is the design domain volume, and x min is a very small number greater than 0 to avoid the 
singularity in numerical analysis. Equation (3) is solved for U using FEA. 

4. Solution steps 

Fig. 3 shows the optimization process based on the SIMP algorithm. 

4.1. Design domain and finite element discretization 

The design domain may contain openings or voids. Before performing FEA, the design domain must be discretized. This can be 

Fig. 2. An unstructured mesh.  
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accomplished using commercial, open-source or custom software. The mesh that is produced can be either structured or unstructured. 

4.2. Nodes and elements 

The developed program of this study takes an object-oriented approach. The mesh data, loads and boundary conditions are stored 
in a custom input file. The input file parser reads the mesh data to generate nodes and element objects. The node object has geometry, 

Fig. 3. SIMP-based topology optimization flowchart.  

Fig. 4. Finding adjacent elements that share an edge (the encircled integers represent element numbering, and the remaining integers represent 
node numbering). 
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loads and boundary conditions attributes. Since the mesh element is quadrilateral, each element object consists of four node objects. 

4.3. Finding adjacent elements 

The program determines if a target element shares a common edge with other elements (having a common node can also be 
considered neighboring elements, but current research focuses on edge sharing). The elements with shared edges are then added as 
neighbors to the target element in a Python list as attributes. These lists of adjacent elements are used for mesh-independence filtering 
within the optimization loop. 

In Fig. 4, element number 3 is surrounded by elements 1, 2, 4 and 5. Element 1 and element 3 share a common edge: nodes 4 & 5. 
Similarly, the edges of 2 & 3, 3 & 4 and 3 & 5 are shared. 

4.4. Optimization loop 

At the beginning of the optimization loop, the relative material density xe of each element is set uniformly to the value of volume 
fraction f . Then, the loop begins. 

4.4.1. Generate element stiffness matrices 
In the plane stress formulation, element stiffness matrices k0 are generated and stored in element objects during the first iteration of 

the optimization loop. In subsequent iterations, the optimizer retrieves the element stiffness matrices from the element objects and 
accumulates them into the global stiffness matrix K. 

A linear quadrilateral element is used with four-point Gaussian quadrature [37] to calculate the stiffness. The element stiffness 
matrix is generated using Equations (5) and (6). 

k0 = te

∫1

− 1

∫1

− 1

BT DB det J dξdη (5)  

B=AG (6)  

here, te is the thickness of the element. The definitions of other symbols can be found in Ref. [38]. 
The steps to evaluate the element stiffness matrix k0 are as follows (each step is considered as an individual function in the pro-

gram).  

o Generate 2 × 2 Jacobian matrix J for each Gauss point. The parameters are ξ and η where, ξ = ±0.5773, η = ±0.5773 as shown in 
Fig. 5.  

o Evaluate determinants of Jacobian matrices det J.  
o Generate 3 × 4 A matrix for each element, where the arguments are J and det J.  
o Generate 4 × 8 G matrix for each element, where the parameters are ξ and η.  
o Calculate B for each Gaussian point by dot multiplication of A and G.  
o Generate 3 × 3 D matrix, where the arguments are Young’s modulus E and Poisson’s ratio ν.  
o Calculate ki for each Gaussian point by BTDB det J. Here, i = 1,  2,  3,  4.  
o Finally, evaluate element stiffness matrix k0 by summing up ki at all Gaussian points and multiplied by element thickness. So, k0 =

(k1 + k2 + k3 + k4)× te 

4.4.2. Calculate displacements 
The program generates the global stiffness matrix K by accumulating element stiffness matrices k0. The size of the K matrix is 2N ×

Fig. 5. Four-point Gauss quadrature in the two-dimensional space.  
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2N for two degrees of freedom (DOF) of nodes, where N is the total node number. In the program, K is constructed as SciPy sparse 
matrix. During accumulation, k0 is modulated into k0

new by multiplying the relative material densities xe to power p as shown in 
Equation (7). 

k0
new = k0xe

p (7) 

The global displacement vector U is found by solving Equation (8). The spsolve solver from SciPy [39] is used to solve the sparse 
linear algebra system. spsolve utilizes UMFPACK routines, which use an unsymmetrical multifrontal method to solve the system. 
Before solving the system, the constraint DOFs are eliminated from the matrices using the elimination method. 

