
METHODS
published: 19 October 2021

doi: 10.3389/fnbeh.2021.681771

Frontiers in Behavioral Neuroscience | www.frontiersin.org 1 October 2021 | Volume 15 | Article 681771

Edited by:

Adriano De Oliveira Andrade,

Federal University of Uberlândia, Brazil

Reviewed by:

Angela Abreu Rosa De Sá,

Federal University of Uberlandia, Brazil

Isabela Marques,

Federal University of Uberlandia, Brazil

Vincent van Unen,

Stanford University, United States

*Correspondence:

Alejandro León

aleleon@uv.mx

Specialty section:

This article was submitted to

Individual and Social Behaviors,

a section of the journal

Frontiers in Behavioral Neuroscience

Received: 18 March 2021

Accepted: 26 August 2021

Published: 19 October 2021

Citation:

León A, Hernandez V, Lopez J,

Guzman I, Quintero V, Toledo P,

Avendaño-Garrido ML,

Hernandez-Linares CA and

Escamilla E (2021) Beyond Single

Discrete Responses: An Integrative

and Multidimensional Analysis of

Behavioral Dynamics Assisted by

Machine Learning.

Front. Behav. Neurosci. 15:681771.

doi: 10.3389/fnbeh.2021.681771

Beyond Single Discrete Responses:
An Integrative and Multidimensional
Analysis of Behavioral Dynamics
Assisted by Machine Learning

Alejandro León 1*, Varsovia Hernandez 1, Juan Lopez 2, Isiris Guzman 1, Victor Quintero 1,

Porfirio Toledo 3, Martha Lorena Avendaño-Garrido 3, Carlos A. Hernandez-Linares 3 and

Esteban Escamilla 4

1Comparative Psychology Laboratory, Centro de Estudios e Investigaciones en Conocimiento y Aprendizaje Humano,

Universidad Veracruzana, Xalapa, Mexico, 2 Facultad de Estadística e Informática, Universidad Veracruzana, Xalapa, Mexico,
3 Facultad de Matemáticas, Universidad Veracruzana, Xalapa, Mexico, 4 Escuela de Ingeniería, Universidad Anáhuac, Xalapa,

Mexico

Understanding behavioral systems as emergent systems comprising the environment

and organism subsystems, include spatial dynamics as a primary dimension in natural

settings. Nevertheless, under the standard approaches, the experimental analysis of

behavior is based on the single response paradigm and the temporal distribution of

discrete responses. Thus, the continuous analysis of spatial behavioral dynamics is a

scarcely studied field. The technological advancements in computer vision have opened

newmethodological perspectives for the continuous sensing of spatial behavior. With the

application of such advancements, recent studies suggest that there are multiple features

embedded in the spatial dynamics of behavior, such as entropy, and that they are affected

by programmed stimuli (e.g., schedules of reinforcement) at least as much as features

related to discrete responses. Despite the progress, the characterization of behavioral

systems is still segmented, and integrated data analysis and representations between

discrete responses and continuous spatial behavior are exiguous in the experimental

analysis of behavior. Machine learning advancements, such as t-distributed stochastic

neighbor embedding and variable ranking, provide invaluable tools to crystallize an

integrated approach for analyzing and representing multidimensional behavioral data.

Under this rationale, the present work (1) proposes a multidisciplinary approach for

the integrative and multilevel analysis of behavioral systems, (2) provides sensitive

behavioral measures based on spatial dynamics and helpful data representations to

study behavioral systems, and (3) reveals behavioral aspects usually ignored under the

standard approaches in the experimental analysis of behavior. To exemplify and evaluate

our approach, the spatial dynamics embedded in phenomena relevant to behavioral

science, namely, water-seeking behavior and motivational operations, are examined,

showing aspects of behavioral systems hidden until now.
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THE SPATIAL DIMENSION: A RELEVANT
FEATURE NEGLECTED BY STANDARD
BEHAVIORAL SCIENCE PARADIGMS

The main objective of behavioral science is to account for the
principles that underlie the behavioral system, understanding it
as an emergent and complex system comprising an environment
and organism (Skinner, 1938; Kantor, 1970; Kuo, 1976; Gibson,
1979; Timberlake, 1994; Turvey, 2018). In simple words, the
principal goal of behavioral science is to describe the principles
and processes of natural behavior. The foundational works of
behavioral science show that natural behavior includes the spatio-
temporal dynamic as a fundamental dimension (e.g., approach-
withdrawal patterns; Schneirla, 1959).

Nevertheless, for various reasons, in the history of
experimental behavioral science, the temporal distribution
of discrete-response analysis gained prominence over the
analysis of spatial patterns and their dynamics. One reason for
this was the affordable technology available at the end of the
first half of the last century to make reliable and automatized
behavior records and measures. These records were made
primarily through the use of mechanical and electronic switches
(Escobar, 2014). Thus, the methodological approach focused
on computing the frequency and temporal distribution of the
activation or deactivation of switches (e.g., the total number
of responses to an operand, number of responses per unit of
time, inter-response times, etc.). This approach is called the
single-response paradigm (Henton and Iversen, 1978). Until
now, it has been the standard in the experimental analysis of
animal behavior (e.g., operant and Pavlovian paradigms).

The predominance of apparatus, measures, data analysis, and
data representations based on discrete responses (e.g., lever
press, food dispenser entrance) resulted in the spatial dimension
of behavior being generally neglected. It follows that standard
approaches in experimental behavioral science do not account for
the natural behavior associated with the organism’s movement
and its embedded dynamics (León et al., 2020b).

COMPUTATIONAL ANIMAL BEHAVIOR
ANALYSIS AND INTEGRATION OF THE
SPATIAL DIMENSION TO THE
EXPERIMENTAL ANALYSIS OF BEHAVIOR
(EAB)

Under operant and Pavlovian paradigms, behavioral systems
include complex interactions between spatiotemporal patterns,
discrete responses, and programmed stimuli, challenging to
apprehend with the methodological standard approaches of the
single-response record (see Henton and Iversen, 1978; Pear,
1985). Although this issue was pointed out a long time ago,
it has not been easy to solve for Experimental Analysis of
Behavior (EAB). Developing an integrative approach between
environmental features, discrete responses, and spatiotemporal
dynamics is still challenging.

Computational advances made in the last decade (i.e.,
computer vision, machine learning, and deep learning
techniques) have made the recording, measurement, and
analysis of spatial patterns of behavior affordable (Dell et al.,
2014; Pérez-Escudero et al., 2014; Mathis and Mathis, 2020).
Moreover, these technological advances to facilitate accurate and
objective analysis of behavior have opened new methodological
perspectives in behavioral science (Menaker et al., 2020), such as
computational ecology. Nevertheless, EAB has so far benefited
little from these developments.

Current computational methods (Mathis et al., 2018; Datta,
2019; Marshall et al., 2020; Torabi et al., 2020) provide
invaluable tools to crystallize an integrative EAB approach for
the analysis and understanding of the spatiotemporal dynamics
(Maekawa et al., 2020; Loveless and Webb, 2021) associated
with relevant behavioral phenomena (León et al., 2020a,b). This
multidisciplinary approach could show behavioral features and
processes, hidden until now to behavioral science and, more
specifically, to EAB. Hence, this emergent multidisciplinary
approach could be called computational-experimental analysis of
behavior (CEAB).

How the Integrative Approach of CEAB
Could Extend the Scope of Behavioral
Science and EAB
EAB could be positively affected by CEAB in recording,
measuring, analyzing, and representing the behavioral systems.
In addition, CEAB could help to identify features or variables
embedded in the spatiotemporal continuum of behavior under
well-established methodological paradigms (e.g., operant and
Pavlovian conditioning) hidden until now. If this is the case, the
revealed features could extend our understanding of behavioral
processes and the scope of behavioral science and eventually open
new research possibilities.

Recording
The relevance of accurate and objective records to any empirical
science is well-known. It is established that one of the
main reasons for the success of the operant paradigm is its
objective record of behavior (Escobar, 2014; León et al., 2020b).
Under the single-response paradigm (e.g., pressing the lever
or entering the dispenser) it is possible to identify ordered
functional relations between different variables and procedures
(e.g., schedules of reinforcement, deprivations or motivational
operations) and temporal patterns of discrete responses. CEAB,
recording multiple responses and spatial behavior, could close
the gap to identify new interactions and determinants between
environmental events and spatiotemporal patterns of behavior.

Measuring and Data Analysis
There is a strong relationship between recording, measuring,
and data analysis. Under the single-response paradigm, the
primary measure has been the response rate (Skinner, 1966;
see any current issue of Journal of Experimental Analysis of
Behavior). The analysis focuses on unidimensional changes in
this measure. The multidimensional data obtained through
CEAB (e.g., through sensing of discrete responses and spatial
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behavior with tracking systems based on computer vision)
extend measurements and analyses coherently with an approach
that assumes behavior as a spatiotemporal continuous system
(Kantor, 1970; Henton and Iversen, 1978; Gibson, 1979; Pear,
1985; Timberlake, 1994; León et al., 2020b). Given the vast
possibilities of behavior measuring and the considerable amount
of data associated with the continuous spatiotemporal recording
of behavior, the central issue is what we should measure and
analyze and why (Menaker et al., 2020).

