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Neuroregeneration and functional recovery after stroke: 
advancing neural stem cell therapy toward clinical 
application

Yang Jiao1, 2, Yu-Wan Liu1, Wei-Gong Chen1, 2, Jing Liu1, 2, *

Abstract  
Stroke is a main cause of death and disability worldwide. The ability of the brain to self-
repair in the acute and chronic phases after stroke is minimal; however, promising stem 
cell-based interventions are emerging that may give substantial and possibly complete 
recovery of brain function after stroke. Many animal models and clinical trials have 
demonstrated that neural stem cells (NSCs) in the central nervous system can orchestrate 
neurological repair through nerve regeneration, neuron polarization, axon pruning, 
neurite outgrowth, repair of myelin, and remodeling of the microenvironment and brain 
networks. Compared with other types of stem cells, NSCs have unique advantages in cell 
replacement, paracrine action, inflammatory regulation and neuroprotection. Our review 
summarizes NSC origins, characteristics, therapeutic mechanisms and repair processes, 
then highlights current research findings and clinical evidence for NSC therapy. These 
results may be helpful to inform the direction of future stroke research and to guide 
clinical decision-making. 
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Introduction 
Stroke is a main cause of death and disability worldwide, with 
ischemic stroke accounting for more than 80% of strokes 
(Lackland et al., 2014; Benjamin et al., 2017). In the United 
States, it is estimated that about 7 million adults have a history 
of stroke, which is about 2.5% of the population (Benjamin et 
al., 2019). Current effective treatments include reperfusion 
therapies, such as recombinant tissue plasminogen activator; 
but this must be administered in a limited time window 
(within 4.5 hours of stroke onset); therefore, only 2–4% 
patients benefit from it (Hankey, 2017). Disability after stroke 
brings serious social and economic burdens; few people 
spontaneously recover and many are permanently disabled 
(Koh and Park, 2017). Traditional rehabilitation often has little 
effect (Feigin et al., 2017).

The ability of a damaged central nervous system (CNS) to 
self-repair is limited, so finding alternative ways to promote 
recovery will revolutionize stroke treatment (Barker et 
al., 2018). Stem cell therapy is a novel treatment that has 
promise for replacing acute phase thrombolysis (Liao et 
al., 2019) and chronic phase rehabilitation (Kalladka et al., 
2016; Boese et al., 2018). Neural stem cells (NSCs) and 
neural stem/progenitor cells (NSPCs) are considered ideal 
candidates for the establishment of a stem cell pool that 
can provide a continuous supply of neurons, astrocytes, and 
oligodendrocytes for repairing neural networks and vascular 
remodeling (Trounson and McDonald, 2015; Annese et al., 

2017).

The use of NSCs for transplantation has four widely accepted 
advantages: (1) Higher brain-like similarity than embryonic 
stem cells (ESCs); NSCs can divide and differentiate into 
cell types corresponding to cells in their surrounding 
microenvironment and their morphologies and functions 
are very similar to those of nearby host cells (Golas, 2018). 
(2) Easier delivery than mesenchymal stem cells; the CNS 
has a special structure, the blood-brain barrier (BBB), that 
makes it difficult for exogenous “seed cells” to enter, while 
NSCs routinely transplanted into the subependymal zone or 
dentate gyrus have a “placeholder” effect (Gao et al., 2017). (3) 
Lower rejection than neuronal analogs; immune rejection is 
extremely rare even for transplanted inter-individual or inter-
species NSCs (Morizane et al., 2017). (4) Strong chemotaxis 
and migration abilities (Addington et al., 2015); NSCs have 
the ability to migrate to the damaged site (Xu and Heilshorn, 
2013; Addington et al., 2017). 

NSCs have achieved functional recovery of injured brain by 
(1) homing and cell replacement (Baker et al., 2019), (2) a 
nutritional and growth factor paracrine effect (Barker et al., 
2018) [including exosome release (Zhang et al., 2019b)], (3) 
regulation of inflammation and a neuro-protective effect 
(Stonesifer et al., 2017), as in preclinical studies (Stroemer 
et al., 2009; Pendharkar et al., 2010; Vu et al., 2014; Nucci 
et al., 2015; Azad et al., 2016; Chen et al., 2016; Baker et al., 
2019) and clinical studies (Trounson and McDonald, 2015; 
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Kalladka et al., 2016). Ischemic stroke is caused by a variety of 
situations that result in insufficient blood supply to the brain. 
This causes a complex cascade of reactions, including the 
slowing down of cell energy metabolism and depolarization 
of the cell membrane. These responses destroy tissue and the 
surrounding circulatory system, leading to further necrosis 
of the BBB and neurons, loss of neurovascular unit (NVU) 
function, and disruption of the brain network (Ahmad et 
al., 2014; Yew et al., 2019). Some NSC mechanisms have 
been explained (Rosado-de-Castro et al., 2013; Trounson 
and McDonald, 2015; Sandvig et al., 2017; Baker et al., 
2019; Zhang et al., 2019b). Liao et al. (2019) described the 
mechanism of neuroplasticity after stroke with reference to 
recovery stages: (1) neuron polarization and synapse pruning, 
(2) neurite growth and neuroregeneration, (3) myelin repair, 
(4) synaptic rewiring and remodeling of brain networks, 
and (5) vascular regeneration. However, few reviews have 
examined every stage of the recovery process after NSC 
therapy or discussed clinical trial results and potential clinical 
applications. This review summarizes the results of recently 
published studies, focusing on NSC resources, the processes 
and mechanisms of functional repair, and clinical trials, with 
the aim of providing a decision-making basis for therapeutic 
interventions and to provide suggestions for future research 
directions. 

The references referred to in this review were retrieved by 
an electronic search of the MEDLINE database for animal 
models and clinical trials of stroke from 1946 to 2020 
using the following conditions: (Stroke[MeSH Terms]) OR 
Stroke, Lacunar[MeSH Terms]) OR (National Institute of 
Neurological Disorders and Stroke[MeSH Terms]) OR MELAS 
Syndrome[MeSH Terms]) OR Brain infarction[MeSH Terms]) 
OR Hemorrhagic cerebrovascular disease[MeSH Terms]) 
OR Ischemic cerebrovascular disease[MeSH Terms]) AND 
(Cell- and Tissue-based therapy[MeSH Terms]) OR Tissue 
therapy, Historical[MeSH Terms]) OR Cellular immunotherapy, 
adoptive[MeSH Terms]) AND (Neural stem cell) OR Neural 
progenitor cell). In addition, an electronic search of the 
Medline database for methods to induce plasticity was 
performed. This included publications prior to March, 2020, 
with the following search criteria: (Plasticity[MeSH Terms]) OR 
Neuronal plasticity[MeSH Terms]) OR Synaptic plasticity[MeSH 
Terms]) and Stroke (MeSH Terms) AND (Models, Animal (MeSH 
Terms) OR Behavior, Animal/Physiology (MeSH Terms) OR 
Animal experimentation (MeSH Terms). Non-NSC experiments 
and review articles were excluded.

Type and Source of Neural Stem Cells
ESC-derived NSC lines (embryonic donors)
These cell lines are NSCs derived from an early embryo or 
embryonic neural tissue. Early ESCs are undifferentiated 
cells in the blastocyst at 5–7 days after fertilization, before 
implantation into the uterus. They are omnipotent stem cells 
and have the ability to develop into any cell type. Part of 
the ectoderm will differentiate into the cells of the nervous 
system. ESC-NSCs are pluripotent stem cells contained in 
the embryonic ectoderm that theoretically lose their ability 
to differentiate into any cell type. Fetal-derived NSCs can be 
generated by dissociating human fetal cortex, mesencephalon, 
or spinal cord tissues between 7 and 21 days post-conception. 
The fetal brain contains stem cells that can produce every 
type of cell in neural tissue (i.e., neurons, astrocytes, 
oligodendrocytes) (McGrath et al., 2018). These two kinds 
of stem cells are often used in research; however, ethical 
concerns and tumorigenicity limit their clinical use.