K[x]U=F (8)  

here, the global stiffness matrix K[x] is modulated by x, and the load vector F is constructed by accumulating node object loads. 

4.4.3. Calculate compliance and compliance sensitivity 
The element displacement vectors ue are extracted from the global displacement vector U to calculate the element compliances. 

According to Equation (1), the element compliance is calculated as (xe)
pue

Tk0ue. 
The compliance sensitivities of elements are mathematically expressed as Equation (9). They evaluate the effect of changing the 

relative material density xe on the element compliances over optimization iterations. 

∂c/∂xe
= − p(xe)

p− 1ue
T k0ue (9)  

4.4.4. Compliance sensitivity weighted averaging 
Checkerboard patterns can occur in the final optimized structure due to poor finite element discretization [40]. To address this 

issue, the compliance sensitivities are modified by weighted averaging over neighboring elements, which are listed in a Python list at 
the beginning of the program. The weighted averaging operation is performed using Equation (10). 

(

∂c/∂xe

)

modified
=

1
∑N

f=1
Hf

∑N

f=1
Hf xe∂c/∂xe

(10) 

Here, N is the number of adjacent elements, including the target element. The weight factor Hf is taken as 0.1 for adjacent elements 
and 1.1 for the target element in current research. 

4.4.5. Optimality criteria update 
Element relative material densities are updated using Equation (11). 

xe
new =

⎧
⎨

⎩

x1 if xeBe
η ≤ x1

xeBe
η if x1 < xeBe

η < x2
x2 if xeBe

η ≥ x2

(11) 

Here, x1 = max(xmin,  xe − m), x2 = min(1,  xe + m) and η is the numerical damping coefficient, which is set to 1/ 2. m is the 
positive move limit, which is chosen as 0.15. Be is calculated using Equation (12). 

Be =
− ∂c/∂xe

λ
(12)  

Here, λ is the Lagrangian multiplier, which is found using the bisection method to satisfy Equation (2). 
After the element relative material densities xe are updated, the optimizer checks for the maximum change in xe from the previous 

iteration. The optimization is finished if the change is smaller than a threshold value (generally 0.01, which is 1% of 1). Otherwise, the 
program starts a new optimization iteration, beginning from step 4.4.1. 

5. The program 

5.1. Coding overview and the GUI 

The PyQt [41] module is used to build the GUI. It is a cross-platform GUI toolkit that is a Python binding for the popular software 
Qt. NumPy and SciPy [39] are used for numerical computations. NumPy’s array data structure is used to store general matrices. It also 
has functions for linear algebra operations. SciPy or Scientific Python, is a widely used module in the scientific community for 
optimization, integration, interpolation and solving ordinary differential equations. In this research, SciPy is used to store sparse 
matrices and perform linear algebra operations on sparse matrices. PyVista [42] is used to visualize 3D graphs. It is a 3D plotting and 
mesh analysis module. Matplotlib [43] is used to generate 2D plots. The meshio [44] module is used to import meshes generated by any 
professional meshing tool, such as Abaqus, Ansys, Nastran or Gmsh. It is also used to export the optimized mesh to Abaqus and stl 
formats. 
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The main GUI can be divided into three sections, as shown in Fig. 6.  

• The menu bar is located at the top of the GUI. It contains menu items and sub-menu items. Clicking on any menu item will open a 
dropdown menu with additional options.  

• On the left side of the control panel, there is the ‘Optimize’ button, which starts the optimization process for an imported mesh 
structure. The right side of the control panel contains navigation buttons. These buttons allow users to navigate through all of the 
optimization iterations.  

• The visualization panel shows the mesh data for the optimization domain. The color of each element represents the value of its 
relative material density. The value for a color can be found in the color bar, which is located at the bottom left of the panel. 
Boundary conditions and static loads are also annotated in this panel. 

5.2. Topology optimization workflow 

First, an input file needs to be generated from an external mesh file. This process is not part of the GUI program. A separate Python 
script named create_input_from_mesh.py is written using the meshio module. This script takes the mesh data and converts it into an 
input file. A custom syntax is used for the input file to store the mesh data, loads, boundary conditions and topology optimization- 
specific variables. The input file has specific data deceleration procedures for different entity types (e.g., nodes, elements, etc.). 