First, it is relevant to measure and analyze discrete responses
(e.g., lever presses, dispenser entrances, “correct” responses,
among others, depending on specific behavioral phenomena) to
have a comparative and parsimonious approach covering the
standard paradigms in the EAB.

On the other hand, given that some very plausible proposals
on the relevant functions of spatial behavior (Elliott, 1934; De
Valois, 1954; Berlyne, 1955; Duffy, 1957; Schneirla, 1959; Henton
and Iversen, 1978; Pear, 1985) were gradually abandoned due to
the lack of record systems, the technology available at the time,
and the predominance of the single-response paradigm, it could
be fertile to recover past insights about spatial behavior with
current technology (Spruijt et al., 2014). The primary dimensions
identified in those proposals were the direction, intensity (or
vigor), and variation of behavior. The recording of both discrete
responses and spatial behavior makes it possible to account for
these dimensions. Thus, in second place, it could be relevant to
measure and analyze the direction, for example, as approach–
withdrawal patterns to relevant areas and stimuli (Duffy, 1957;
Schneirla, 1959); intensity, for example, as traveled distance,
velocity, and rate of response; and variation of spatial behavior,
for example, as recurrence patterns and entropy. Considering
these dimensions in CEAB could be a bridge to close the
gap between EAB and other paradigms of behavioral science,
facilitating seeing multiple aspects of behavioral phenomena
more fully. In addition, these dimensions could be helpful to
identify behaviorally meaningful patterns.

Data Representation
An additional challenge is to conduct an analysis and data
representation that integrates, in a perspicuous way, both
discrete responses and spatial behavior as a whole behavioral
system. This integrative analysis should identify and represent
the participation and relevance (e.g., ranking variables) of
different behavioral features or dimensions in the system (e.g.,
comparing the weight between variables based on discrete
responses and continuous spatial behavior). Until now, this has
been a challenging task that can be resolved with methods for
multidimensional analysis based on machine learning, such as
t-distributed stochastic neighbor embedding (t-SNE).

A First Approach of the CEAB
Figure 1 shows the scheme of the general procedure used in this
work. Each colored row depicts a component of our approach,
assisted by different computational tools and procedures, namely,
sensing/recording, measuring, data analysis, and representation.
Columns depict continuous spatial behavior and discrete
responses, respectively. The intersection between rows and

columns exemplifies some applications of computational tools in
a given component for each kind of response (discrete or spatial).

The proposed approach integrates (a) recording for
continuous spatial behavior (based on machine vision) and
discrete responses of the organisms; (b) multiple measures for
each record (first order, such as velocity and distance to focal
points, and non-first order, entropy and divergence); (c) multilevel
data analysis (within-subject, within-session; between subjects,
between sessions); and (d) multidimensional and integrative
representations of the system, made up spatial behavior and
discrete responses, based on machine learning.

Under the CEAB approach, we present two examples using
a subset of data sets from our laboratory (León et al.,
2020a; Hernández et al., 2021) related to relevant behavioral
phenomena: (a) water-seeking behavior under temporal schedules
and (b) motivational effects of water and food deprivation.
These phenomena have well-documented dynamics of discrete
responses but scarce findings concerning spatial dynamics and
even less integrative analysis between discrete responses and
spatial behavior patterns.

The purposes of the present work are (a) to provide behavioral
measures based on spatial dynamics sensitive to paradigmatic
procedures with well-known effects on discrete responses
(e.g., stimulus schedules and motivational operations), (b) to
reveal spatial behavioral features usually hidden under standard
approaches based on the single-discrete response paradigm,
(c) to illustrate helpful multidimensional representations based
on machine learning for the integration of discrete responses
and spatial behavior for a more comprehensive study of
behavioral systems.

Although the general approach based on CEAB is the
same for both examples, given the experiments correspond
to different phenomena, a specific justification, methods, and
results are presented for each one. Finally, a general discussion
related to both examples and the purposes of the work is
presented. The hypotheses in this work are the following: (1)
the proposed measures based on spatial behavior are sensitive to
EAB paradigmatic procedures; (2) the CEAB, assisted bymachine
learning, reveals that spatial features are at least as relevant as
behavioral features based on discrete responses; (3) CEAB shows
that discrete responses and spatial behavior integrate a whole
behavioral system even under different experimental procedures
and phenomena.

EXAMPLE 1

Water-Seeking Behavior: Behavioral
Dynamics Under Fixed and Variable
Temporal Schedules
One of the most significant contributions of EAB to comprehend
the variables underlying behavioral phenomena are stimuli
schedules (e.g., schedules of reinforcement; Ferster and Skinner,
1957). A stimuli schedule is a rule, defined in a systematic and
parametric way, to present stimuli (e.g., water, food; Reynolds,
1975). The stimuli schedules can be categorized according to
several criteria; one of the most common and useful is contingent
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FIGURE 1 | Graphical representation of the proposed integrative, multilevel, and multidimensional approach. It integrates recordings for continuous spatial behavior

(based on machine vision), discrete responses of the organisms with multiple measures for each one, multilevel data analysis (within-subject, within-session, between

subjects, between sessions), and a multidimensional characterization of the unitary system between spatiotemporal dynamics and discrete responses.
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vs. non-contingent schedules. The first one, in methodological
terms, is usually associated with operant contingencies, and the
second one with Pavlovian contingencies. The difference between
contingent and non-contingent schedules is that, in the first one,
the occurrence of a given stimulus is dependent (or contingent)
on a given response of the organism (e.g., lever presses). In
contrast, in non-contingent schedules, the presentation of the
stimuli does not depend on any organism’s response but only on
the temporal relation between the stimuli. These last are named
time-based schedules.

There is a vast corpus of research with both kinds of schedules
with several species and apparatus (Zuriff, 1970; Lachter et al.,
1971; Boren et al., 1978; León et al., 2020a; Hernández et al.,
2021). Most of this research is based on the recording and data
analysis of a single discrete response, especially with “appetitive”
stimulation. The primary data are head entries to a food or water
dispenser and food pellets or drops of water consumed—in other
words, the temporal distribution of a given discrete response.
Only in a few studies, the data was extended to time spent
in zones near a dispenser (Baum and Rachlin, 1969). Different
behavioral phenomena are studied with time-based schedules,
such as “superstitious behavior” (Skinner, 1948; Reberg et al.,
1977) and “timing” (Drew et al., 2005; Sanabria et al., 2009),
among others. These different phenomena could be characterized
as behavioral systems and their corresponding spatial-temporal
dynamics from a systemic and parametric approach. The effects
of the two time-based schedules, fixed and variable, on behavior
are scarcely studied comparatively. On the other hand, no
comparative studies explicitly include the spatial dimension
of behavior and its dynamics. Under these fixed and variable
temporal schedules, neither integrates the standard data based on
discrete responses with continuous data based on locomotion.

Under this rationale, we evaluate the spatial dynamics of
behavior in Wistar rats under two temporal water-delivery
schedules (fixed and variable-time schedules) in a modified open
field system (MOFS) from a multidimensional analysis, using
machine learning tools.

Method
Subjects
Four experimentally naïve female Wistar rats were used; two
rats were assigned to a fixed-schedule condition and two rats
to a variable-schedule condition. All rats were 3 months old at
the beginning of the experiment. Rats were housed individually
with a 12-h light and dark cycle and maintained under a daily
schedule of 23 h of water deprivation with free access to water
1 h after experimental sessions. Food was freely available in
their home cages. One session was conducted daily, 7 days a
week. All procedures were conducted according to university
regulations of animal use and care and followed the official
Mexican norm NOM-062-ZOO-1999 for Technical Specification
for Production, Use, and Care of Laboratory Animals.

Apparatus
A MOFS (model WEOF by Walden Modular Equipment) was
used. A diagram of the apparatus can be found in León et al.
(2020a). Dimensions of the chamber were 100× 100 cm. All four

walls of the chamber and the floor were made of black Plexiglas
panels. A water dispenser (by Walden Modular Equipment),
based in a servo system, when activated, delivered 0.1 cc of water
on a water cup that protruded from the center of the MOFS.
The MOFS was illuminated by two low-intensity lights (3 watts)
located above the chamber and on opposite sides of the room
to avoid shadowed zones. Once delivered, the water remained
available for 3 s. A texturized black patch, 9 × 9 cm with 16
dots/cm, printed in a 3-D printer, was located close to the water
dispenser to facilitate its location.

The experimental chamber was located in an isolated room
on top of a table of 45 cm in height. The room served to isolate
external noise. All programmed events were scheduled and
recorded using a Walden Tracking System (v.0.1). In addition, a
Logitech C920web camera recorded rats’ movement at the center,
located 1.80m above the experimental chamber. Tracking data
was analyzed using the Walden Tracking System (v.0.1). This
software recorded rats’ location, by the center of mass, every 0.2 s
in the experimental space using a system of X, Y coordinates.
Data files obtained from this software were then analyzed using
MOTUS© and Orange 3.26 Software.

Procedure
Subjects were exposed to one of two conditions of water delivery:
(a) a fixed time (FT) 30 s schedule or (b) variable time (VT) 30 s
schedule. Each condition lasted 20 sessions. Each session lasted
20min. Rats were directly exposed to the conditions without any
previous training. Two rats were assigned to Condition 1 (FT)
and two to Condition 2 (VT).