Adult brain NSC lines (adult donor)
There are two major neurogenic niches in the human brain, 
the subventricular zone (SVZ) and sub-granular zone, from 
which adult NSCs can be acquired. The SVZ is the largest 

neural germination area in the adult brain. The adult SVZ 
ultrastructure has been observed by electron microscopy, 
which shows that neuroblasts are adjacent to the ependymal 
layer, arranged in a chain-like pattern. They constantly 
migrate, eventually gathering into the rostral migratory stream 
toward the olfactory bulb. The neuroblasts are surrounded 
by astrocytes. The SVZ provides a special microenvironment. 
Many factors affect cell proliferation, adhesion, migration and 
differentiation. Epidermal growth factor and basic fibroblast 
growth factor enhance neurogenesis and increase the number 
of migrating cells (Cheng et al., 2020). Ciliary neurotrophic 
factor and leukocyte inhibitory factor are involved in 
determining the direction of self-renewal or differentiation, 
and they are regulated by the Notch pathway (Müller et al., 
2009). In addition, some NSCs are produced in the lower 
layer of the dentate gyrus of the adult hippocampus. These 
cells migrate transiently to the granular layer, their dendrites 
extend to the molecular layer, and their axons extend to the 
Cornu Ammonis 3 region of the hippocampus. Differentiated 
hippocampal neurons may be associated with learning and 
memory abilities and their number gradually decreases with 
age. However, from a practical application perspective, many 
scholars question whether the neuroplasticity of these stem 
cells results from fusion with ESCs. In addition, in vitro culture 
after harvest may cause the cell state to be altered and 
immune rejection after passage cultivation (Qin et al., 2017).

Induced pluripotent stem cell-derived NSCs
Takahashi et al. (2017) successfully reprogrammed human 
cells into induced pluripotent stem cells (iPSCs), and these 
cells have since become an ideal autologous transplant 
cell resource. The advantages of transplanted iPSC-NSCs in 
the treatment of stroke are numerous, such as enhancing 
motor sensory function, reducing infarct size, promoting 
axonal development, promoting angiogenesis, and regulating 
inflammatory factors (Eckert et al., 2015). A patient’s own 
iPSC-NSCs are amenable to ex vivo gene therapy, and have 
been validated to improve brain pathology in a reversible 
homologous mouse model (Griffin et al., 2015). iPSC-NSCs 
may have similar plasticity to ESCs and they can differentiate 
into NSCs for the effective treatment of ischemic stroke 
in rodent models (Takahashi and Yamanaka, 2006). The 
combination of iPSC-NSCs and tissue engineering techniques 
has great promise in the treatment of multiple sclerosis and 
spinal cord injury (Zhang et al., 2016a; Zhou et al., 2018). 
However, tumorigenic and immunogenic problems need to be 
further considered (Stonesifer et al., 2017). 

Clinical grade NSC products
Transgenic stem cell lines have been explored in clinical trials 
(Kalladka et al., 2016). Modified cell lines can be propagated 
asexually at a steady rate in vitro to form an immortalized cell 
line. Immortalized cell lines have the advantages of strong 
proliferative ability, good adaptability to the environment, easy 
control of cell identity and assimilation into human tissues. 
However, theoretically, tumorigenesis, genetic stability remain 
concerns, as do ethical considerations.

CTX0E03
CTX0E03 is a human NSC line that has been genetically 
modified with a conditional immortalized c-MYC gene fused 
with a mutated estrogen receptor (c-MYCERTAM) (Pollock et 
al., 2006). Serum-free-produced CTX0E03 is considered the 
most promising therapeutic-grade human NSC line (Thomas 
et al., 2009). The review by Sinden et al. (2017) detailed 
the whole process of CTX cell therapy from its laboratory 
origin to clinical progress. The transplantation of human 
NSCs (CTX0E03) promoted significant behavioral recovery in 
stroke patients (Kalladka et al., 2016). The degree of recovery 
was positively correlated with cell dose and a paracrine 
mechanism (Stroemer et al., 2009; Table 1). 
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NT2N 
NT2N (hNT) cells are neurons derived from a clonal human 
teratocarcinoma cell line (NTera-2 or NT2) that acquires a 
permanent postmitotic neuronal phenotype after retinoic acid 
treatment in vitro and has been shown to form operational 
synapsis and to secrete neurotransmitters in vivo (Andrews, 
1984). NURR1-transfected NT2N cells showed a more stable 
neurophenotype and higher levels of glial cell-derived 
neurotrophic factor secretion. NURR1 is a transcription factor 
that induces tyrosine hydroxylase expression and promotes 
the differentiation of NT2N cells into a dopaminergic 
neuro-phenotype (Hara et al., 2008). However, Preclinical 
studies should further verify the risk of NT2N implantation, 
especially the way in which the regional microenvironment 
may affect abnormal proliferation (Miyazono et al., 1995). 
Also, dopaminergic cells differentiated by NURR1 have only a 
negligible therapeutic effect on stroke patients (Stonesifer et 
al., 2017). A 71-year-old stroke patient received 2 × 106 hNT 
cells by stereotactic injection into the brain. After 34 months, 
he died of myocardial infarction. The patient’s brain pathology 
indicated that there were neurons in the medial part of 
the infarction that were consistent with the transplanted 
region, but the patient’s symptoms before death were not 
significantly improved (Nelson et al., 2002) (Table 1).

SB623
SB623 cells were developed by transient transfection 
of mesenchymal stem cells with an expression vector 
encoding the intracellular domain of human NOTCH1 and 
have been shown to reduce lesion volume and promote 
functional recovery after delivery to the rodent brain after 
experimental focal ischemia (Dezawa et al., 2004). Animal 
studies confirmed the potential of SB623 cells for neuro-
protection in Parkinson’s disease and brain trauma models 
(Tajiri et al., 2016), and the “biobridge” paradigm of SB623 
cells is expected to construct a traumatic brain injury repair 
loop from the cortical injection site to the SVZ neurogenesis 
site (Tajiri et al., 2014). NCT01287936 is a single-arm open-
label study of an SB623 intra-cerebral implant in 18 patients 
with chronic stroke. Although all scales suggested a significant 
improvement in motor function after treatment during the 
12-month follow-up period, it should be noted that the study 
lacked a control study and a standardized definition of chronic 
stroke, and that six patients had severe adverse reactions that 
might be unrelated to the transplanted cells that affected the 
outcome (Steinberg et al., 2016) (Table 1). 

NSI-566
NSI-566 is a stable primary adherent human-NSC line from 
a single fetal spinal cord without genetic modification and 
is U.S. Food and Drug Administration-authorized for clinical 
trials. It has shown good safety and tolerability in completed 
phase II amyotrophic lateral sclerosis and phase I spinal cord 
injury trials (Glass et al., 2016; Curtis et al., 2018). Various 
animal models have demonstrated that NSI-566 cells can 
differentiate into neural tissue and may have the ability to 
emit/receive long-range projection and integrate with host 
tissues (Usvald et al., 2010; Lu et al., 2012), and to have only 
transient immunosuppressive effects (Tadesse et al., 2014). 
A small single-arm feasibility clinical study was conducted 
in nine chronic stroke patients. The preliminary results are 
encouraging, but the nature of “extraneous tissue” in the 
infarcted cavity needs further monitoring, and the conclusions 
need to be verified by double-blind controlled studies (Zhang 
et al., 2019a; Table 1).

Non-neuronal direct lineage 
Non-neuronal direct lineage reprogramming is a strategy that 
utilizes the plasticity of differentiated non-neuronal cells to 
transform lineages into ideal neuronal cell types (induced 
neurons) for disease modeling and tissue repair (Karow 
et al., 2014; Heinrich et al., 2015). Cells from the cerebral 
cortex that express pericyte hallmarks can be reprogrammed 
into neuronal cells by retrovirus-mediated co-expression 
of the transcription factors, SOX2 and MASH1 (Karow et 
al., 2012). The single factor Ascl1 can efficiently reprogram 
mouse astrocytes into induced neurons (Karow et al., 2018). 
Compared with using iPSCs, direct lineage reprogramming of 
somatic cells to generate induced neurons for stroke without 
experiencing pluripotent states has many advantages, such 
as short induction cycle, high transdifferentiation efficiency, 
no ethical concerns, and no risk of neoplasia (An et al., 2018; 
Table 1).