The GUI software can be opened by running the gui.py file. A new optimization project can be created from a previously generated 
input file by clicking on the ‘Create Project from Input File’ submenu item under the ‘File’ menu item (Fig. 7(a)). The mesh is then 

Fig. 6. The GUI of the developed program.  
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loaded into the visualization panel. By clicking on any point in the mesh geometry, the nearest node will be selected, and its details (i. 
e., node number, parent elements, etc.) will be displayed at the top-left corner of the visualization panel (Fig. 7(b)). Optimization 
parameters, static loads on nodes, displacement boundary conditions and element freezing can be set from the ‘Set’ menu item (Fig. 7 
(c-f)). Freezing elements is a process of always keeping the elements present regardless of topology optimization. 

After setting the input parameters, the topology optimization process can be started by clicking on the ‘Optimize’ button (Fig. 8(a)). 
In the GUI, the optimization iterations can be seen graphically by clicking on the navigation buttons, such as ‘First’, ‘Last’, ‘Previous’ 
and ‘Next’. In the command line interface (CLI) (Windows: command prompt, Linux: terminal), compliance and the maximum relative 
density change of each iteration are printed (Fig. 8(b)). 

Compliance plot and the maximum relative density change plot over iterations can be found under the ‘Analysis’ menu item (Fig. 9 

Fig. 7. (a) Create an optimization project from an input file, (b) View node properties by clicking on the desired node within the GUI, (c) Set the 
optimization parameters, (d) Set static loads on nodes. The force acting on a node is divided into x and y components, Fx and Fy. The sign convention 
is that forces acting along positive axes are considered positive and vice versa, (e) Set the displacement boundary conditions. A zero-displacement 
boundary condition is exerted on a node along the respective axis by checking the corresponding checkbox, (f) Set the frozen elements. 
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(a) and (b)). While the optimization process is running, the plot can be updated by clicking the ‘Refresh’ button. 
The software has a mesh quality checking utility, which can be found under the ‘Analysis’ menu item (Fig. 9(c)). The mesh analysis 

results include statistics of nodes and elements, as well as an analysis of the elements’ area, skewness and aspect ratio. 
After the optimization process is finished, the output result is shown in terms of relative material densities. However, all mesh 

elements are present in the output. This is not practical for additive manufacturing or further structural analysis of the optimized 
structure. Therefore, insignificant elements need to be filtered out. 

Filtering out elements means removing the elements from the mesh whose relative material densities are less than a threshold 
value. The ‘Filter Elements’ submenu item under the ‘Postprocess’ menu item opens a dialog (Fig. 10(a)) for filtering elements. Before 
opening the dialog, the last iteration step needs to be selected by clicking on the ‘Last’ button in the control panel. The threshold value 
can be defined in the ‘Filter Threshold’ input field. In our current research, we use 0.8 as the default threshold value for filtering out 
elements, but this can be changed from the GUI. There are two export buttons in the dialog to export the filtered mesh in INP format for 
structural analysis in Abaqus software or in STL format for 3D printing. 

After setting the filter threshold, clicking the ‘Filter’ button will trigger the filtering process and generate a filtered mesh. The 
filtered mesh can then be exported by clicking on the export buttons. A filtered mesh is shown in Fig. 10(b). The elements whose 
relative material densities are less than 0.8 are eliminated from the design mesh. The node and element numbering is also updated. 
This renumbering process is necessary because removing elements from the mesh breaks the continuity of the element and node 
numbering. If the mesh is not renumbered, the FEA code will raise errors. 

An example of the renumbering of nodes and elements during the filtering process is illustrated in Fig. 11. The elements numbered 
11, 12, 13, 15, 16, 17, 18, 20, 29 and 30 are removed from the mesh (Fig. 11(a) and (b) show before and after removal respectively). 
This means that the element numbers 14 and 19 are renumbered to 11 and 12, respectively. In the top row, the element numbering 
starts from 13. The node numbering is also updated to reflect the changes in the element numbering. 

6. Examples 

6.1. Topology optimization of MBB-beam 

A half MBB-beam structure is shown in Fig. 12(a). It has a width of 60 units, a height of 20 units and a thickness of 1 unit. A 
symmetry boundary condition is applied along the left edge of the structure i.e., zero displacement boundary condition is applied along 
the x-axis. This makes the structure behave like a full MBB-beam. A zero-displacement boundary condition is also applied along the y- 
axis at the bottom-right corner. A vertical load of 1 unit is applied at the top-left corner of the half MBB-beam. Young’s modulus E and 
Poisson’s ratio ν of the material are taken as 1 unit and 0.3, respectively. The volume fraction f is set to 0.3. 