Data Analysis
To have a complete representation of the behavioral system, we
analyzed different dimensions and levels based on the record of
spatial behavior in a bidimensional space at five frames/s; these
are described below. Formal and computational descriptions of
the measurements and methods of analysis are found in the
Supplementary Material.

Analysis Between Subjects Within-Session
This level of analysis was conducted with representative subjects
and thorough visual inspection of the data to identify changes
in the spatial dynamics, moment to moment, related to water
deliveries and the water dispenser location through the sessions.
The measures and representations account for the changes in
direction and variation of spatial behavior under the different
experimental conditions (FT vs. VT). In addition, they allow
depicting the evolution and process of the spatial behavior to
compare the experiment’s initial, intermediate, and final session.
The specific analyses for this level were bidimensional routes
and rat’s location at the moment of water delivery per session;
distance to the dispenser, moment to moment (five frames/s), and
smoothed distance to the dispenser with a moving average of 200
frames (for a formal description, see Supplementary Material);
and recurrence plot, depicting the change of regions of each rat
in a matrixial configuration of 10 × 10 virtual zones (for a
description, see Supplementary Material).
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Analysis Between Subjects Throughout the

Experiment
This level of analysis was conducted through visual inspection to
identify the stability or variation of spatial behavior throughout
the whole experiment. The used measures were entropy to
indicate the variability of the organism’s location and divergence
to indicate the consistency or inconsistency in such variability
between consecutive sessions (for a formal description of entropy
and divergence, see Supplementary Material).

Analysis Between Conditions by Feature for All

Sessions
This analysis and data representation level was conducted to
identify the experimental condition’s global effect on each spatial
and discrete feature (FT vs. VT). The representation and analysis
were based on measures of central tendency and variance. The
analyzed features were traveled distance, entropy, divergence,
maximum velocity, coincidence index, and mean distance to the
dispenser. These features account for intensity, direction, and
variation of behavior.

Multidimensional and Integrative Analysis Based on

Machine Learning
The main level of analysis allows the integration of a
complete comparison and representation of all features in
a whole behavioral system. Ranking variables, t-SNE, and
linear projection were conducted (for a formal description,
see Supplementary Material) to identify the weight of each
feature and the effect of the experimental condition on the
multidimensional system as a whole. Data of all subjects and
sessions were used.

Results
We conducted an integrative and multilevel analysis to
characterize the behavioral continuum and compare the spatial
dynamics of behavior under fixed and variable time schedules.
First, we present representative within-subject results of the
behavioral continuum within sessions for the first, intermediate,
and last sessions of the experiment for one representative
subject for each condition. Second, we show summary results
for measures based on spatial behavior of first and non-
first order (entropy and divergence) and a measure based on
discrete responses (coincidence index). Third, we present a
multidimensional analysis and integrative representation based
on machine learning.

Figure 2 shows routes (Figure 2A), relative distance to the
dispenser (Figure 2B), and recurrence plots (Figure 2C) for one
rat under FT (Rat 1, left section) and one rat under VT (Rat 4,
right section). Each column corresponds to a given session (1, 10,
and 20). In Figure 2A, in a bidimensional representation of the
MOFS, the routes of the rat (gray lines) for the whole session and
the rat’s location at the moment of water delivery (Location at
Water Delivery, LWD) are presented (black dots). Three findings
are worth mentioning: (1) routes were more extended under FT
than with VT; (2) for both conditions, a progressive change in the
direction of the routes was observed, toward the water-delivery
zone, as the sessions progressed; and (3) the LWD gradually

got closer to the water dispenser as the experimental sessions
progressed. Figure 2B shows the relative value of the distance
from the rat to the dispenser every 0.2 s (gray dots). In addition,
to show the tendency of the distance function, we performed
a smoothing of it (red line) by using a moving average of 200
frames (i.e., 40 s, see equation in the Supplementary Material).
Values close to one indicate that the rat’s distance to the dispenser
was the maximum possible; values close to zero indicate that the
rat was located close to the dispenser in a given time (frame).
Under both conditions, a back-and-forth pattern was observed
(gray dots), but this was more pronounced and had shorter
periods under FT than in VT. In addition, the moving average
(red line) suggests a tendency under both conditions to reduce
the distance to the dispenser as the experiment progresses.

Finally, Figure 2C shows recurrence plots. This plot depicts
the change of regions of each rat (in a matrixial configuration
of 10 × 10 virtual zones) as the session progresses (see
Supplementary Material). Both axes show time on a time frame
of 0.2 s. If a rat was on an Rk region in a T time and
T + n was in the same region, a black mark represents the
recurrence in a given location. On the contrary, if on T + n
the rat was on a different location, a white mark is shown. The
densification and alternation of black–white checker patterns
indicate high recurrence to a given region; a higher proportion
of continuing black zones means higher permanence. A higher
proportion of white zones means extended transitions among
regions. Figure 2C shows a perspicuous difference between both
conditions, higher recurrence under FT than VT, and higher
permanence in zones under VT than FT.

Figure 3 shows the entropy (Figure 3A) and divergence
(Figure 3B) values per session for each rat for both conditions.
The entropy is helpful in the context of this experiment as
a measure of the variation of locomotion patterns and the
dynamic of behavior (see methodological and mathematical
description in the Supplementary Material). For our subject
matter, higher entropy represents high variation and dynamics
of spatial behavior. In Figure 3A, the similarity between entropy
plots within the condition and the difference between conditions
are clear. The entropy was higher under FT than VT. A
divergence index was calculated to determine the variations
of spatial behavior between consecutive sessions (Figure 3B).
This index was calculated by comparing the distribution of the
organism’s locomotion into the arena between two consecutive
sessions (e.g., 1 and 2, 2 and 3, etc.). A value close to zero indicates
no difference in the distribution of locomotion between sessions;
a value far from zero indicates a difference in the distribution
of locomotion between complete sessions (see mathematical
description in Supplementary Material). Figure 3B shows that
the divergence was lower and more stable under FT than VT; this
implies more variation of spatial behavior between consecutive
sessions under VT.

Figure 4 shows summary results of all sessions and subjects
related to the spatial dimension of behavior. The traveled distance
per session (Figure 4A), entropy (Figure 4B), and maximum
velocity in a given frame per session (Figure 4D) were higher
under FT than VT. In contrast, the divergence (Figure 4C) was
significantly higher under VT than FT. On the other hand, the

Frontiers in Behavioral Neuroscience | www.frontiersin.org 6 October 2021 | Volume 15 | Article 681771

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


León et al. Machine Learning Assisted Behavior Analysis

FIGURE 2 | Representative within-subject results of the behavioral continuum for the initial (Session 1), intermediate (Session 10), and last session (Session 20) for

one rat under FT (R1, left panels) and one rat under VT (R4, right panels). Each column depicts a session. (A) shows the routes of the rat (gray lines) and the rat’s

location at the moment of water delivery (black dots) in a bidimensional representation of the experimental chamber. (B) depicts the relative distance to the dispenser

(Y-axis) moment to moment (X-axis). Finally, (C) shows recurrence plots. See the text for a complete description.

mean distance to the water dispenser per session (Figure 4F) was
more dispersed under VT than FT and slightly higher, but the
difference between both conditions was not robust. Finally, the
coincidence index (Figure 4E) of the location of the organism
in the dispenser zone (10 cm radius around to the dispenser
allocation) at the time when water was available (3 s) was higher
under FT than VT. The coincidence index is relevant because it is
closely related to standard paradigms based on discrete and single
response recording (e.g., entries to the dispenser).

To identify the relevance of each dimension or variable in the
emergent behavioral system, understanding it as the functional
interdependent relationship between variables concerning each
condition, we conducted a variable-ranking analysis based on
machine learning. The variable ranking consists of ordering a
set of features by the value of a scoring function (measuring
the relevance of each feature) given a target as a predicting
tool, in our case, the experimental condition. Variable ranking
allows knowing the importance or relevance of the features that
better explain a target variable (for a complete description, see
Supplementary Material). Specifically, we used filter algorithms,
the most used given the low computing resources used for
applying them even on high-dimensional data sets. Given our

subject matter, the integrative analysis of spatial dynamics of
behavior with discrete responses under two different time-
based schedules (FT vs. VT) and our data sets, we applied
three theoretical information filter algorithms for single variable
ranking, namely information gain, mean decrease impurity Gini
index, and χ

2 (for a complete description concerning these
algorithms, see Supplementary Material) for coincidence index,
mean distance to the dispenser, traveled distance, maximum
velocity, entropy, and divergence.

Figure 5 shows that, according to the variable-ranking
procedures, the most relevant features were related to the spatial
dimension of behavior. These were traveled distance, entropy, and
divergence. On the other hand, the coincidence index, the most
closely related variable to themeasures of the standard paradigms
based on discrete response recording, was less relevant than the
other features related to the spatial dimension of behavior.