The direct reprogramming approach may provide new 
alternative sources of cells for regenerative medicine, but 
the future use of induced neurons may be limited by the 
genetic manipulation involved. Chemically-induced neurons 
are thought to have neuron-specific expression patterns and 
these cells generate action potentials and form functional 
synapses. Small molecules were able to convert mouse 
fibroblasts directly into neurons, and the TUJ1-positive yield 
was up to 90% 16 days after induction (Li et al., 2015). Zhang 
et al. (2016c) also reported the efficient conversion of mouse 

Table 1 ｜ Clinical grade neural stem cell products

Name
Initial 
source

Processing 
method Cell source

Preclinical studies 
evidence Clinical trials Disease Limitations References

CTX0E3 Allogeneic Transfection with 
c-mycER

Immortalizing 
human neural 
stem cell line

Neurogenesis 
and angiogenesis 
(exosome)

NCT01151124 Chronic 
ischemic stroke

Long period recovery 
after enrollment

Stroemer et al., 
2009; Kalladka et al., 
2016

NT2N Allogeneic Neuronal 
phenotype in vitro 
following retinoic 
acid treatment

Clonal human 
teratocarcinoma 
cell line

Dopaminergic 
phenotypes

Nelson et al. 
(2002)

PD, HD, trauma Tumor formation 
experienced; 
apoptotic-like cell 
death; negligible 
therapeutic influence 
for stroke

Borlongan et al., 
1998; Hurlbert et al., 
1999; Baker et al., 
2000; Nelson et al., 
2002

SB623 Allogeneic Transfection 
expression 
vector containing 
Notch-1 
intracellular 
domain

Bone marrow-
derived 
mesenchymal 
stem cells

Neurotrophic, 
angiogenic, and 
neuroprotective 
effects

NCT01287936 Chronic stable 
stroke & trauma

Less studies and 
trials; nonrandomized 
design

Dezawa et al., 2004; 
Steinberg et al., 
2016

NSI-566 Allogeneic A single fetal 
spinal cord 
without genetic 
modification

Primary 
adherent human 
neural stem cell 
line

Integrate with 
host tissues; 
Immunosuppressive 
effects

NCT03296618 Amyotrophic 
lateral sclerosis, 
spinal cord 
injury

Less clinical trials Glud et al., 2016; 
Curtis et al., 2018; 
Zhang et al., 2019a

c-mycER: c-myc gene fused with a mutated estrogen receptor; HD: Huntington’s disease; PD: Parkinson’s disease.

Review
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fibroblasts into induced neural stem-like cells using a mixture 
of nine components (M9; Table 1). It is expected that it will be 
possible to use this small molecule chemical reprogramming 
strategy to manipulate the fate of human somatic cells for 
the treatment of stroke patients because transplanting 
functionally mature neurons induced from fibroblasts with 
chemicals alone is a relatively simple and safe procedure.

Therapeutic Mechanism of Neural Stem Cells
Homing and cell replacement
Homing is the process by which neural progenitor cells 
(NPCs)/NSCs utilize chemotaxis to move to an injury site. A 
niche provides a special microenvironment for the growth 
of NSCs (Otsuki and Brand, 2017). Stromal derived factor-1/
C-X-C chemokine receptor type 4, monocyte chemotactic 
pro-tein-3/cinnamoyl-coenzyme A reductase, and other 
signaling pathways promote the homeostasis, self-renewal 
and differentiation of NSCs (Belmadani et al., 2015; Nunes et 
al., 2016). Stromal cell-derived factor 1 receptor is expressed 
at injured sites after infarction, and NSCs expressing C-X-C 
chemokine receptor type 4 receptor migrated to the injured 
site within 24 hours, and activated integrin β1 was responsible 
for adhesion of the transplanted cells (Gójska-Grymajło et al., 
2018). The transplantation of in vitro-labeled cells into the 
brain is the best way to demonstrate their homing mechanism 
for determining the efficacy of NPC treatment. The literature 
on in vitro superparamagnetic iron oxide nanoparticle labeling 
and magnetic resonance imaging (MRI) is abundant in the field 
of stroke and glioma, and has been used in multiple phase I 
clinical trials. In rodent models of ischemic stroke, exogenous 
NPCs labeled with iron oxide particles and magnetic particles 
were observed to have successfully migrated to the stroke 
site by MRI (Hoehn et al., 2002; Jiang et al., 2005; Zhang et 
al., 2016b). Furthermore, compared with the control group, 
the lesion range of the magnetic labeled group was reduced 
and no secondary injury appeared (Obenaus et al., 2011). 
Angiogenesis (Jiang et al., 2005) and glucose utilization 
(Daadi et al., 2013) were also increased in the impaired 
areas of the brain. However, after cell transplantation and 
homing, the basic experimental and clinical evidence for 
how cells differentiate is still insufficient. In addition to intra-
ventricular injection, cells can be introduced by arterial or 
venous injection; however, the exact homing path taken and 
the number and location of NPCs/NSCs after these routes of 
administration need to be further studied using labeled-cell 
assays. In theory, arterial injection of cells will result in greater 
numbers and a more widespread distribution of cells than the 
venous route, but there may also be more adverse reactions. 
Transnasal implantation may also be a new, convenient and 
safe implantation method (Mao et al., 2018). 

Paracrine action 
As studies progressed, replacement of lost neurons with stem 
cells was shown to not be the primary neural remodeling 
mechanism (Li et al., 2002) because stem cell replacement 
cannot fully explain the phenomena observed in in vivo 
experiments.

Paracrine evidence
Firstly, tracer methods indicated that the number of homing 
stem cells was far smaller than the number of transplanted 
stem cells, and cells injected via the arteriovenous route could 
still exert effects. In addition, it was thought that stem cells in 
the vascular pathway rarely pass through the BBB (Pendharkar 
et al., 2010). Secondly, cell replacement mechanisms cannot 
explain the efficacy of NSC transplantation at an early stage; 
the differentiation of nerve cells, the reconstruction of 
synapses and the rearrangement of neural networks are 
difficult to accomplish in a short period of time (Avena-
Koenigsberger et al., 2017). 

Paracrine vesicles
Extracellular vesicles are believed to be key in mediating 
recovery of damaged brain tissue (Doeppner et al., 2018). 
The discovery of exosomes and microRNAs (miRs) provided 
a basis for the brain remodeling process and cell repair 
mechanisms. For example, miR-9, which regulates axon 
regeneration in the peri-infarct region (Buller et al., 2012), 
miR-200b, which mediates myelin expression in the white 
matter (Buller et al., 2012), miR-17-92, which activates 
neuronal growth signals (Zhang et al., 2013), and miR-15a, 
which regulates angiogenesis in brain tissue (Yin et al., 2015), 
are detected in exosomes isolated from cerebrospinal fluid 
(Frühbeis et al., 2013). Cerebrospinal fluid and NSC-exosomes 
can regulate stem cell proliferation and immune function 
by intercellular pathways. For example, ESC-derived NSCs 
activate the insulin-like growth factor/mechanistic target of 
rapamycin complex-1 pathway to promote self-proliferation 
(Feliciano et al., 2014). Exosomal-associated interferon-γ/
interferon-γ receptor 1 regulates the immune response 
through signal transducer and activator of transcription-1 
signaling (Cossetti et al., 2014). Differentiated neurons and 
glial-derived exosomes co-ordinate and participate in axonal 
growth and myelin repair processes. Exosomes from neurons 
treated with a retinoic acid receptor β2 agonist enhance 
neurite outgrowth by inactivating phosphatase and tensin 
homolog signaling (Goncalves et al., 2015). miR-124 in 
cortical neuron exosomes can be transferred to astrocytes, 
thereby increasing the expression of the excitatory amino 
acid transporter glutamate transporter 1 and regulating the 
excessive proliferation of astrocytes (Morel et al., 2013). In 
addition, exosomes also contain alpha-amino-3-hydroxy-5-
methyl-4-isooxazolpropionic acid receptors, which, together 
with microtubule-related protein 1b, which is abundant 
in depolarized neurite exosomes, activate astrocytes and 
promote myelin regeneration and axon germination in 
rodent stroke models (Dajas-Bailador et al., 2012; Morel et 
al., 2013; Goldie et al., 2014).