Topology optimization is conducted for two types of meshes: structured and unstructured. First, a Python script is written to 
generate a structured mesh for the half MBB-beam. The mesh consists of 1281 nodes and 1200 square elements, as shown in Fig. 12(b). 
Each element has a length of 1 unit. Second, Abaqus/CAE 6.13 is used to generate an unstructured mesh for the half MBB-beam. The 
domain is discretized into 1533 nodes and 1452 quadrilateral elements, as shown in Fig. 12(c). The minimum, maximum and average 
aspect ratios of the elements are 1.002, 2.1761 and 1.2311, respectively. The elements have maximum and average skewness of 0.34 
and 0.06, respectively. 

Fig. 8. (a) Control panel section in GUI, (b) Optimization iteration tracking in the CLI.  
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Fig. 13 shows the final output of the topology optimization of MBB-beam for different cases. Fig. 13(a) and (b) are the results of 
current research for structured and unstructured meshes, respectively. Fig. 13(c) is the result of the 99-line MATLAB code [32] with the 
same design domain, loads and boundary conditions. In Fig. 13(a) and (b), yellow indicates a relative material density 1, and violet 
indicates a relative material density 0. In-between densities are shown in the color bar. In Fig. 13(c), black corresponds to relative 
density 1, and white corresponds to relative density 0. Fig. 13(a), which uses a structured mesh, produces the same result as Fig. 13(c). 
Fig. 13(b), which uses an unstructured mesh, has some scattered elements compared to Fig. 13(c), but the overall shape of the 
optimized structure is quite similar. 

Fig. 9. (a) Compliance vs. iteration plot, (b) Maximum relative material density change vs. iteration plot, (c) Mesh analysis information.  
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6.2. Topology optimization of C-clip 

A rectangular homogeneous steel structure with dimensions of 120 mm in length, 100 mm in width and 3 mm in thickness is 
selected as the design domain (Fig. 14(a)). A U-shaped notch runs from the right-middle of the structure to the left, with a parallel 
length of 55 mm, width of 10 mm and half-circle radius of 5 mm. The Young’s modulus E and Poisson’s ratio of the material ν are 2×
1011 Pa and 0.3, respectively. Two static point loads of 1125 N are applied to the corners of the U-shaped notch. One is on the right-top, 
directed upward, and the other is on the right-bottom, directed downward. The tip of the U-notch is constrained to zero displacement 
in both the x- and y-directions, and the left-middle point of the structure is constrained to zero displacement in the ydirection. The 
volume fraction f is 0.6. The mesh of the design domain is generated using the Abaqus/CAE 6.13 meshing tool (Fig. 14(b)). The mesh 
has a total of 1344 nodes and 1250 elements. The minimum, maximum and average aspect ratios of the elements are 1.0023, 1.8474 
and 1.0481, respectively. The maximum and average skewness of the elements are 0.33 and 0.03, respectively. 

Fig. 15(a–i) shows the relative material densities of the elements in significant optimization iterations. In the initial iterations, the 
elements’ relative material densities change drastically. However, after 15 iterations, the changes in the elements’ relative material 
densities tend to minimize (although there are spikes in the curve, the overall trend is decreasing), as shown in Fig. 16(a). 

In the first optimization iteration, compliance of the structure is found to be 0.7337. In subsequent iterations, the compliance 
decreases exponentially, as shown in Fig. 16(b). In the 101st iteration, the compliance of the structure reaches 0.2389. The maximum 
relative density change of the elements reaches 0.01 (1%), which is the threshold for finishing the optimization. Therefore, the 

Fig. 10. (a) Filter elements and export dialog, (b) Filtered mesh after removing elements with relative material densities less than a threshold value.  
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optimization loop is converged. The optimization took 52.14 s. 
Fig. 15(i) shows that the elements’ relative densities are aggregated in certain areas and morphed into a C-clip shape. 
Once the optimization is complete, the shape of the output is defined by the relative material densities. Where the relative material 

densities are 1 or close to 1, it can be said that material is present in those areas. However, below a certain level (i.e., less than 0.8), the 
material can be assumed to be absent in the corresponding elements. 