To have a perspicuous representation that would allow
identifying if the data, given its multiple dimensions, are
articulated or grouped as a function of the kind of time-
based schedule employed, we conducted t-SNE. t-SNE is a
machine learning algorithm for the visualization of high-
dimensional data sets into a bidimensional or three-dimensional
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FIGURE 3 | Entropy (A) and divergence (B) measures for subjects R1 and R2 under FT schedules (left) and subjects R3 and R4 under VT (right).

space. t-SNE performs a non-linear dimensionality reduction
task for embedding data sets and obtaining low-dimension
transformations as a result. Relationships between high-
dimensional data, which might be impossible to observe due
to a considerable amount of variables, could be distinguished
after transforming them into a space with reduced dimension
by t-SNE. Furthermore, the representation obtained by t-SNE is
perspicuous because the data with similar values are closer to
each other (in a low-dimensional space, 2-D or 3-D) than data
with dissimilar values (for a complete description of t-SNE, see
Supplementary Material).

Figure 6 shows a representation, using t-SNE, for the data of
all experimental sessions and subjects. Each point can be seen
as multidimensional data for a session, considering the distance
traveled, entropy, divergence, maximum velocity, coincidence
index, mean distance to the dispenser, and session number into
the experiment as dimensions with the condition, FT vs. VT,
as a target feature. FT data (blue points) tend to be closer
to each other, and the same was observed concerning VT
data (red points). Color regions are shown in the figure to
facilitate the visualization of groupings. The conformation of
only two predominant and well-delimitated regions is clear, and
FT and VT data are separated except for a few dots inserted
in the colored region of the opposite condition. Given that the
multidimensional space of t-SNE could be seen as behavioral
system representation as a whole, the main finding is that a
well-differentiated behavioral system under each condition or
schedule emerged.

Figure 7 shows the linear projection (for a full description,
see the Supplementary Material) of the multidimensional data
of all sessions and subjects for six dimensions: coincidence index,

divergence,mean distance to the water dispenser, entropy, traveled
distance, and maximum velocity. The direction of each vector
points out the direction of the increasing values for a given
dimension. Colored regions related to each condition are added
to facilitate the visualization of the data tendency. The prevalence
of a colored region in a given dimension represents higher values
for the correspondent experimental condition to such color
compared with the other experimental condition. Thus, the linear
projection shows highermaximum velocity, traveled distance, and
entropy values under FT than VT. Although the values nearby for
mean distance to the dispenser for both conditions are shown, a
red shadow suggests higher values for VT.

On the other hand, the projection clearly shows higher
divergence values for VT and nearby values for the coincidence
index for both conditions; nevertheless, the blue shadow in
this last vector points out higher values for FT. One relevant
difference of this representation with other reduction dimension
procedures is that it has specific representations for each
relevant dimension of the data in the orthogonal space. The
linear projection representation confirms the relevance of the
spatial dimensions of behavior related to the programmed time-
based schedules.

EXAMPLE 2

Motivational Operations: Behavioral
Dynamics Under Different Deprivations in
Concurrent Schedules
A procedure that is conducted in most studies of the
experimental analysis of behavior that uses “appetitive” stimulus
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FIGURE 4 | Summary results of spatial-behavior measures for all sessions and subjects under FT and VT schedules. (A), traveled distance per session; (B), entropy;

(C) divergence; (D), maximum velocity per session; (E), coincidence index; and (F) mean distance to the dispenser. Each box depicts the mean (dark blue vertical

line), the median (yellow vertical line), the standard deviation (thin blue line), and the values between the first and the third quartile (blue highlighted area).

is the deprivation of a given commodity (e.g., water or
food) that it is later used to be delivered contingent to
some response or behavioral pattern in contingent schedules
(Skinner, 1938). In non-contingent schedules, the delivery of
such commodity is presented in conjunction with given stimuli
(e.g., Pavlovian conditioning procedures) or simply presented
according to a specific time rule (e.g., time-based schedules).
The deprivation procedure, in methodological terms, has the
purpose of establishing the relevance or dispositional value of the
delivered commodity as a stimulus (Reberg et al., 1978; Michael,
1982). This dispositional value is crucial to explaining behavioral
systems, seen as articulating behavioral patterns, responses, and

other stimuli. The study of the relevance or dispositional value of
a given stimulus, por mor of the deprivation operation, is related
to the field of motivation, under the terms of “motivational
operations” (Laraway et al., 2003) and “establishment operations”
(Michael, 1982, 1993), among others.

Several years ago, it was established that the “motivational”
function of a given stimulus could be characterized based on
direction, intensity, and variation of the spatial behavior (Duffy,
1951, 1957; De Valois, 1954; Berlyne, 1955; Schneirla, 1959;
Maier and Schneirla, 1964). Nonetheless, this characterization
is restricted only to the rate response of the discrete responses
under the single response paradigm. Thus, the spatial dimension
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FIGURE 5 | Ranking variable analysis, under information gain, mean decrease

impurity Gini index, and χ
2 procedures for the features traveled distance per

session (Trav Dist), entropy, divergence, maximum velocity per session (Max

Vel), coincidence index (Coinc index), mean distance to the dispenser (Mean

Dist to Disp), and session. The length of the bar ranks the features by the

scoring value that measures the relevance of each feature to differentiate the

behavioral system as a function of a given time-based schedule (FT vs. VT).

of the behavior and its dynamics is ignored in the contemporary
study of EAB (e.g., Lewon et al., 2019).

On the other hand, generally, the effect of food or water
deprivation is evaluated by removing access to them by the
experimental subjects outside the experimental sessions and then
presenting one or the other, either contingent or non-contingent,
to a given response (Skinner, 1938; Bolles, 1975) during the
session. The effect of presenting food and water concurrently
when subjects are food- or water-deprived is less studied (Fallon
et al., 1965, Lewon et al., 2019). Under this rationale, the
objective of this study was to evaluate the effects of food- and
water-deprivation conditions on the behavioral continuum in
conditions in which food and water are concurrently delivered. A
multidimensional andmultilevel analysis and data representation
was conducted usingmachine learning tools to integrate standard
discrete responses and spatial dynamics.

Method
Subjects
Five female and one male (Subject 3) Wistar rats (5 months old)
were used. According to the current phase of the experiment, rats
were housed in individual home cages and placed on a water-
or food-deprivation schedule for 22 h before every experimental
session. All procedures were conducted according to university
regulations of animal use and care and followed the official
Mexican norm NOM-062-ZOO-1999 for Technical Specification
for Production, Use, and Care of Laboratory Animals.

Apparatus
An experimental chamber of 92 wide× 92 long× 33 cm high was
used; 2 cm above the grid floor and in the center of the opposing
walls, two dispensers were located: a liquid dipper (Coulbourn
E14-05) and a modified food receptacle with a pellet dispenser
(Coulbourn E14-24). The dipper allowed access to 0.1 cc of water
for 3 s, and the pellet dispenser delivered a 45-mg pellet with
limited availability of 3 s. Entries to both dispensers were detected

FIGURE 6 | Representation with t-SNE for the data of all experimental

sessions and subjects. Each point represents multidimensional data for a

session, considering the distance traveled, entropy, divergence, maximum

velocity, coincidence index, mean distance to the dispenser, and session

number into the experiment as dimensions with time-based schedule, FT and

VT, as a target feature. The data with similar values given the multiple features

or input variables taken as a whole is simply closer to each other than data

with dissimilar values.

by head entry detectors (MED ENV-254-CB). In addition, above
both dispensers, a yellow light was used as a visual stimulus (MED
ENV-222M) to indicate food or water delivery (for a diagram of
the apparatus, see Hernández et al., 2021).

Water and food deliveries were programmed and registered
with the Software MED PC IV, and head entries were
also registered using this software. Rat displacement in the
experimental chamber was recorded using a video camera
(Topica TP-505D/3), 1m above the chamber. The video camera
was connected to a PC with software Ethovision 2.3. With this
software were obtained records of rat displacement in X, Y
coordinates every 0.2 s.

Procedure

Experimental Phase
After an initial training phase to the food andwater dispenser (see
Hernández et al. (2021) for a complete description), subjects were
exposed to two deprivation conditions: (1) water deprivation
(WD) and (2) food deprivation (FD). Each deprivation consisted
of 3 days with the corresponding food or water restriction
and one experimental session per day. After each condition,
subjects were allowed unrestricted access to both commodities
for 24 h before the following deprivation condition to avoid a
drastic decrease in weight and to separate the effect of each
deprivation (Lewon et al., 2019). Subjects were assigned to one
of two deprivation sequences to control for the potential effect
of the first deprivation condition on the following condition.
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FIGURE 7 | Representation with linear projection by principal component analysis of multidimensional data of all sessions and subjects for six dimensions:

coincidence index, divergence, mean distance to the water dispenser, entropy, traveled distance, and maximum velocity with time based-schedule, FT and VT, as a

target feature. The direction of each vector points out the direction to increasing values for a given dimension.

TABLE 1 | Sequence of deprivation conditions for each group.

Sequence Deprivation Condition

1 WD FD

2 FD WD

WD, water deprivation; FD, food deprivation. Each condition lasted three sessions, and

each session lasted 30min. Three rats were assigned to sequence 1 and three rats to

sequence 2.

The specific order of deprivations for each sequence is shown
in Table 1. All experimental sessions consisted of presenting a
CONC FT 30 s FT 30 s schedule of food and water with limited
availability of 3 s. A yellow light above both dispensers was
turned on with every delivery and remained during food or water
availability. All experimental sessions lasted 30 min.