Inflammatory effects
Microglial cells differentiated from NSCs are a heterogeneous 
cell population involved in the immune response in the 
CNS. Primary microglia release aminopeptidase CD13 and 
the lactate transporter, monocarboxylate transporter 1. 
CD13 is transported to injured neurons by the exosome 
pathway, causing neuropeptide degradation. Microglial 
exosomes are also involved in internal izat ion and 
reuptake by oligodendrocyte precursor cells, a process 
that is critical for synaptic pruning. In addition, microglia 
resident in the hippocampus activate oligodendrocytes 
and promote neurogenesis after activation by interleukin 
4 and interferon-γ. The immune microenvironment under 
physiological conditions assumes a steady state. Secondary 
inflammation exacerbates oligodendrocyte death after 
stroke, and stem cells containing endogenous T-regulatory 
cells can regulate fibroblast growth factor and interleukin 6 
levels and inhibit white matter injury (Zarriello et al., 2019). 
A key step in modulating the inflammatory response is to 
inhibit the activation of microglia. miR-126 exosomes inhibit 
microglial activation and inflammatory factor expression 
in vivo and in vitro (Geng et al., 2019). The regulation of 
inflammation in various types of stem cells is similar, and 
the effect of stem cells from a single source is limited. Mixed 
component transplants or stem cell additives may have 
better inflammatory effects. A joint delivery of interferon-γ 
(50 ng) combined with NSCs can increase neurogenesis and 
the number of 5′-bromodeoxyuridine/doublecortin double-
positive cells in the ischemic area of stroke rats (Zhang 
et al., 2018). Yew et al. (2019) advocated that antibiotic 
pretreatment may improve prognosis. 
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Repair Processes of Transplanted Neural Stem 
Cells after Stroke Injury
Establishment of neuron polarity and weak synapse pruning 
(within 7 days after stroke)
Without clinical intervention, 120 million neurons, 83 billion 
synaptic connections, and 714 km of myelinated fibers are 
lost per hour after stroke (Saver, 2006). Polarity is the result 
of asymmetric spatial arrangement and distribution of cell 
components and subcellular structures during NSPC division, 
marking the beginning of neuronal regeneration (Fietz and 
Huttner, 2011). NSPCs undergo symmetric and asymmetric 
cell division, the former being the splitting into two similar 
neural progenitor cells in neurogenesis, and the latter being 
division and differentiation into a neuron and a progenitor 
cell (Miyata et al., 2001). Asymmetric cell division occurs 
mainly at a splitting angle of 0–30° (Zhao et al., 2011). Polar 
NSCs produce different types of functional nerve cells. The 
occurrence of polarity contributes to the diversity of cell types 
and to the integrity of functional networks (Wilsch-Bräuninger 
et al., 2016). During neurogenesis, neuroepithelial cells 
differentiate into radial glial cells (Taverna et al., 2014; Arai 
and Taverna, 2017; Hansen et al., 2017). Radial glial cells are 
stem/progenitor cells polarized along the apical basal axis that 
support networks and scaffolds of neural tissue. At the same 
time, radial glial cells undergo division and amplification just 
like neuroepithelial cells through symmetry on the one hand, 
and generate neurons through asymmetric division on the 
other hand, which leads to the continuous process of neuron 
polarization, migration and the acquisition of layer-type 
specific phenotypes. There are many factors that influence 
the regulation of NPC polarization, such as key regulatory 
genes (e.g. PAX6) and human-specific genes (e.g. ARHGAP11B) 
(Wilsch-Bräuninger et al., 2016), complement C5a (a cell 
polarity regulator) (Coulthard et al., 2017), direct current, and 
daughter cells. A small direct current electric field is thought 
to guide neurite growth and migration of rodent NPCs, 
while human NPCs may respond to a small electric field by 
directional migration. The application of an electric field may 
further help to guide human NPCs to a damaged area (Feng 
et al., 2012). Different types of NSCs do not have the same 
rate of neuron polarization. The transcription factor, ZEB1, 
may also be involved in regulating the direction of cleavage 
in dividing progenitor cells, neuron polarity, and migration 
(Liu et al., 2019). These interventional polarization measures 
may help shorten the differentiation time of stem cells after 
transplantation and improve survival rate.

Neurite growth and neuroregeneration (within 1 month 
after stroke)
Impaired synapt ic  regenerat ion involves  two main 
physiological stages: early synaptic pruning and synaptic 
rewiring (Cohen et al., 2017). Detailed mechanisms of neurite 
pruning are reviewed by Schuldiner and Yaron (2015). Neurite 
growth is an important step for the establishment of a neural 
network in transplanted neurons. In a mouse model, vascular 
endothelial growth factor (VEGF), and thrombospondin 1 
and 2 released by NSCs improve neonatal axonal transport 
function. The continuous growth of axons requires good 
nutrient and metabolite transport capabilities (Andres 
et al., 2011). Among the substances transported, various 
trophic factors and chemokines synergistically promote 
neurogenesis of NSCs. Sherman and Bang (2018) used high-
throughput screening to identify 108 human iPSC-derived 
neuronal compounds that promote neurite growth, including 
37 previously identified signaling pathway factors. Many of 
these regulatory factors that persist throughout the repair 
process are secreted by astrocytes. Basic fibroblast growth 
factor coupled with epidermal growth factor increased the 
length and number of new neurites (Zhao et al., 2019). Brain-
derived neurotrophic factor secreted by glial cells derived 

from differentiated NSCs can maintain a stable secretion 
for 20 days, continuously promoting dendrite sprouting and 
redevelopment of myelin (Shi et al., 2016; Bierlein De la Rosa 
et al., 2017). The combination of biodegradable hydrogels 
with NSCs improved the environment for graft cell survival 
and integration. Functionalized fibrin hydrogels with synthetic 
peptide engaging integrin α6β1 (HYD1) enhanced the affinity, 
migration and extension of newborn axons (Silva et al., 2017). 
The properties of neural tissue engineering materials in the 
hydrogel system, such as peptide affinity and scaffold stiffness, 
have been continuously improved for use with transplanted 
NSCs to promote efficient differentiation of stem cells (Stukel 
and Willits, 2018). This is the basis of functional neuronal relay 
circuit formation after NSPC transplantation, and also informs 
in vitro axon growth models of nerve injury. 

Myelin repair (within 3 months after stroke)
After stroke injury, myelin repair is critical for establishing 
proper neural network function and activity-dependent 
reorganization (Jia et al., 2019). The mechanics of myelin 
repair after brain injury were reviewed by Kondiles and Horner 
(2018). Remyelination may include three forms: myelination 
of previously bare axons, remodeling of existing sheaths, and 
removal of the sheath by new internode replacement (Kondiles 
and Horner, 2018). Myelin repair may occur through the 
recruitment and differentiation of oligodendrocyte precursor 
cells. The presence of oligodendrocytes with mature functions 
is essential. In adult mice, a sudden loss of oligodendrocytes 
led to axonal deterioration and an autoimmune myelin attack 
(Traka et al., 2016). In an ischemic injury model in aged 
mice, oligodendrocyte precursor cells could differentiate into 
astrocytes instead of mature oligodendrocytes in the area of 
complete demyelinating injury, possibly because of blocked 
Nogo receptor (Sozmen et al., 2016). In addition to mature 
oligodendrocytes, mature neurons in zebrafish models directly 
promote the maturation of myelin repair (Hines et al., 2015; 
Mensch et al., 2015). 

Synaptic rewiring and remodeling of brain networks (6 
months after stroke)
The restoration of function after brain injury is marked by 
completed reconstruction the of brain network (Navlakha 
et al., 2018). The anatomical basis of reconstruction of the 
brain network is the functional differentiation of neurons, 
the growth of neurites and myelin regeneration (Park and 
Friston, 2013; Avena-Koenigsberger et al., 2017). Topological 
network analysis of neural circuits shows that modular and 
hierarchical networks are particularly suitable for functional 
integration of local neuron operations (functional specialty) 
as a basis for cognition (Park and Friston, 2013). The essence 
of stroke injury is that the structural network damage limits 
the functional network. The research focus of stroke has 
shifted from the study of direct ischemic injury to the impact 
of lesions on the whole brain. Stem cell transplantation may 
be advantageous for repair of the whole brain network after 
injury (Green et al., 2018). 

