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Angiopoietin-like protein 4 (ANGPTL4) is a multifunctional cytokine regulating vascular per-
meability, angiogenesis, and inflammation. Dysregulations in these responses contribute to
the pathogenesis of ischemic retinopathies such as diabetic retinopathy (DR), age-related
macular degeneration (AMD), retinal vein occlusion, and sickle cell retinopathy (SCR). How-
ever, the role of ANGPTL4 in these diseases remains controversial. Here, we summarize
the functional mechanisms of ANGPTL4 in several diseases. We highlight original studies
that provide detailed data about the mechanisms of action for ANGPTL4, its applications
as a diagnostic or prognostic biomarker, and its use as a potential therapeutic target. Taken
together, the discussions in this review will help us gain a better understanding of the molec-
ular mechanisms by which ANGPTL4 functions in eye disease and will provide directions
for future research.

Introduction
Angiopoietin-like protein 4 (ANGPTL4) is a secreted protein and a member of a family of
angiopoietin-like proteins (ANGPTL1–8). It was initially discovered in 2000 by three independent re-
search groups as a regulator of lipid metabolism-induced by peroxisome proliferator activated receptor
(PPAR) γ (PPARγ) under fasting conditions, regulating namely fasting-induced adipose factor (FIAF),
hepatic fibrinogen/angiopoietin related protein (HFARP), and peroxisome proliferator-receptor-γ
angiopoietin-related (PGAR) [1-3]. Recent studies have shown that ANGPTL4 regulates tumorigenesis,
angiogenesis, vascular permeability, glucose homeostasis, lipid metabolism, cell differentiation, energy
homeostasis, wound healing, inflammation, and redox regulation [4]. The purpose of this review is to de-
scribe the regulatory effects of ANGPTL4-associated pathways and provide information for the potential
development of this protein as a clinical treatment target in eye disease therapy.

ANGPTL4: structure and expression patterns
ANGPTL4 is a part of a superfamily of angiopoietins that share a similar structure and carry out related
functions that contain N-terminal coiled-coil domain (CCD) connected to a C-terminal fibrinogen-like
domain (FLD) via a cleavable linker [5]. ANGPTL4 shares high sequence homology with ANGPTL3
and ANGPTL8 [6]. The human ANGPTL4 gene is well preserved amongst various species [7]. The hu-
man ANGPTL4 gene is located on chromosome 19p13.3 and encodes a 45–65 kDa glycoprotein. The
molecular mass discrepancy reported amongst several studies is probably due to the different glycosy-
lation, oligomerization, and cleavage forms which may be a result of the specific cell line/type used in
the study. This protein has some N- and O-glycosylation sites and was confirmed to be N-glycosylated
at amino acid position 177 [8]. Ruddock and co-workers [9] provided the first evidence of the crys-
tal structures of the FLDs of ANGPTL4 protein. The FLDs of ANGPTL4 form compact structures
and is split into three subdomains A, B, and P. The N-terminal domain (subdomain A) is the most
conserved amongst the FLD containing homologs and superimposes well in ANGPTL4, subdomain B
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is the largest subdomain amongst the three subdomains, the subdomain P varies the most amongst FLD containing
proteins which functions as a site for ligand binding. There are obviously differences in the structures of subdomain
P between ANGPTL3 and ANGPTL4 indicating that while loss-of-function mutations, ANGPTL3 and ANGPTL4
act by different pathways [9].