Data Analysis
The same analytical approach as in Experiment 1 was used
in Experiment 2 only with appropriate settings due to the
differences in methods, apparatus, and records. Specifically,
measures related to water and food dispensers were added,
such as entrances and derivated measures (intensity, precision
to dispensers, and proportion to commodities contacted). Each
measure is described in the following section.

RESULTS

We conducted a multilevel analysis to characterize the behavioral
continuum and compare the spatial dynamics of behavior
under water and food deprivation. In the same way as in
Example 1, first, we show representative within-subject results
of the behavioral continuum within the session, for the initial,
intermediate, and last sessions of the experiment for one
representative subject. Second, we show summary results for
measures based on spatial behavior, first and non-first order,
and measures based on discrete responses in water and food
dispensers. Third, we conducted a multidimensional analysis and
integrative representations based on machine learning.

Figure 8 shows the continuum spatial–behavioral data for
the complete initial, intermediate, and final sessions for a
representative experimental subject. Figure 8A represents the
routes of the subject. There was a higher variation of spatial
behavior at the arena under WD than FD for the intermediate
and final sessions. In addition, higher spatial behavior in the
food dispenser zone (top of the plot) under FD and a distributed
densification between both dispenser zones (top and down of the
plot) under WD were observed. Figure 8B shows the distance
to the food dispenser (red line) and water dispenser (blue line),
moment to moment (each .02 s). For the intermediate and final
sessions under FD, a small distance to the food dispenser and a
long distance to the water dispenser was observed with only a
few alternations between high- and low-distance values to both
dispensers.
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FIGURE 8 | Representative within-subject results for all sessions of the behavioral continuum for one rat (R5). Each column depicts a session, and rows depict

deprivation conditions (FD and WD, respectively). (A) shows the routes of the rat in a bidimensional representation of the experimental chamber; red circles represent

food dispenser location, and blue circles represent water dispenser location. (B) depicts the distance to the dispensers (Y-axis) moment to moment (X-axis); the red

line represents the distance to food dispenser; the blue line represents the distance to water dispenser. Finally, (C) shows recurrence plots; this changes regions of

each rat (in a matrixial configuration of 10 × 10 virtual zones) as the session progresses.

In contrast, underWD, for the intermediate and final sessions,
a significant alternation between high and low values of distance
to the dispensers and then a clear back and forth pattern between
dispensers was observed. Figure 8C depicts the recurrence
plots (see Figure 2 description; Supplementary Material). High
permanence (extended black zones) with only some transitions
under FD and high recurrence (black–white mosaic patterns)
under WD were observed in these plots. Thus, the three panels
(Figures 8A–C) as a whole suggest a robust difference in the
spatial dynamics by FD vs. WD under the same concurrent
schedule and for the same experimental subject.

Figure 9 shows summary results for the measures based on
the spatial dimension of behavior: mean distance to the food
dispenser, mean distance to the water dispenser, mean distance to
the center of the experimental arena, entropy index, and divergence
index, under FD and WD for all sessions and experimental
subjects independently of the sequence in which they were
exposed. All measures were sensitive to the deprivation condition
except the divergence index. The distance to the food dispenser
had low values under FD and relatively high values under WD.
In contrast, the opposite effect concerning the water dispenser
was observed with relatively low distance values under WD and
high values under FD. The data of distance to the dispensers was

more spread underWD than under FD. Themean distance to the
center was higher underWD than FD, and the entropy index too.
All the previously mentioned findings were robust and point out
a significant differential spatial dynamic of the behavior related
to deprivation conditions.

Figure 10 shows summary results for measures based on
discrete responses, namely, (a) intensity to food dispenser
index, (b) intensity to water dispenser index, (c) precision to
food dispenser index, (d) precision to water dispenser index,
(e) proportion to food contacted, and (f) proportion of water
contacted. These measures are relevant because they are related
to those employed in the standard paradigms based on single
discrete responses. Figures 10A,B depict the intensity related to
the dispensers; the intensity index was obtained by dividing the
total number of head entries in one dispenser of each session
by the maximum number of entries in any session on the
whole experiment for a particular subject and dispenser. Then,
this procedure was carried on for each subject and session,
always using this within-subject and -dispenser comparison. The
intensity to the food dispenser was high under FD and low under
WD, and the intensity to the water dispenser was high, though
spread, under WD and very low under FD. Figures 10C,D show
the precision to the dispensers. Precision index was obtained
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FIGURE 9 | Summary results of spatial-behavior measures for all sessions and subjects under FD and WD schedules. (A), Distance to food dispenser; (B), Distance

to water dispenser; (C), Distance to center; (D), Entropy; (E), Divergence. Each box depicts the mean (dark blue vertical line), the median (yellow vertical line), the

standard deviation (thin blue line), and the values between the first and the third quartile (blue highlighted area).

by dividing the number of entries to each dispenser, when the
commodity was available (water or food), by the total number
of head entries in that session and in that dispenser. The data
below percentile 5 for each subject on each dispenser were
eliminated to palliate possible ceiling or floor effects in sessions.
The precision related to the food dispenser was lower under FD
than under WD, and there was no difference in precision to
water dispenser between deprivations (FD and WD). Finally,
Figures 10E,F depict the proportion to food and water contacted
from the total available. The proportion to food contacted was
higher under FD than WD, and water contacted was lower
under FD than WD. The measures based on discrete responses
as a whole show interesting findings. First, the intensity and

effectiveness (i.e., proportion to food contacted) to each dispenser
clearly depend on the deprivation condition; that is, high values
of intensity and effectiveness to the food dispenser were observed
under FD and vice versa, and high values of intensity and
effectiveness to the water dispenser were observed under WD.

Nevertheless, the modulating effect of each deprivation
condition over the behavior related to the correspondent
dispenser and commodity delivery to such deprivation is not
precisely the same for both deprivations. On the one hand, the
modulating effect of FD for all behavioral measures based on
discrete responses, is most robust for the food dispenser than
the effect of WD over the same measures related to the water
dispenser. On the other hand, the data under FD tends to extreme
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FIGURE 10 | Summary results of measures based on discrete responses for all sessions and subjects under FD and WD schedules: Intensity to food dispenser index

(A), intensity to water dispenser index (B), Precision to food dispenser index (C), Precision to water dispenser index (D), Proportion of food contacted (E), and

Proportion of water contacted (F). Each box depicts the mean (dark blue vertical line), the median (yellow vertical line), the standard deviation (thin blue line), and the

values between the first and the third quartile (blue highlighted area).

values (very low or very high) related to intensity and effectiveness,
and under WD tends to intermediate and spread values. Finally,
it is remarkable that the precision of behavior related to food
delivery was negatively affected under FD. This effect for water
delivery under WD was not observed.

Figure 11 shows the variable-ranking under three procedures,
namely, information gain, impurity Gini index, and χ

2 for
all measures, those based on continuum spatial dimension
of behavior, and those based on discrete responses (for a
complete description concerning these algorithms, see the
Supplementary Material, and for suggested use in behavior
analysis, see the description of Figure 5). The variable ranking

allows identifying the relevance of each variable (i.e., behavioral
measure or dimension) into the whole multidimensional system.
Given our subject matter, the modulating effect of two different
deprivations (FD andWD) into the multidimensional behavioral
system, the variable ranking suggests that the most relevant
variables were the distance to the dispensers, intensity to the
dispensers, and entropy. These findings suggest that the spatial
dimension of behavior was as relevant as discrete responses into
the behavioral systems that emerge by modulation under FD and
WD.

Figure 12 shows a representation by t-SNE (for a complete
explanation, see Supplementary Material and description of
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FIGURE 11 | Ranking variable analysis, under information gain, mean

decrease impurity Gini index, and χ
2 procedures for the features Distance to

food dispenser (Dist FDisp), distance to water dispenser (Dist WDisp), intensity

to food dispenser (Intensity FDispenser), Proportion of food contacted

(Proportion FContacted), Entropy, Intensity to water dispenser (Intensity

WDisp), Proportion of water contacted (Proportion WContacted), Precision to

water dispenser (Precision WDisp), distance to the center of the experimental

arena (Dist Center), Precision to food dispenser (Precision FDisp), Divergence,

Session, Sequence.

Figure 6) for the data of all the experimental sessions and
subjects. Each point can be seen as multidimensional data
for a session, considering both measures based on spatial
behavior continuum and discrete responses (see Figure 11) and
deprivation condition (FD and WD) as the target feature. Data
tends to be closer by condition for both FD (red dots) and WD
(blue dots). Two well-delimitated colored regions were formed
with a clear separation between FD and WD data. Additionally,
two clusters were conformed under the K-means clustering
procedure (for a description, see Supplementary Material);
see Figure 12A. The coincidence of each cluster data with
deprivation condition data was very robust. This analysis can be
taken as an explicit confirmation of the differential modulation
by each deprivation condition (FD vs. WD) over the emerged
multidimensional behavioral system under the same concurrent
schedule and within-subject design. Finally, in Figure 12B,
another complementary representation was conducted. In this
panel, the circles point out deprivation sequence 1 (WD-FD),
and the crosses sign out deprivation sequence 2 (FD-WD). The
representation shows that the data clustering by deprivation
was robust to the sequences (that is, there are well-delimited
regions for each deprivation regardless of the sequence) and
also suggests that the data tend to be close by sequence within
deprivation. In addition, the representation suggests a contrast
effect on deprivation conditions by sequence 1; that is, the FD
and WD data were more distant from each other than the data
for the same deprivation conditions in sequence 2.