Fig. 17 compares the topology optimization output from the current research (Fig. 17(a)) and Abaqus (Fig. 17(b)). It is to be noted 
that Abaqus uses wall smoothing while filtering (although it does not re-mesh, it simply separates regions by contours). This smoothing 
feature is not yet implemented in the current research. Therefore, there is room for further improvement in this area. 

Fig. 18 compares the time taken for the optimization process by the current research and Abaqus. The current research takes 52.14 s 

Fig. 11. Renumbering of nodes and elements (a) Before filtering out, (b) After filtering out.  

Fig. 12. MBB-beam (a) Case setup with loads and boundary conditions. E = 1 unit,  ν = 0.3,  f = 0.3, (b) Meshing with square Q4 elements, (c) 
Meshing with Q4 elements (unstructured). 
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to converge, while Abaqus takes 21 min and 8 s. This represents a significant improvement in terms of computational time. The 
hardware configuration used was:  

• 12th Gen Intel(R) Core (TM) i5-12500 up to 4.60 GHz  
• 8 GB DDR4 RAM  
• 240 GB SATA SSD 

This comparison may not be 100% accurate, as other processes running on the machine may consume more or less computational 
power in different scenarios. However, for the current research, the computer environment was carefully set up to minimize the impact 
of these other processes. Therefore, the time comparison is very close to reality. 

Fig. 13. Topology optimization results comparison with 99-line MATLAB program (a) With structured mesh, (b) With unstructured mesh, (c) From 
99-line MATLAB program. 

Fig. 14. C-clip (a) Case setup with loads and boundary conditions. E = 2× 1011 Pa,  ν = 0.3,  f = 0.6, (b) Meshing with quadrilateral elements.  
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The optimized C-clip is exported in Abaqus (INP) for different volume fractions f and the Von Mises stress is analyzed in Abaqus 
software. The other parameters remain the same. The Von Mises stress is used to determine the onset of failure in isotropic and ductile 
materials. The Von Mises stress σVM for a plane stress element can be represented as follows by Equation (13) [38]: 

Fig. 15. C-clip topology optimization (a–i) Some significant iterations.  

Fig. 16. C-clip optimization (a) Maximum relative material density change vs. iteration plot, (b) Compliance vs. iteration plot.  
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σVM =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
σx + σy

)2
− 3

(
σxσy − τxy

2
)

√

(13) 

Table 1 shows the maximum Von Mises stress values for different volume fractions. For volume fractions of 0.4 and 0.5, the 
maximum Von Mises stresses exceed the yield stress (252 MPa) of the material. These structures are not safe. For the remaining volume 
fractions, the stress values do not exceed the material’s yield stress. So, these structures are safe. 

However, the structure should also be optimal in terms of material reduction. A volume fraction of 0.6 has a maximum material 
reduction of 40% while still being within the safe stress limit (Fig. 19). Therefore, this structure is optimal. 

6.3. Topology optimization of J-hook 

The design domain of the J-hook is shown in Fig. 20(a). The bounding box of the domain is 275 mm wide and 430 mm high. The 
thickness is 5 mm. The hole radius is 40 mm. The concave region has a half-circle radius of 50 mm. Three point-loads of 1200 N are 
applied to the structure. Young’s modulus E and Poisson’s ratio of the material ν are 2 × 1011 Pa and 0.3, respectively. The inner wall of 
the hole is constrained in the x- and y-directions. The volume fraction f is 0.5. The mesh is generated using the Abaqus/CAE 6.13 
meshing tool (Fig. 20(b)). The mesh has a total of 2393 nodes and 2186 elements. The minimum, maximum and avarage aspect ratios 
of the elements are 1.0014, 3.4731 and 1.3612, respectively. The maximum and average skewness of the elements are 0.48 and 0.02, 
respectively. 

To retain the J-hook shape, the walls are kept frozen in the design domain. Fig. 21 shows the wall elements that are kept frozen. In 
each optimization iteration, the relative material densities in these wall elements are always kept at a maximum. To achieve this, first 
the compliance sensitivities of all elements are calculated, as shown in Equation (9). Then, the maximum calculated compliance 
sensitivity is tracked, and the calculated compliance sensitivity of the frozen elements are overwrited with this maximum value, as 
shown in Equation (14). This ensures that the relative material densities of the wall elements are always kept at a maximum, which 
helps to retain the J-hook shape. 