Synaptic rewiring occurs in the repairing brain (Stepanyants 
et al., 2002). Dendritic spines and varicose axonal veins 
tightly bind to form “potential synapses” within the cortical 
column (Stepanyants et al., 2002). Dendritic spines can form 
new synapses with axons in pre- and postsynaptic neurons 
(Letellier et al., 2019). Tornero et al. (2017) demonstrated 
that transplanted neurons can accept direct synaptic inputs 
from neurons in different regions of the brain. The projection 
pattern was similar to that of endogenous cortical neurons 
of the same function. At the same time, the host stroke-
injured brain cells could also gain signals from transplanted 
neurons. These results indicate that transplanted human iPSC-
derived cortical neurons can be incorporated into damaged 
cortical circuits (Tornero et al., 2017). Theoretically, NSCs 
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can potentially repair structural networks and are also the 
practical basis for in vitro human brain organoids (Bengoa-
Vergniory and Kypta, 2015; Quadrato et al., 2017). Great 
progress has been made in the construction of neural 
circuits in primary nerve centers. The characteristic selective 
excitation of newborn hippocampal neurons is the dendritic 
integration of inputs from multiple brain regions (Bloss et al., 
2018). Autonomous rewiring of damaged neural networks is 
the ideal goal for the recovery of behavioral functions (Atwal 
et al., 2008). The establishment of a neural network requires 
neuronal proliferation, functional differentiation, neurite 
growth and myelin sheath repair, to enable information 
transmission and electrical activity in an appropriate neural 
microenvironment. However, the process of neural network 
remodeling in the adult CNS may be complex and lengthy. 
The myelin-associated protein, Nogo receptor, and paired 
immunoglobulin-like receptor B (Atwal et al., 2008), are 
potential therapeutic targets for post-stroke enhancement 
of axonal regeneration and synaptic plasticity, while myelin-
associated glycoprotein and oligodendrocyte myelin 
glycoprotein are widely thought to inhibit synaptic rewiring 
(Gou et al., 2014; Deng et al., 2018). At the very least, in the 
short term, exogenous cell transplantation may be a way 
to construct a network among damaged nerves (Moritz, 
2018). The stem cells may provide a “wake-up” function to 
functionally integrate host neural networks (Wei et al., 2016).

Vascular regeneration and stabilization of the 
microenvironment (from 4 to 7 days after stroke)
Reestablishing vascular function as early as possible is the 
most important treatment in the acute phase of stroke to 
rescue live cells. After stroke, NVUs grow around the surviving 
tissue and begin repair. NVUs are not only coupled by 
pericytes to the BBB, but are also an important part of neural 
network construction and microenvironment regulation 
(Oztop-Cakmak et al., 2017). NVUs incorporate endothelial 
cells, pericytes, basal lamina, astrocytes, pericapillary 
microglia, and neurons (Fernández-Klett et al., 2013; Cai et 
al., 2017), and are fundamental structural and functional units 
of the CNS that regulate blood flow and homeostasis of the 
internal environment (Muoio et al., 2014). In preclinical stroke 
models and human stroke patients, NSC treatment enhances 
NVU formation and promotes tissue and functional recovery 
of stoke by producing neurotrophic and regenerative growth 
factors to promote angiogenesis between NSCs and vascular 
compartments (Baker et al., 2019). Angiogenesis can repair 
the network to improve blood flow in the brain and ameliorate 
brain function. Neurogenesis and angiogenesis have synergic 
effects to improve functional recovery outcome (Ruan et al., 
2015).

Neovascular regeneration occurs in the ischemic core and 
marginal sites within 4–7 days after cerebral ischemia. 
Regenerating blood vessels may promote neuronal repair 
in two ways. One is to induce the sprouting of damaged 
axons of neurons with cell bodies; the other is to promote 
the proliferation and differentiation of NSCs and to give 
perfusion nutrition (Hatakeyama et al., 2020). NSC-mediated 
angiogenesis is largely modulated by VEGF signaling. VEGF 
secreted by NSCs is a potent angiogenic factor with direct 
neurotrophic signaling that stimulates adult neurogenesis 
and angiogenesis. Exogenous administration of VEGF reduces 
infarction size and improves functional outcome. Intravenous 
infusion of human NSCs reduces behavioral deficits and focal 
lesions in stroke rats by inducing angiogenesis (Ryu et al., 
2016). The vascular remodeling effect of the modified NSCs 
was significant. The transplantation of superoxide dismutase-
1-overexpressing NSCs enhanced angiogenesis in the ischemic 
border zone by up-regulating VEGF expression, which can 
reduce infarct size and improve behavioral performance, 
compared with non-modified NSCs (Sakata et al., 2012). 
Similar results were confirmed after transplantation of TAT-

Hsp70-transduced NPCs (Doeppner et al., 2012), CTX0E03 
cells, and iPSC-NSCs (Stroemer et al., 2009; Oki et al., 2012; 
Hicks et al., 2013). Hicks et al. (2013) assessed the angiogenic 
activity of CTX0E03 in vitro and in vivo. Their results indicated 
that micro-vessels were significantly increased at the 
implantation site in both naive and middle cerebral artery 
occlusion rats after CTX0E03 cell transplant (Figure 1).

Outcomes and Outlook
Animal models for NSC stroke therapy
The rodent stroke model is the most commonly used 
animal stroke model. Among published studies, rat model 
experiments are about twice as common as mouse model 
experiments (40:19). Because of relatively easy surgery, the rat 
model is favored for the study of cognitive and sensorimotor 
functions after transient cerebral artery occlusion (Huang 
et al., 2018). In addition, interventional operations, such as 
transcranial electromagnetic stimulation, acupuncture, live 
small animal imaging, rat treadmills, and other technologies 
such as brain slice or brain tissue pathology experiments have 
matured (Tan et al., 2018; Peng et al., 2019; Yu et al., 2019). 
Mouse models are more widely used in large-scale behavioral 
experiments, and multiple interventions can be used to 
reduce costs. In particular, clinical-grade NSC lines are often 
modeled in mice prior to clinical application (Tuazon et al., 
2019). 

Although the number of pig stroke model studies is small, 
their conclusions are valuable. First, pigs are of similar body 
size to humans but their brain volume is 7.5 times smaller 
than that of human (Lind et al., 2007). Secondly, the structure 
of the pig brain is gyrencephalic and white matter accounts 
for 60%, which is closer to the human brain compared with 
lissencephalic and < 10% white matter rodent brains (Kuluz et 
al., 2007; Nakamura et al., 2009). Therefore, Webb et al. (2018) 
used a pig stroke model to demonstrate that novel NSC-
extracellular vesicles can significantly improve the preservation 
and function of nerve tissue after post-middle cerebral artery 
occlusion, indicating that NSC-extracellular vesi-cles may be 
therapeutic for stroke. Induction of NPC-NSCs also allows 
stroke pigs to restore appetite and posture more quickly (Lau 
et al., 2018). In a beagle stroke model, Lu et al. (2013) tracked 
super-paramagnetic iron oxide-labeled transplanted cells 
through the flow of the ipsilateral middle cerebral artery into 
the brain and demonstrated the phenomenon of homing. 
Madelaine et al. (2017) used a zebrafish model to reveal that 
miR-9 is linked to neurogenesis and angiogenesis through 
the formation of VEGF-A-expressing neurons, reflecting the 
advantage of zebrafish to directly observe neovasculari-
zation. In short, the choice of animal model should consider 
experimental design and statistical meth-ods.