DISCUSSION

The purpose of the present work was three-fold: (1) to propose
an integrative and multidimensional approach for the analysis of
behavioral systems; (2) to show novel behavioral aspects revealed
under a multidimensional approach based on the integration of
discrete and continuous data assisted by machine learning tools;
and (3) to provide relevant and novel behavioral measures and
data representations based on the integration of spatial dynamics
and discrete responses for the study of behavioral systems related
to relevant research areas in behavioral science, such as water-
seeking behavior andmotivational operations.

In the first example, concerning behavioral dynamics under
FT and VT, marked differences in routes, rat’s location at the
moment of water delivery, distance to the dispenser, back and
forth to the dispenser, and recurrence patterns were observed.
These findings suggest a considerable difference in emergent
spatial behavior (direction and variation) under both temporal
schedules (FT vs. VT). In addition, they confirm our hypothesis
that the proposed first-order measures based on spatial behavior
are sensitive to EAB paradigmatic procedures.

Furthermore, the entropy, a non-first order measure, was
sensitive to the programmed contingencies with higher values
under FT than VT; the behavioral meaning of this finding is
that the distribution of the organism location presents more
variability under FT than VT. This finding is interesting because
the temporal variation in water delivery is associated with lower
variability of organism location, and temporal constancy or
fixation is associated with higher variation of the organism
location. On the other hand, the organism’s location variability
distribution shows a low divergence between sessions under FT
and not under VT. As far as we know, the use of entropy
and divergence to characterize the spatial variability of behavior
is scarce. Nevertheless, our findings reveal that entropy and
divergence are embedded features of spatial behavior with a
higher sensitivity to the temporal schedules.

The findings together, of first and non–first order measures
with data of direction of behavior, such as routes and back and
forth patterns, and others about the variation of behavior, such as
checker recurrence patterns and higher values of entropy under
FT, can be seen as an objectivemeasure of the idiosyncratic spatial
patterns reported anecdotally in the literature as superstition
behavior under FT (Skinner, 1948). Thus, in our perspective,
the analysis carried out and its behavioral meaning shows the
plausibility and parsimony of the CEAB approach.

On the other hand, the analysis of the different features
and its ranking variable assisted by machine learning confirms
our hypothesis related to the relevance of spatial features
over standard discrete responses (e.g., water contacted or
coincidence index) in the behavioral systems under temporal
schedules. The ranking variable analysis shows that traveled
distance, entropy, divergence, and maximum velocity are more
sensitive to the programmed schedules than the standard
feature of water contacted, measured as a coincidence index.
Finally, t-SNE and linear projection were helpful to represent
multidimensional behavioral systems in a perspicuous way
(e.g., in bidimensional space). These representations allow
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FIGURE 12 | Representation with t-SNE for the data of all experimental sessions and subjects. Each point represents multidimensional data for a session given all

features (see Figure 11) with deprivation condition, FD (red) and WD (blue), as a target feature. The data with similar values given the multiple features or input

variables taken as a whole is simply closer to each other than data with dissimilar values. (A) additionally shows clustering under the K-means procedure and two

well-delimitated colored regions with a clear separation between FD and WD data and corresponding each one with a cluster (C1 circles and C2 crosses). On the

other hand, (B) depicts the deprivation sequence (Sequence 1 circle and Sequence 2 crosses).

confirmation that each schedule (FT and VT) gives place to well-
differentiated behavioral systems based on spatial behavior and a
discrete response.

In the second example, concerning behavioral dynamics in
concurrent schedules under different deprivation conditions
(WD vs. FD), more extended routes, back and forth patterns
alternated between dispensers, and recurrence patterns were
observed under WD than FD. Again, findings suggest these
representations were sensitive to the deprivation condition.

Furthermore, all measures related to spatial behavior were
markedly affected by deprivation conditions (e.g., distance
to both dispensers, distance to the center of the arena, and
entropy) except divergence. The latter indicates consistency
between sessions related to the variability values of the
organism’s location distribution under both deprivations. As
in Example 1, the findings show that entropy is a relevant
feature embedded in spatial behavior that is significantly affected
by a standard procedure with well-known effects. In simple
words, the findings suggest spatial behavior is very sensitive to,
namely, “motivational operations” under choice situations (e.g.,
concurrent schedules). A relevant aspect is that these features are
indicators of direction and variability of the behavior that could
be used as an alternative indicator to identify the motivational
function of a given procedure aside from discrete responses.

On the other hand, all measures based on discrete responses
were sensitive to deprivation conditions except the precision to
the water dispenser. In general terms, each deprivation condition
affected the direction of behavior, both spatial and discrete
responses, to correspondent commodity although the effect was
not exactly symmetrical. These findings are consistent with the
expected under the standard paradigm and the literature. This
point is crucial because it increases the validity of our findings
and conclusions concerning spatial behavior (as a simile of
concurrent validity in a non-statistical way).

The ranking variable analysis, assisted by machine learning,
considered 11 features (five based on spatial behavior and six
on discrete responses). It reveals that three are related to the

spatial behavior of the five most relevant features: distance to
the food dispenser, distance to the water dispenser, and entropy.
These findings confirm our hypothesis related to CEAB revealing
that spatial features are at least as relevant as behavioral features
based on discrete responses, but now concerning other behavioral
phenomena and paradigms, “motivation” and “motivational
operations under concurrent schedules,” respectively. Finally,
t-SNE shows that each deprivation condition gives well-
differentiated behavioral systems based on spatial behavior and
a discrete response under the same concurrent schedules.

As our examples show, the general proposed approach in this
work helps integrate a multiple-level analysis to coalesce discrete
and continuous dimensions of behavior (and derivate first and
non-first order measures) as a whole system. It also proved
fruitful to provide a broad characterization of the continuum of
behavior in which the spatial dynamics are on the first plane.
The proposed approach appears promising to characterize and
integrate different behavioral features as a whole behavioral
system, pointed to as relevant throughout the development of
behavioral science. Among these features are direction (Schneirla,
1959; in our work, distance to the dispenser), intensity (Duffy,
1957; in our work, speed, acceleration), variation (Mowrer
and Jones, 1943; Antonitis, 1951; Berlyne, 1955; Iversen, 2017;
in our work, entropy), preference (Irwin, 1958; in our work,
time spent in a given zone), persistence (Bolles, 1975; in our
work, dispenser entries). With the proposed multidisciplinary
methodological approach, the purpose of overcoming the
segmented characterization of the behavioral continuum and its
derived paradigms, for example, the single response paradigm
(Henton and Iversen, 1978), could go beyond the theoretical level
that has been maintained up to now (Kantor, 1958).

The findings of both experiments presented to exemplify our
approach show that the recording and analysis of the continuum
of spatial behavior of the organisms is of primary importance to
account for the principles that underlie behavioral systems and
suggest that (a)moment-to-moment analysis and representations
of locomotion-based data across complete sessions are helpful to
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identify and characterize the behavioral dynamics under different
stimuli schedules and deprivation conditions (see routes, distance
to the dispensers, and recurrence plots); (b) the proposed non-first
order variables (i.e., entropy and divergence) based on locomotion
data are relevant and sensible to stimuli schedule and deprivation
conditions; (c) the variables based on locomotion-data could
be more sensible than variables based on discrete responses
to stimuli schedules and deprivation conditions (see variable-
ranking analysis based on machine learning); (d) discrete
responses and the continuum of spatial behavior comprise a
unitary and whole system that could apprehend and represent
in a perspicuous way with machine learning tools, such as
t-SNE, clustering based on K-means, and linear projection,
among others.

Our examples and findings suggest that the proposed
multidisciplinary approach (CEAB) allows going forward on
explaining behavioral systems and reveals an integration of
spatial dynamics and discrete responses hidden until now for
the behavioral science. In addition, new empirical relations
and insights are revealed under CEAB related to water-seeking
behavior (León et al., 2020a) and motivational operations
(Michael, 1982, 1993; Hernández et al., 2021).

Although the proposed approach appears to be promising,
to confirm its heuristic and parsimonious value, it should be
evaluated under (a) other relevant phenomena; (b) other kinds
of schedules (e.g., contingent schedules); (c) different stimulating
conditions (e.g., aversive stimulation); (d) different organization
of behavior (e.g., behavior under stimulus control, relational
behavior); (e) different species, including humans.

Finally, the proposed approach could be strengthened
by integrating additional first and non-first order measures
pertinent to apprehend and characterize the dynamics of relevant
dimensions of behavior (such as direction, variation, and
vigor, among others). On the other hand, additional artificial
intelligence tools, such as predictive analysis, could be explored
to extend the scope of our approach for behavioral science,
specifically for the experimental analysis of behavior.