Previously, ANGPTL4 was considered to be an orphan ligand because it does not bind to the angiopoietin receptor
tyrosine kinase Tie2 and Tie1; information about its likely binding partner was lacking [10]; while till now emerging
evidence has indicated that ANGPTL4 has many binding partners, such as integrin β1, integrin β5 [11] and integrin
αvβ3 [12], lipoprotein lipase (LPL) [13], syndecans [14], cadherin-5 [15] and cadherin-11 [16]. ANGPTL4 assem-
bles into dimers and tetramers in cells, and two cysteine residues (Cys76 and Cys80) in the N-terminal domain are
crucial to the stability of intermolecular disulphide bonds in ANGPTL4 oligomers [17]. The full-length ANGPTL4
protein is proteolytically processed in the linker region (a major cleavage site between Lys168 and Lev169, a minor
cleavage site between Lys170 and Met171 [18]) by proprotein convertases. The cleavage of ANGPTL4 is tissue de-
pendent. Various tissues produce ANGPTL4 which is secreted into the bloodstream in glycosylated, oligomerized,
native, and cleaved isoforms. ANGPTL4 is expressed in the plasma at 60 kDa in various forms. Adipose tissue secretes
full-length ANGPTL4, while the liver secretes nANGPTL4 isoforms [19]. Immunoblot analyses demonstrated that
ARPE-19 cells secrete an approximately 55-kDa full-length ANGPTL4 [20]. ANGPTL4 contributes to proteolytic
processing and oligomerization. Different studies have shown that the nANGPTL4 domain is used to modulate lipid
metabolism, whereas the cANGPTL4 domain may be a modulator of tumorigenesis [21].

Recent research has demonstrated that physiological conditions, such as fasting conditions, hypoxia, pregnancy
and lactation, and adipocyte differentiation result in ANGPTL4 up-regulation [22-24]. Furthermore, chronic caloric
restriction, short-term cooling, very low-calorie diet (VLCD), high-fat, high-energy diet (HFED), and free fatty acids
(also called NEFA) have been shown to increase plasma concentrations of ANGPTL4 [25-27]. Transcription factors
such as forkhead box O1 (FOXO1), hypoxia inducible factor-1α (HIF-1α), PPARs, single-minded homolog 1 (SIM1),
aryl-hydrocarbon receptor nuclear translocator (ARNT), pleiomorphic adenoma gene-like 1 (PLAG1), endothelial
PAS domain protein 1 (EPAS1), nuclear factor-κB (NF-κB), muscle RING- finger protein-1 (MURF1), c-Myc and
glucocorticoid receptor gene (NR3C1) could enhance ANGPTL4 expression through different mechanisms [28-36].

Using microarray and ChIP-seq analysis, Inoue et al. [37] first reported that two transcription factors, HIF1
and PPAR β/δ, utilize synergistic transcriptional regulation via a conformational change to their common target
gene ANGPTL4. Using genome-wide transcriptional profiling technology, Kaddatz et al. [38] reported that hu-
man ANGPTL4 expression might be synergistically induced by the functional interactions of transforming growth
factor-β (TGF-β) and PPARβ/δ signaling. Agonists such as PPAR agonists, protein kinase C (PKC) agonists, retinoic
acid receptors (RXR) agonists, HIF-1α agonists, glucocorticoid receptor agonists, and angiotensin receptor blockers,
drugs such as paeoniflorin, glucocorticoids, chiglitazar, fibrates, thiazolidinediones, PMA, 1,2-dioctanoyl-sn-glycerol
(DOG), bryostatin, L-mimosine (L-MIM), advanced glycation end products (AGEs) and dexamethasone [32,39-43],
inhibitors of known receptors (such as angiotensin blockers, resistin, leptin, and insulin [44]), and inflammation
molecules (such as lipase, tumor necrosis factor-α, interleukin-1β, and interferon-γ [45,46]) were shown to regu-
late the expression of ANGPTL4. HIF-1α induction of ANGPTL4 under hypoxic conditions was first described in
cardiomyocytes but also occurs in other cell types including adipocytes, endothelial cells, chondrocytes, monocytes,
musculoskeletal cells, osteoclasts, and osteoblasts [47]. The promoter region of ANGPTL4 had high levels of promoter
methylation, demethylating agents and a histone deacetylase inhibitor that could restore ANGPTL4 expression. Re-
cently, genome-wide analyses of the mammalian transcriptome have revealed an important class of transcripts –
non-coding RNAs. Sun and co-workers [48] demonstrated that the long non-coding RNA PVT1 inhibits ANGPTL4
transcription through binding with the enhancer of zeste homolog 2 (EZH2) in trophoblast cell.