Overview of preclinical trials
The efficacy and safety of NSCs in the treatment of stroke-
related diseases have always been a focus for scholars. The 
evidence and reference basis for meta-analysis of preclinical 
studies using animal models have been relatively systematic. 
Huang et al. (2018) included 62 controlled animal studies 
pub-lished between 2004 and 2018. Of these, 28 used 
human NSPC donors and 34 used rat or mouse donors. The 
stroke models used were 40 rats, 19 mice, two Mongolian 
gerbils, and one pig. In 28 trials the transplanted NSPCs 
were derived from pluripotent stem cells, and in 21 studies 
the animals received immunosuppressant drugs before the 
experiment. The average quality score of the included trials 
was 5.1, ranging from 2 to 8, and the randomized double-
blind controlled studies were less than 43.5%. From summary 
results of modified neurological severity score, rotarod 
performance test, cylinder test and infarct volume detection, 
Huang et al. (2018) confirmed that NSPC transplantation is 
beneficial to the recovery of neurobehavioral and histological 
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outcomes. Reductions in apoptosis and axonal function are 
noticeable according to higher effect size. Interestingly, lower 
cell injection doses were more likely to produce better cylinder 
test results, with the most effective cell dose less than 1 × 
106 cells/kg. Heterogeneity of modified neurological severity 
score, cylinder test results, and infarct volume was high 
among studies, but infarct volume was still greater than 75% 
after sensitivity analysis. A similar situation existed for human 
cell donor studies (Huang et al., 2018). Chen et al. (2016) 
performed a meta-analysis on 37 studies and 54 independent 
therapeutic interventions and reached similar conclusions. 
They suggested that trials should be conducted with as many 
homologous cells as possible. In addition, when these cells 
were given within the first 24 hours after a stroke, infarct 
volume improved significantly. Lees et al. (2012) suggested 
that autologous stem cells were more effective for structural 
outcomes than allogeneic stem cells, but the reverse was true 
for functional outcomes. The meta-analysis by Nucci et al. 
(2015) included 22 studies on super-paramagnetic iron oxide 
nanoparticle-labeled stem cells in preclinical stroke models 
published between January 2000 and October 2014 that 
provided evidence of transplanted cells in and around the 
core of the injury site, and suggested that stem cell therapy in 
the early stages of infarction was promising. 

Overview of clinical trials and problems at hand
Clinical trials are far more difficult to advance than animal 
model experiments. Eighty-eight clinical trials for stroke have 
been registered with clinicalTrials.gov since April 20, 2020. 
Among six studies involving NSCs, three have posted their 
results. There are also two NSC clinical trials for children 
with hypoxic ischemic encephalopathy and ischemia-related 
cerebral palsy (Table 2).

NCT01151124 is one of the most influential clinical studies 
on the treatment of stroke by stem cells in recent years. The 
favorable efficacy and safety of CTX0E03 cells have provided 
sufficient confidence for human NSCs projects to proceed 
(Kalladka et al., 2016). The NCT03629275 study, hosted 
by the company ReNeuron (PISCES-III), will include more 
participants than the NCT01151124 trial (12 centers, 110 
patients expected) to further demonstrate the clinical effects 
of CTX0E03 cells. However, the proangiogenic properties of 
CTX0E03 cells, especially for microvascular construction, need 
further exploration in animal models (Hicks et al., 2013) and 
tumorigenesis should still be given attention (Stonesifer et al., 
2017).

It should be noted that ReNeuron has also used immortalized 
human fetal NSC grafts for stroke patients, and no cell-related 
or immunological adverse events were found in phase I and 
phase II studies (11 and 42 patients, respectively) (Trounson 
and McDonald, 2015). However, from the positive results of 
the SB623 transplantation trial in which Steinberg et al. (2016) 
recruited 18 stable patients with chronic stroke, it should also 
be recognized that despite long-term efficacy, the safety of 
the transplantation cannot be ignored.

The NCT03296618 study using NSI-566 cells, which were 
previously clinically trialed for spinal cord injury (Curtis et al., 
2018), recently published encouraging conclusions. Three 
cohorts were transplanted with one-time intracerebral 
injections of 1.2 × 107, 2.4 × 107, or 7.2 × 107 NSI-566 cells 
for the treatment of hemiparesis resulting from chronic 
motor stroke to determine the maximum tolerated dose for 
future trials. Immunosuppression therapy with tacrolimus 
was maintained for 28 days. After 12 months, the mean Fugl-
Meyer Motor Score of nine participants showed 16 points of 
improvement (P = 0.0078), the mean modified Rankin Scale 
showed 0.8 points of improvement (P = 0.031), and the mean 
National Institutes of Health Stroke Scale showed 3.1 points 
of improvement (P = 0.020). The changes remained stable at 

the 24-month follow-up. Longitudinal MRI studies showed 
cavity-filling by new neural tissue formation in all nine patients 
(Zhang et al., 2019a). However, further animal experiments 
or autopsy needs to verify the association of neonatal tissue 
properties, cellular components and correlation between new 
tissues and recovered function.

Clinical trials to reprogram human peripheral blood 
mononuclear cells to induced NSCs have not been conducted. 
Previous animal experiments have demonstrated that 
peripheral blood mononuclear cell-derived induced NSCs 
have similar characteristics to fetal NSCs. They have high 
neuroplasticity and can become dopaminergic, cholinergic, 
glutamatergic, and γ-aminobutyric acidergic neurons (Yuan et 
al., 2018). However, the higher plasticity poses a higher risk 
of tumorigenicity and the accumulation of harmful mutations 
during reprogramming and expansion (Lynch, 2010). Each 
haplotype genome acquires 3–30 mutations per mitotic 
somatic cell resulting in genome replication not being 100% 
accurate (Yuan et al., 2018). Therefore, the intracerebral 
transplantation of human peripheral blood-derived NSCs 
(NCT03725865) will be difficult, but the results are worth 
looking forward to.

Despite the positive results, the clinical application of NSCs 
is difficult. One of the problems encoun-tered in NSC clinical 
trials is the source of cells. Rejection of autologous cells is 
relatively uncommon, but compared with fetal NSCs, there 
is very limited data for adult human NSCs with a lack of 
systematic characterization and differences in extraction 
sites (Hermann et al., 2004). However, only about 20% of 
freshly isolated cells from subcortical white matter and the 
hippocampus express oligodendrocyte progenitor markers, 
and 1 of 694 cells from white matter or 1 of 1331 hippocampal 
cells was able to generate neurospheres (Lojewski et al., 
2014). Allogeneic fetal-derived human NSCs show good safety, 
but require immunosuppression after transplantation, and 
donors are very limited. In this case, obtaining iPSC-derived 
NSCs with reliable “NSC characteristics” may be a solution 
(Meneghini et al., 2017). 

Another  problem is  the ethica l  l imitat ion of  us ing 
fluorescently-labeled transplanted cells in human trials. 
Currently, transplantation of labeled cells into rodents and 
using live small animal imaging techniques provide more 
evidence of the location and fate of transplanted cells than 
human trials (Li et al., 2019).

Time
Whether the time for transplantation should be selected 
in the acute phase of stroke (within 24–72 hours) is 
controversial. The state of the recipient during this time 
period is difficult to estimate. NSC therapy may be advocated 
during the stroke recovery period and in the chronic stroke 
period (90 days after stroke). Boese et al. (2018) also believed 
that NSC treatment may be more beneficial for sub-acute 
strokes and the NCT03296618 trial selected the transplant 
time as 150–743 days after stroke (Zhang et al., 2019a). 
Gutierrez-Fernandez et al. (2011) suggested that 14 days after 
theoretical implantation of NSCs is the best time for functional 
recovery. In other words, the transplant time is most likely 
to be most beneficial around a hundred days after injury. All 
phase I clinical trials currently performed assume that the 
longer the span of the treatment period, the less risk the cells 
pose for personal safety (Kalladka et al., 2016).