As a corollary, the fast-paced development of contemporary
computational tools of fields such as artificial intelligence has
rapidly changed the landscape of some fields of behavioral science
in the last decades, for example, ethology (Dell et al., 2014)
and neuroscience (Wiltschko et al., 2015; Datta et al., 2019;
Mathis et al., 2019; Mathis and Mathis, 2020). It is time the non-
mediational, systematic, parametric (Skinner, 1938; Schoenfeld

and Cole, 1972; Henton and Iversen, 1978), and ecological
(Timberlake, 1994; Silva and Timberlake, 1997) approaches in the
experimental analysis of behavior start to profit from these tools
(Turgeon and Lanovaz, 2020).

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies were reviewed and approved by The Animal Ethics
Committee at CEICAH-Universidad Veracruzana. The original
studies from which the data was obtained were conducted
following the Mexican Norm in agreement with the university
regulations of animal use and care and followed the official
Mexican norm NOM-062-ZOO-1999 for Technical Specification
for Production, Use and Care of Laboratory Animals. The
experimental subjects were not exposed to aversive stimulation,
stressful situations, or invasive procedures. We also used data
from different studies conducted in the laboratory to propose
a new analytic approach, because of this, no additional ethical
approval was needed from our institution to analyze the data.

AUTHOR CONTRIBUTIONS

AL and VH: conceptualization, data curation, formal analysis,
investigation, methodology, project administration, resources,
software, supervision, visualization, roles/writing—original
draft, and writing—review and editing. JL, PT, MA-G,
CH-L, and EE: data curation and formal analysis. IG and
VQ: conducted experimental sessions and data curation.
All authors contributed to the article and approved the
submitted version.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbeh.
2021.681771/full#supplementary-material

REFERENCES

Antonitis, J. J. (1951). Response variability in the white rat during
conditioning, extinction, and reconditioning. J. Exp. Psychol. 42, 273–281.
doi: 10.1037/h0060407

Baum, W. M., and Rachlin, H. C. (1969). Choice as time allocation 1. J. Exp. Anal.
Behav. 12, 861–874. doi: 10.1901/jeab.1969.12-861

Berlyne, D. E. (1955). The arousal and satiation of perceptual curiosity in the rat. J.
Comp. Physiol. Psychol. 48:238. doi: 10.1037/h0042968

Bolles, R. C. (1975). Theory of Motivation. New York, NY:
HarperCollins Publishers.

Boren, J. J., Moerschbaecher, J. M., andWhyte, A. A. (1978). Variability of response
location on fixed-ratio and fixed-interval schedules of reinforcement. J. Exp.
Anal. Behav. 30, 63–67. doi: 10.1901/jeab.1978.30-63

Datta, S. R. (2019). Q&A: understanding the composition of behavior. BMC Biol.

17, 1–7. doi: 10.1186/s12915-019-0663-3
Datta, S. R., Anderson, D. J., Branson, K., Perona, P., and Leifer, A.

(2019). Computational neuroethology: a call to action. Neuron 104, 11–24.
doi: 10.1016/j.neuron.2019.09.038

De Valois, R. L. (1954). The relation of different levels and kinds of
motivation to variability of behavior. J. Exp. Psychol. 47:392. doi: 10.1037/h00
54621

Frontiers in Behavioral Neuroscience | www.frontiersin.org 17 October 2021 | Volume 15 | Article 681771

https://www.frontiersin.org/articles/10.3389/fnbeh.2021.681771/full#supplementary-material
https://doi.org/10.1037/h0060407
https://doi.org/10.1901/jeab.1969.12-861
https://doi.org/10.1037/h0042968
https://doi.org/10.1901/jeab.1978.30-63
https://doi.org/10.1186/s12915-019-0663-3
https://doi.org/10.1016/j.neuron.2019.09.038
https://doi.org/10.1037/h0054621
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


León et al. Machine Learning Assisted Behavior Analysis

Dell, A. I., Bender, J. A., Branson, K., Couzin, I. D., de Polavieja, G. G.,
Noldus, L. P., et al. (2014). Automated image-based tracking and its
application in ecology. Trends Ecol. Evol. 29, 417–428. doi: 10.1016/j.tree.201
4.05.004

Drew, M. R., Zupan, B., Cooke, A., Couvillon, P. A., and Balsam, P. D. (2005).
Temporal control of conditioned responding in goldfish. J. Exp. Psychol. 31,
31–39. doi: 10.1037/0097-7403.31.1.31

Duffy, E. (1951). The concept of energy mobilization. Psychol. Rev. 58:30.
doi: 10.1037/h0054220

Duffy, E. (1957). The psychological significance of the concept of“ arousal” or“
activation.” Psychol. Rev. 64, 265–275. doi: 10.1037/h0048837

Elliott, M. H. (1934). The effect of hunger on variability of performance. Am. J.

Psychol. 46, 107–112. doi: 10.2307/1416238
Escobar, R. (2014). From relays to microcontrollers: the adoption of

technology in operant research. Rev. Mex. Anal. Conducta 40, 127–153.
doi: 10.5514/rmac.v40.i2.63673

Fallon, D., Thompson, D. M., and Schild, M. E. (1965). Concurrent food-
and water-reinforced responding under food, water, and food-plus-water
deprivation. Psychol. Rep. 16, 1305–1311. doi: 10.2466/pr0.1965.16.3c.1305

Ferster, C. B., and Skinner, B. F. (1957). Schedules of Reinforcement. New York, NY:
Appleton-Century-Crofts. doi: 10.1037/10627-000

Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Boston, MA:
Mifflin and Company.

Henton, W. W., and Iversen, I. H. (1978). Classical and Operant Conditioning:

A Response Pattern Analysis. New York, NY: Springer-Verlag New York.
doi: 10.1007/978-1-4612-6310-4

Hernández, V., León, A., and Quintero, V. (2021). Food and water deprivation
modulating function on activation and direction of behavior in Wistar rats.
PsyArXiv. doi: 10.31234/osf.io/234sh

Irwin, F. W. (1958). An analysis of the concepts of discrimination and preference.
Am. J. Psychol. 71, 152–163. doi: 10.2307/1419203

Iversen, I. H. (2017). An inexpensive method to study response variability in
acquisition and extinction of operant behavior. Rev. Mex. Anal. Conducta 43,
212–241. doi: 10.5514/rmac.v43.i2.62314

Kantor, J. R. (1958). Interbehavioral Psychology: A Sample of Scientific System

Construction. Bloomington, IN: Principia Press. doi: 10.1037/13165-000
Kantor, J. R. (1970). An analysis of the experimental analysis of behavior (TEAB).

J. Exp. Anal. Behav. 13:101. doi: 10.1901/jeab.1970.13-101
Kuo, Z. Y. (1976). The Dynamics of Behavior Development: An Epigenetic View.

New York, NY: Random House.
Lachter, G. D., Cole, B. K., and Schoenfeld, W. N. (1971). Response rate under

varying frequency of non-contingent reinforcement. J. Exp. Anal. Behav. 15,
233–236. doi: 10.1901/jeab.1971.15-233

Laraway, S., Snycerski, S., Michael, J., and Poling, A. (2003). Motivating operations
and terms to describe them: some further refinements. J. Appl. Behav. Anal. 36,
407–414. doi: 10.1901/jaba.2003.36-407

León, A., Hernandez, A. V., Huerta, U., Hernandez, C. A., Toledo, P., Avendaño,
M. L., et al. (2020a). Ecological location of a water source and spatial
dynamics of behavior under temporally scheduled water deliveries in a
modified open field system: an integrative approach. Front. Psychol. 11:3477.
doi: 10.3389/fpsyg.2020.577903

León, A., Tamayo Tamayo, J., Hernández Eslava, V., Toledo Hernández, P.,
Avendaño Garrido, M. L., Hernández Linares, C. A., et al. (2020b). Motus:
software for the behavioral analysis of displacement patterns. Mex. J. Behav.

Anal. 46, 222–242. doi: 10.5514/rmac.v46.i1.76960
Lewon, M., Spurlock, E. D., Peters, C. M., and Hayes, L. J. (2019). Interactions

between the effects of food and water motivating operations on food-and
water-reinforced responding in mice. J. Exp. Anal. Behav. 111, 493–507.
doi: 10.1002/jeab.522

Loveless, J., and Webb, B. (2021). Chaotic worms. Nat. Phys. 17, 170–171.
doi: 10.1038/s41567-020-01058-2

Maekawa, T., Ohara, K., Zhang, Y., Fukutomi, M., Matsumoto, S., Matsumura, K.,
et al. (2020). Deep learning-assisted comparative analysis of animal trajectories
with DeepHL. Nat. Commun. 11, 1–15. doi: 10.1038/s41467-020-19105-0

Maier, N., and Schneirla, T. (1964). Principles of Animal Psychology. New York, NY:
Dover Publications Inc.