Fig. 17. C-clip (a) Filtered topology optimization output, (b) Output from Abaqus with identical case setup.  

Fig. 18. Comparison of topology optimization computation time of C-clip: current research vs. Abaqus.  

Table 1 
Finding the optimal C-clip structure by analyzing Von Mises stress.  

Volume Fraction Material Reduction (%) Max. Von Mises Stress (MPa) Yield Stress Comparison Comment 

0.4 (40%) 60% 381.4 >252 MPa Not safe 
0.5 (50%) 50% 258.1 >252 MPa Not safe 
0.6 (60%) 40% 249.3 <252 MPa Safe and optimal 
0.7 (70%) 30% 248.5 <252 MPa Safe 
0.8 (80%) 20% 249 <252 MPa Safe 
0.9 (90%) 10% 249 <252 MPa Safe  
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)

(14) 

Fig. 22(a–i) shows some significant optimization iterations graphically. The optimization converges in the 107th iteration (Fig. 22 
(i)) when the maximum relative density change of elements reaches 0.009, which is lower than the finish threshold 0.01. The final 
compliance of the structure is 1.2202. Fig. 23 shows the maximum relative material density change and compliance data over iter-
ations. It is observed from the last iteration that the wall elements are not removed. They are forcefully kept during optimization 
iterations. 

Fig. 19. Von Mises stress analysis of the optimal C-clip structure at volume fraction f = 0.6, maximum Von Mises stress = 249.3 MPa.  

Fig. 20. J-hook (a) Case setup with loads and boundary conditions. E = 2× 1011 Pa,  ν = 0.3,  f = 0.5, (b) Meshing with quadrilateral elements.  

Fig. 21. J-hook wall elements (frozen).  
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Fig. 24 compares the topology optimization results of the J-hook using the current research (Fig. 24(a)) and Abaqus software 
(Fig. 24(b)). The case setup is identical for both studies. Wall elements are kept frozen for this J-hook case. 

The current research takes 2 min and 8 s (128.34 s) to converge, while Abaqus takes 31 min and 1 s (1871 s) in the optimization 
process (Fig. 25). 

Table 2 shows the maximum Von Mises stress values for different volume fractions. The structure is not safe for a volume fraction of 
0.4, as the maximum Von Mises stress exceeds the yield stress (252 MPa) of the material. Other configurations are safe. Of these, the 
volume fraction of 0.5 has a maximum material reduction of 50% (Fig. 26). Therefore, this is the optimal structure. 

Fig. 22. J-hook topology optimization (a–i) Some significant iterations.  
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6.4. Topology optimization of derrick 

Fig. 27(a) shows the design domain of the derrick. The thickness of the structure is 25 mm. Two holes are located at the top of the 
derrick to carry loads. In this setup, a 12000 N force is applied to the outer hole, and an 18000 N force is applied to the inner hole. The 
bottom of the derrick is constrained in the x- and y-directions. Young’s modulus E and Poisson’s ratio of the material ν are 2× 1011 Pa 
and 0.3, respectively. The volume fraction f is 0.6. Fig. 27(b) shows the mesh of the derrick’s design domain. The mesh was generated 

Fig. 23. J-hook optimization (a) Maximum relative material density change vs. iteration plot, (b) Compliance vs. iteration plot.  

Fig. 24. J-hook (a) Filtered topology optimization output, (b) Abaqus output with identical case setup.  

Fig. 25. Comparison of topology optimization computation time of J-hook: current research vs. Abaqus.  
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using Abaqus/CAE 6.13. The total numbers of nodes and elements are 3117 and 2960, respectively. The minimum, maximum and 
average aspect ratio of elements are 1, 2.1340 and 1.2308, respectively. The elements have maximum and average skewness of 0.35 
and 0.06, respectively. 

Elements adjacent to the walls of the derrick’s loading holes need to be frozen so that they are never removed during topology 
optimization. In Fig. 28, the frozen elements are shown in a different color. 

Some significant optimization iterations are shown graphically in Fig. 29(a–i). Fig. 30(a) shows the maximum change in relative 
material densities over iterations. Fig. 30(b) shows the compliance vs. iteration curve. The optimization converged in the 115th 
iteration (Fig. 29(i)), with a final compliance of 89.1967. 