Evaluation of delivery potential (route and dose)
The effective dose varies significantly with different 
administration routes: intravenous > intra-arterial > intrathecal 
> intracerebral (Vu et al., 2014). For stroke, NSPCs are mostly 
studied using the intracere-bral route. Intracerebrally-injected 
neurons can reconstitute long axon projections and synaptic 
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connections impaired in the host brain. Autopsy pathology 
confirmed that new tissue formed from the injection site 
(Zhang et al., 2019a, 2020). Chronic stroke patients receiving 
treatment also gained significant improvements in motor 
functions compared to the rehabilitation control group 
(Kalladka et al., 2016; Detante et al., 2017). Intracerebral and 
intrathecal administrations are rapid and direct, but both are 
invasive treatments with high risks (Rodríguez-Frutos et al., 
2016), such as secondary cerebral edema and intracranial 
hypertension. Basic research has shown that cell replacement 
is not the main therapeutic mechanism of stem cells, which 
have the ability to migrate; therefore, the risk of delivering the 
cells to the site in this way needs to be reassessed (Detante 
et al., 2017). Intra-arterial and intravascular injections are less 
invasive and easier to perform than surgical implantation, 
but serious consequences, such as vascular occlusion and 
pulmonary embolism may occur (Bosi and Bartolozzi, 2010; 
Smith et al., 2011). Vascular delivery may have a significant 
impact on cell survival, and it is difficult to ensure that an 
effective number of cells pass through the BBB (Boese et al., 
2018). Therefore, there is not enough evidence to show that 
vascular pathways of NSC delivery have therapeutic potential 
(Kondziolka et al., 2005; Savitz et al., 2005). Notably, some 

of the more noninvasive and acceptable delivery routes 
are being evaluated. For example, after intranasal delivery, 
stem cells and neurotrophic factors can migrate into the 
CNS through the cribiform plate in the rostral migration 
stream (Danielyan et al., 2009; Du et al., 2018; Mao et al., 
2018; Aly et al., 2019). The NCT03005249 trial is registered 
for NSC intranasal administration. Convincing assessment of 
NSC delivery may have to rely on techniques that trace stem 
cells in humans. It is also important to track the behavior of 
NSCs in vivo, including proliferation, migration, viability, and 
functional reconstruction. Non-invasive MRI techniques, such 
as magnetic particle imaging, is one such technique with great 
clinical potential (Zheng et al., 2017).

In the NCT01151124 trial, CTX0E03 cells were transplanted at 
different doses (2 million, 5 million, 10 million or 20 million) 
by stereotactic ipsilateral putamen injection (Kalladka et al., 
2016). To date, no graft-related adverse reactions have been 
observed; therefore, a dose of at least 20 million cells can be 
applied in the short term, and there is no conclusive evidence 
that the injection dose is positively correlated with the chance 
of tumorigenesis. The dose of human fetal-derived NPSCs for 
the treatment of late-infantile ceroid lipofuscinosis (Batten’s 
disease) is 1 billion, indicating that cell delivery to the brain is 

Table 2 ｜ Clinical trials using neural stem cells for the treatment of stroke (active and recruiting)

NCT number Tittle Status Interventions Study type Outcome measure Population Sponsor
Process 
observed

NCT03296618 Intracerebral 
transplantation 
of neural stem 
cells for the 
treatment of 
ischemic stroke

Active 
(completed)

NSI-566:
A group: 1.2 × 107;
B group: 2.4 × 107;
C group: 7.2 × 107

Interventional 
(one-time 
intra-cerebral 
injections)

AE & NIHSS & mRS, 
MMSE, FMMS

Enrollment: 9; 
age: 33–65 yr 
(150–743 d post-
stroke)

Suzhou Neuralstem 
Biopharmaceuticals 
Neuralstem Inc.

NP; NG; 
MR; VR

NCT03725865 A clinical study 
of iNSC intervent 
cerebral 
hemorrhagic 
stroke

Not yet 
recruiting

iNSCs Interventional Emergent AE Enrollment:12; 
age: 30–65 yr; 
sex: both

Allife Medical 
Science and 
Technology Co. Ltd.

NP; NG; 
MR; VR

NCT01151124 Pilot 
investigation 
of stem cells in 
stroke

Active 
(completed)

CTX0E03 (NSCs), 
single doses of 2 
million, 5 million, 
10 million, or 20 
million cells

Intervention 
(stereotactic 
ipsilateral 
putamen 
injection)

AE & BI & MMSE, mRS, 
EQ-5D

Enrollment: 12; 
age: 60–85 yr 
(29 mon post-
stroke); sex: 
male

ReNeuron Limited 
(Division of Clinical 
Neurosciences, 
Glasgow)

NP; NG; 
MR; VR

NCT03629275 Investigation 
of neural stem 
cells in ischemic 
stroke

Recruiting Combination 
product: CTX0E03 
drug product and 
delivery device; 
Drug: placebo

Intervention mRS at 6 mon BI; basic 
mobility changing and 
TUG, CAHAI & SDMT & 
COWAT & MNT & MCA

Enrollment: 110; 
Age: 35–75 yr 
(adult, older 
adult); aex: both

ReNeuron Limited 
(University of 
California, Irvine, 
CA, USA)

NP; NG; 
MR; BN; 
VR

NCT02854579 Neural 
progenitor cell 
and paracrine 
factors to treat 
hypoxic ischemic 
encephalopathy

Active 
(completed)

Biological: NPC; 
Biological: 
paracrine factors; 
Biological: 
progenitor cell and 
paracrine factors

Interventional; 
intra-cerebral 
injections

Neonatal behavioral 
assessment; adverse 
events; Bayley score; 
Peabody development 
measure scale; MRI or 
CT

Enrollment:120;  
age: up to 14 d 
(child); sex: both

Navy General 
Hospital, Beijing, 
China

NP; NG; 
MR; BN; 
VR

NCT02117635 Pilot 
investigation 
of stem cells in 
stroke phase II 
efficacy

Complete Biological: CTX DP Interventional ARAT and after CTX; 
NIHSS; RFA & BI 
after CTX; Safety/
Tolerability; FMMS 
after CTX

Enrollment: 23;  
age: 40 yr older 
(adult, older 
adult); sex: both

ReNeuron 
Limited (Queen 
Elizabeth Hospital, 
Birmingham, UK)

NP; NG; 
MR; VR;

NCT04047563 Efficacy of 
sovateltide 
(PMZ-1620) in 
patients of acute 
ischemic stroke

Recruiting Drug: PMZ-1620 
(sovateltide) along 
with standard 
treatment

Interventional, 
phase 3

NIHSS/mRS; change in 
quality-of-life; change 
in Stroke-Specific 
Quality of Life

Enrollment: 110; 
age: 18–78 yr 
(adult, older 
adult); sex: both

Pharmazz, Inc. NP; NG; 
MR; VR

NCT03005249 Neural stem 
cells therapy for 
cerebral palsy

Recruiting Biological: NSC Interventional, 
intranasal 
administration

GMFM-88 score; 
Fine Motor Function 
Measure score; 
modified Ashworth 
Scale score; AEEG/
MRI/EMG

Enrollment: 20; 
age: 1–12 yr 
(child); cerebral 
palsy

The First Affiliated 
Hospital of Dalian 
Medical University, 
Dalian, China

NP; NG; 
MR; VR

Information obtained from ClinicalTrials.gov on April 20, 2020. AE: Adverse events; AEEG: amplitude-integrated electroencephalography; ARAT: Action Research 
Arm Test; BI: Barthel Index; BN: brain networks; CAHAI: Chedoke Arm and Hand Activity Inventory; COWAT: Controlled Oral Word Association tasks (Language 
skills); CTX: CTX0E03, a human NSC line; DP: drug product; EMG: electromyography; EQ-5D: EuroQol-5D; FMMS: Fugl-Meyer Motor Score; GMFM-88: Gross 
Motor Function Measure-88; iNSC: induced NSC; MCA: Montreal Cognitive Assessment (Language skills); MMSE: Mini-mental State Examination; MNT: 
Multilingual Naming Test (Language skills); MR: myelin repair; mRS: modified Rankin Scale; NG: neurite growth; NIHSS: National Institutes of Health Stroke 
Scale; NP: neuron polarity; NPC: neural progenitor cell; NSCs: neural stem cells; RFA: Rankin Focused Assessment; SDMT: Symbol Digit Modalities Test (Language 
skills); TUG: Timed Up and Go Test; VR: vascular regeneration.
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well tolerated (Trounson and McDonald, 2015).