Marshall, J. D., Aldarondo, D. E., Dunn, T. W., Wang, W. L., Berman,
G. J., and Ölveczky, B. P. (2020). Continuous whole-body 3D kinematic

recordings across the rodent behavioral repertoire. Neuron 109, 420–437.e8.
doi: 10.1016/j.neuron.2020.11.016

Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis,
M. W., et al. (2018). DeepLabCut: markerless pose estimation of user-
defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289.
doi: 10.1038/s41593-018-0209-y

Mathis, A., Pack, A. R., Maeda, R. S., and McDougle, S. D. (2019). Highlights from
the 29th annual meeting of the society for the neural control of movement. J.
Neurophysiol. 122, 1777–1783. doi: 10.1152/jn.00484.2019

Mathis, M. W., and Mathis, A. (2020). Deep learning tools for the measurement
of animal behavior in neuroscience. Curr. Opin. Neurobiol. 60, 1–11.
doi: 10.1016/j.conb.2019.10.008

Menaker, T., Zamansky, A., van der Linden, D., Kaplun, D., Sinitica, A.,
Karl, S., et al. (2020). “Towards a methodology for data-driven automatic
analysis of animal behavioral patterns,” in Proceedings of the Seventh

International Conference on Animal-Computer Interaction (New York, NY),
1–6. doi: 10.1145/3446002.3446126

Michael, J. (1982). Distinguishing between discriminative and
motivational functions of stimuli. J. Exp. Anal. Behav. 37, 149–155.
doi: 10.1901/jeab.1982.37-149

Michael, J. (1993). Establishing operations. Behav. Anal. 16, 191–206.
doi: 10.1007/BF03392623

Mowrer, O. H., and Jones, H. M. (1943). Extinction and behavior variability
as functions of effortfulness of task. J. Exp. Psychol. 33, 369–386.
doi: 10.1037/h0056182

Pear, J. (1985). Spatiotemporal patterns of behavior produced by variable
interval schedules of reinforcement. J. Exp. Anal. Behav. 44, 217–231.
doi: 10.1901/jeab.1985.44-217

Pérez-Escudero, A., Vicente-Page, J., Hinz, R., Arganda, S., and de Polavieja, G. G.
(2014). idTracker: tracking individuals in a group by automatic identification
of unmarked animals. Nat. Methods 11, 743–748. doi: 10.1038/nmeth.2994

Reberg, D., Mann, B., and Innis, N. (1977). Superstitious behavior
for food and water in the rat. Physiol. Behav. 19, 803–806.
doi: 10.1016/0031-9384(77)90318-3

Reberg, D., Mann, B., Innis, N., and Eizenga, C. (1978). ’Superstitious’ behaviour
resulting from periodic response-independent presentations of food or water.
Anim. Behav. 26, 507–519. doi: 10.1016/0003-3472(78)90067-2

Reynolds, G. S. (1975). A Primer of Operant Conditioning. Glenview, IL,
Scott Foresman.

Sanabria, F., Thrailkill, E. A., and Killeen, P. R. (2009). Timing with opportunity
cost: concurrent schedules of reinforcement improve peak timing. Learn.
Behav. 37, 217–229. doi: 10.3758/LB.37.3.217

Schneirla, T. C. (1959). “An evolutionary and developmental theory of biphasic
processes underlying approach and withdrawal,” in Nebraska Symposium on

Motivation, ed M. R. Jones (Lincoln: University of Nebraska Press), 1–42.
Schoenfeld, W. N., and Cole, B. K. (1972). Stimulus Schedules: The T-[tau

(romanized Form)] Systems. New York, NY: HarperCollins Publishers.
Silva, K. M., and Timberlake, W. (1997). A behavior systems view of conditioned

states during long and short CS–US intervals. Learn. Motiv. 28, 465–490.
doi: 10.1006/lmot.1997.0986

Skinner, B. F. (1938). The Behavior of Organisms: An Experimental Analysis. New
York, NY: Appleton-Century-Crofts.

Skinner, B. F. (1966). What is the experimental analysis of behavior? J. Exp. Anal.
Behav. 9, 213–218. doi: 10.1901/jeab.1966.9-213

Skinner,B. F. (1948). Superstition in the pigeon. J. Exp. Psychol. 38, 168–172.
doi: 10.1037/h0055873

Spruijt, B. M., Peters, S. M., de Heer, R. C., Pothuizen, H. H., and van
der Harst, J. E. (2014). Reproducibility and relevance of future behavioral
sciences should benefit from a cross fertilization of past recommendations
and today’s technology: “back to the future”. J. Neurosci. Methods 234, 2–12.
doi: 10.1016/j.jneumeth.2014.03.001

Timberlake, W. (1994). Behavior systems, associationism, and pavlovian
conditioning. Psychon. Bull. Rev. 1, 405–420. doi: 10.3758/BF032
10945

Torabi, R., Jenkins, S., Harker, A., Whishaw, I. Q., Gibb, R., and Luczak, A.
(2020). Application of deep neural network reveals novel effects of maternal
pre-conception exposure to nicotine on rat pup behavior. bioRxiv [Preprint].
doi: 10.1101/2020.07.16.206961

Frontiers in Behavioral Neuroscience | www.frontiersin.org 18 October 2021 | Volume 15 | Article 681771

https://doi.org/10.1016/j.tree.2014.05.004
https://doi.org/10.1037/0097-7403.31.1.31
https://doi.org/10.1037/h0054220
https://doi.org/10.1037/h0048837
https://doi.org/10.2307/1416238
https://doi.org/10.5514/rmac.v40.i2.63673
https://doi.org/10.2466/pr0.1965.16.3c.1305
https://doi.org/10.1037/10627-000
https://doi.org/10.1007/978-1-4612-6310-4
https://doi.org/10.31234/osf.io/234sh
https://doi.org/10.2307/1419203
https://doi.org/10.5514/rmac.v43.i2.62314
https://doi.org/10.1037/13165-000
https://doi.org/10.1901/jeab.1970.13-101
https://doi.org/10.1901/jeab.1971.15-233
https://doi.org/10.1901/jaba.2003.36-407
https://doi.org/10.3389/fpsyg.2020.577903
https://doi.org/10.5514/rmac.v46.i1.76960
https://doi.org/10.1002/jeab.522
https://doi.org/10.1038/s41567-020-01058-2
https://doi.org/10.1038/s41467-020-19105-0
https://doi.org/10.1016/j.neuron.2020.11.016
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1152/jn.00484.2019
https://doi.org/10.1016/j.conb.2019.10.008
https://doi.org/10.1145/3446002.3446126
https://doi.org/10.1901/jeab.1982.37-149
https://doi.org/10.1007/BF03392623
https://doi.org/10.1037/h0056182
https://doi.org/10.1901/jeab.1985.44-217
https://doi.org/10.1038/nmeth.2994
https://doi.org/10.1016/0031-9384(77)90318-3
https://doi.org/10.1016/0003-3472(78)90067-2
https://doi.org/10.3758/LB.37.3.217
https://doi.org/10.1006/lmot.1997.0986
https://doi.org/10.1901/jeab.1966.9-213
https://doi.org/10.1037/h0055873
https://doi.org/10.1016/j.jneumeth.2014.03.001
https://doi.org/10.3758/BF03210945
https://doi.org/10.1101/2020.07.16.206961
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


León et al. Machine Learning Assisted Behavior Analysis

Turgeon, S., and Lanovaz, M. J. (2020). Tutorial: applying machine
learning in behavioral research. Perspect. Behav. Sci. 43, 697–723.
doi: 10.1007/s40614-020-00270-y

Turvey, M. T. (2018). Lectures on Perception: An Ecological Perspective. New York,
NY: Routledge. doi: 10.4324/9780429443879

Wiltschko, A. B., Johnson,M. J., Iurilli, G., Peterson, R. E., Katon, J. M., Pashkovski,
S. L., et al. (2015).Mapping sub-second structure inmouse behavior.Neuron 88,
1121–1135. doi: 10.1016/j.neuron.2015.11.031

Zuriff, G. E. (1970). A comparison of variable-ratio and variable-
interval schedules of reinforcement. J. Exp. Anal. Behav. 13, 369–374.
doi: 10.1901/jeab.1970.13-369

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 León, Hernandez, Lopez, Guzman, Quintero, Toledo, Avendaño-

Garrido, Hernandez-Linares and Escamilla. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 19 October 2021 | Volume 15 | Article 681771

https://doi.org/10.1007/s40614-020-00270-y
https://doi.org/10.4324/9780429443879
https://doi.org/10.1016/j.neuron.2015.11.031
https://doi.org/10.1901/jeab.1970.13-369
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles

	Beyond Single Discrete Responses: An Integrative and Multidimensional Analysis of Behavioral Dynamics Assisted by Machine Learning
	The Spatial Dimension: A Relevant Feature Neglected by Standard Behavioral Science Paradigms
	Computational Animal Behavior Analysis and Integration of the Spatial Dimension To The Experimental Analysis Of Behavior (EAB)
	How the Integrative Approach of CEAB Could Extend the Scope of Behavioral Science and EAB
	Recording
	Measuring and Data Analysis
	Data Representation

	A First Approach of the CEAB

	Example 1
	Water-Seeking Behavior: Behavioral Dynamics Under Fixed and Variable Temporal Schedules
	Method
	Subjects
	Apparatus
	Procedure

	Data Analysis
	Analysis Between Subjects Within-Session
	Analysis Between Subjects Throughout the Experiment
	Analysis Between Conditions by Feature for All Sessions
	Multidimensional and Integrative Analysis Based on Machine Learning

	Results

	Example 2
	Motivational Operations: Behavioral Dynamics Under Different Deprivations in Concurrent Schedules
	Method
	Subjects
	Apparatus
	Procedure
	Experimental Phase


	Data Analysis

	Results
	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Supplementary Material
	References