Table 2 
Finding optimal J-hook structure by analyzing Von Mises stress.  

Volume Fraction Material Reduction (%) Max. Von Mises Stress (MPa) Yield Stress Comparison Comment 

0.4 (40%) 60% 664 >252 MPa Not safe 
0.5 (50%) 50% 145.9 <252 MPa Safe and optimal 
0.6 (60%) 40% 169.2 <252 MPa Safe 
0.7 (70%) 30% 137.2 <252 MPa Safe 
0.8 (80%) 20% 127.5 <252 MPa Safe 
0.9 (90%) 10% 119.6 <252 MPa Safe  

Fig. 26. Von Mises stress analysis of J-hook at optimal volume fraction f = 0.5, maximum Von Mises stress = 145.9 MPa.  

Fig. 27. Derrick (a) Case setup with loads and boundary conditions. E = 2× 1011 Pa,  ν = 0.3,  f = 0.6, (b) Meshing with quadrilateral elements.  
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Fig. 28. Frozen elements of derrick hole walls in topology optimization.  

Fig. 29. Derrick topology optimization (a–i) Some significant iterations.  
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Fig. 31 shows the topology optimization comparison of derrick with Abaqus software. The case setup is identical for both current 
research (Fig. 31(a)) and Abaqus (Fig. 31(b)). The Abaqus software takes 23 min and 51 s to finish the optimization, while the current 
research takes 4 min and 23 s to converge (Fig. 32). 

Table 3 shows the maximum Von Mises stress values for different volume fractions. Among the safe volume fraction configurations, 
the volume fraction of 0.5 has the maximum material reduction, as shown in Fig. 33. Therefore, it is the safe and optimal configuration. 

7. Conclusions 

We have developed a general-purpose topology optimization tool named UnTop2D for two-dimensional problems using object- 
oriented Python programming. The following conclusions can be made from the current research:  

• UnTop2D can import any structured or unstructured Q4 mesh and optimize the design domain with improved computation time 
and accuracy. This has been verified by comparing the results with the renowned professional software Abaqus.  

• UnTop2D also features a GUI that makes it easy to set boundary conditions, loads and optimization parameters. The visualization 
panel shows the optimization results with colors.  

• The developed program allows users to designate specific elements as ‘frozen’. This can be useful for preventing the removal of 
essential elements during optimization.  

• The software incorporates a filtering technique to eliminate insignificant elements from the structure after optimization. This 
makes it easier to export the optimized structure to other software for further analysis or additive manufacturing. 

There have been many advancements in the field of topology optimization. Many commercial software packages have developed 
advanced algorithms, but these algorithms are not always available for research purposes. In this paper, we incorporate object-oriented 
programming methodologies, which make it easier to optimize general design domains for practical engineering applications. We 
believe that this work will encourage other researchers to build upon our findings. 

Replication of results 

The paper provides a detailed discussion of the algorithm and the coding procedure. Corresponding examples are also given with 
figures. We expect a graduate student to reproduce a similar code from the provided information. The readers are welcome to contact 
the authors for any queries. 

Fig. 30. Derrick optimization (a) Maximum relative material density change vs. iteration plot, (b) Compliance vs. iteration plot.  

Fig. 31. Derrick (a) Filtered topology optimization output, (b) Abaqus output with identical case setup.  
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Fig. 32. Comparison of topology optimization computation time of derrick: current research vs. Abaqus.  

Table 3 
Finding optimal derrick structure by analyzing Von Mises stress.  

Volume Fraction Material Reduction (%) Max. Von Mises Stress (MPa) Yield Stress Comparison Comment 

0.4 (40%) 60% 545.2 >252 MPa Not safe 
0.5 (50%) 50% 190.1 <252 MPa Safe and optimal 
0.6 (60%) 40% 190.1 <252 MPa Safe 
0.7 (70%) 30% 190.1 <252 MPa Safe 
0.8 (80%) 20% 190.1 <252 MPa Safe 
0.9 (90%) 10% 190.1 <252 MPa Safe  

Fig. 33. Von Mises stress analysis of derrick at optimal volume fraction f = 0.5, maximum Von Mises stress = 190.1 MPa.  
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