Special candidates
Newborns
Ischemic-hypoxic brain injury in neonates may have serious 
consequences. It is now thought that this injury can result 
in chronic degeneration and damage caused by disruption 
to developing neurons and neural networks, resulting in 
complete stagnation of development, which may lead to 
physical disability and intellectual delay (cerebral palsy and 
neonatal stroke) (Stone et al., 2008). White matter changes 
are frequently observed in the brains of newborns who have 
experienced clinical ischemia and hypoxia, and are different 
from the pathological manifestations of brain damage in 
adults. The process of perinatal asphyxiation is unknown but 
a significant reduction in the number of oligodendrocyte 
precursor cells in an oligodendrocyte maturation disorder has 
been recognized (Fernández-López et al., 2014; Back, 2017). A 
recent study showed that endogenous progenitor cells in the 
neonatal brain may spontaneously participate in compensation 
after hypoxia injury (Ziemka-Nalecz et al., 2018). This result 
may help us to understand and apply endogenous NPCs/NSCs 
to neonatal stroke patients. Lian’s clinical trial results show 
that NSCs are very active and effective in treating cerebral 
palsy. NCT03005249 trial results will soon be published and 
our basic research has confirmed that human NSCs have good 
directional differentiation ability, especially toward glial cells 
(Lian et al., 2012).

Neuropathological aspects of stroke with hemorrhage and 
their impact on NSC transplantation
Intracerebral hemorrhage (ICH) is one of the deadliest 
types of stroke. The first stage after ICH is re-ferred to as 
the primary injury. Damaged tissue is usually surrounded by 
edema, inflammation, and necrosis. Mechanical pressure 
in the bleeding zone leads to extensive cell death with 
mitochondrial dysfunction (Adeoye and Broderick, 2010). 
After 3–12 hours of hematoma dilation, 73% of patients 
show cascades of coagulation activation and thrombus 
and hemoglobin decomposition products, which further 
activate the inflammatory response dominated by glial 
cells, leading to secondary injury (Qureshi et al., 2003). The 
mechanism involved in the repair by stem cells is mainly 
related to nutritional effects and anti-inflammatory and 
immunomodulatory activities (Takeuchi et al., 2013). Tang 
et al. (2004) discovered a large number of nestin-positive 
cells around ICH-injured tissue. Jeong et al. (2003) injected 
exogenous human NSCs intravenously into ICH model rats to 
show that surviving NSCs are helpful for functional recovery 
and new neurons and astrocytes were found in the brain 
7 days after transplantation. These results were confirmed 
using superparamagnetic iron oxide-labeled human NSCs 
(Chang et al., 2008). However, few clinical trials have been 
designed for hemorrhagic strokes (Shimamura et al., 2017) 
and the effectiveness of cell therapy for ICH and subarachnoid 
hemorrhage has yet to be determined in clinical trials, 
possibly because cerebral hemorrhage surgical trials (STICH 
trials I and II) failed to provide convincing evidence that cell 
therapy could reduce mortality or reduce neurological deficits 
(Mendelow et al., 2005, 2013). Furthermore, nimodipine, 
a calcium channel blocker, provides beneficial results for 
subarachnoid hemorrhage.

Strategies to increase the success rate of stem cell 
transplantation
Without clinical intervention, stroke-damaged brain tissue 
can lose 120 million neurons, 83 billion synaptic connections 
and 714 km of myelinated fibers per hour (Saver, 2006). The 
internal environment of the damaged site should be modified 
as much as possible so that transplanted cells can survive 
in a more suitable environment. Meanwhile, transplanted 

cells should adapt to the post-injury ischemic and hypoxic 
environment (Sandvig et al., 2017). Although human NSCs 
show great tissue-specific regeneration potential in vitro, the 
efficacy of clinical applications is limited due to the lack of 
standardized in vitro cell production methods and insufficient 
simulation of the injured microenvironment. NPSCs need to 
be generated in vitro on a large scale and then differentiated 
into neurons. Mature and scalable protocols have allowed 
the cost-effective generation of robust NPSCs from iPSCs as a 
source (Beevers et al., 2013). Following culture in neurobasal 
medium supplemented with B27 and brain-derived 
neurotrophic factor, NPSCs mainly differentiate into vesicular 
glutamate transporter 1-positive neurons displaying features 
of layer 3 pyramidal cells (D’Aiuto et al., 2014). These iPSC-
derived neurons can express functional ligand-gated channels 
and other synaptic proteins (D’Aiuto et al., 2012, 2014; Zhao 
et al., 2016). The cost to culture iPSCs into neurons (more 
than 90% TUJ1-positive cells) that are evenly distributed in a 
384-well plate is about $190 and takes approximately 4 weeks 
(D’Aiuto et al., 2014).

Three-dimensional culture systems for in vitro culture of 
neural tissues include hydrogels, solid porous polymers, 
fibrous materials and acellular tissues, and microfluidic 
devices, which provide powerful conditions for standardized 
in vitro experiments (Murphy et al., 2017). The proliferation 
and differenti-ation capabilities of stem cells are constantly 
being explored, for example by two-dimensional and three-
dimensional cultures in normoxic (21% O2) and hypoxic 
conditions (3% O2), with and without epidermal growth factor 
and fibroblast growth factor 2 (Han et al., 2012; Ghourichaee 
et al., 2017). In the presence of growth factors, the size of 
the culture (three-dimensional) and low oxygen concentra-
tions enhance the survival and proliferation of human NSCs 
(Ghourichaee et al., 2017). Extracellular matrix perfusion 
can promote the proliferation and differentiation of NSCs in 
three-dimensional culture (Wang et al., 2017). Comparing 
NSCs with stem cells from other sources, after transplantation 
into hypoxic brain tissue (O2 concentrations < 5%) (Sandvig et 
al., 2017) there is no significant difference in differentiation 
ability (Lee et al., 2015; Teixeira et al., 2015; Burian et al., 
2017), but the survival rate of NSCs may be higher (Madelaine 
et al., 2017). Teixeira et al. (2015) showed that many 
functional proteins and factors from NSC-exosomes, most of 
which are membrane proteins, are up-regulated in hypoxic 
environments.

Potential of combining neural stem cell therapy with other 
therapeutic strategies
The continuous development of new biomaterials and 
microsurgery technology for their delivery has enabled stem 
cells to be combined with minimally invasive repair technology. 
The in vivo tracking and precision sensing capabilities of 
minimally invasive and regenerative therapeutics will become 
more cost-effective and the risks will reduce with the help of 
nano-biomaterials and soft bioelectronic devices (Ashammakhi 
et al., 2019). Engineered neuroplasticity technology has 
already been demonstrated to affect long-term changes in 
spinal cord injury, a tractable model of CNS repair (Ievins 
and Moritz, 2017). However, drug and surgical intervention, 
brain electrical stimulation technology, and even artificial 
intelligence robot technology are unlikely to completely 
obviate the advantages of NSCs (Moritz, 2018). NSC therapy 
aims to promote the regeneration of myelin sheath (Kondiles 
and Horner, 2018a), restore the conduction of damaged axons 
(Anderson et al., 2017) and improve the internal environment 
of the damaged nervous system (Schmidt-Hieber et al., 2004). 
At present, it is believed that only stem cell therapy combined 
with engineering devices can shape this neuroplastic repair 
into specific, functioning neural circuits (Mondello et al., 
2014).

Review
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Conclusion
NSCs are beneficial for the repair of brain structure and 
function after injury and are strongly validated in preclinical 
and clinical research. It is expected that, NSCs will achieve 
significant results in the treatment of stroke. However, 
there are still several pressing issues that need to be 
addressed for clinical application of NSCs. (1) Thorough 
and detailed explanation of the functional recovery process 
and the mechanism of structural repair of the network 
microenvironment; (2) in-depth study of the therapeutic 
mechanism of NSCs; (3) selection of the most reasonable 
route of administration, dosage and timing; and (4) 
improvement of the evaluation system and ethical standards. 
Our review preliminarily summarizes the current mechanisms 
of NSCs neuroregeneration and functional recovery after 
stroke injury. We also present the current progress in basic 
and clinical research to provide a reference for future research 
(Figure 2).
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