ANGPTL4 is abundant in adipose tissue and the vascular system, but also in other organs, such as the liver, intestine,
brain, thyroid, eye, kidney, heart, skeletal muscles, spleen, pituitary gland, hypothalamus, and placenta [2,6,22,49-55].

Functions of ANGPTL4
ANGPTL4 is a multifunctional secreted protein, involved in many physiological processes with a variety of effects
upon human health and disease. Here, we review the aberrant expression of ANGPTL4 and summarize the specific
pathogenic functions and possible mechanism by which these functions occur (Figure 1).
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Figure 1. ANGPTL4 function associated with the pathogenesis of metabolism, angiogenesis, and inflammation

Abbreviation: SP, signal peptide.

Regulation of lipid and glucose metabolism
ANGPTL4 regulates circulating triglyceride-rich lipoproteins, very low-density lipoproteins (VLDL), and chylomi-
crons by irreversibly inhibiting LPL and ANGPTL4 is present in high-density lipoprotein (HDL). Studies have re-
vealed that ANGPTL4 is induced early in fasting to transfer fatty acids and triglycerides from adipose tissue [56]. In
type 2 diabetes, circulating ANGPTL4 is increased to protect HDLs from hydrolysis [57]. ANGPTL4 inhibits LPL
activity and FLD of ANGPTL4 stimulates the lipolysis of triacylglycerol stored by adipocytes in white adipose tissue
(WAT) [58]. In addition, the intestinal microbiota represses ANGPTL4 expression in fat storage [50]. Recent research
also demonstrated that ANGPTL4 promotes bile acid (BA) absorption via the gut microbiota mechanism [59]. Later,
Larsen and co-workers [60] pointed out that ANGPTL4 can not be effectively regulated by modifying the gut mi-
crobiota composition. Furthermore, E40K nucleotide polymorphisms of the ANGPTL4 gene decreased oligomer
formation, which is correlated with decreased LPL inhibition activity and significantly lower triglyceride levels [17].

ANGPTL4 also participates in the flux of lipids from the WAT to the liver [61]. A positive correlation between
increased ANGPTL4 and non-esterified fatty acids levels in the plasma of healthy subjects after different dietary
regimens has been shown [26]. Previous study demonstrated that patients with type 2 diabetes have lower plasma
ANGPTL4 concentrations than the healthy group. Studies of transgenic mice showed that ANGPTL4 decreases blood
glucose and improves glucose tolerance, at the same time, it induces hypertriglyceridemia and hepatic steatosis [19].
General contributions of ANGPTL4 to dyslipidemia and coronary artery disease (CAD) has also been demonstrated
[62-65].

Muendlein et al. [65] demonstrated that plasma ANGPTL4 was higher in patients with metabolic syndrome, and
the number of single nucleotide polymorphisms in ANGPTL4 could predict future cardiovascular events. Further
study showed that carriers of inactivating genetic variants of ANGPTL4 had lower triglyceride [66] levels and CAD
risk, suggesting that ANGPTL4 might be a possible therapeutic target for the treatment of ischemic heart disease
[67]. Jabs et al. [68] demonstrated that endothelial Notch signaling modulates ANGPTL4 expression which damages
fatty acid transport and leads to vascular remodeling of the adult heart. A recent study showed that ANGPTL4 partici-
pated in hypothalamus regulation of energy metabolism attributed to the suppression of adenosine 5’-monophosphate
(AMP)- activated protein kinase (AMPK) activities [55]. Clement et al. [69] demonstrated that through negative feed-
back loops, ANGPTL4 is linked to proteinuria and hypertriglyceridemia in nephrotic syndrome and ANGPTL4 also
plays an important role in the barrier function of glomerular basement membrane (GBM).
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Angiogenesis, tumorigenesis, and vascular permeability
Current studies demonstrate that the role of ANGPTL4 in angiogenesis is controversial as angiogenic effects and
anti-angiogenic effects have both been reported [70,71]. Recently, mounting evidence has suggested that ANGPTL4
seems to be a proangiogenic factor. Hermann et al. [72] reported that ANGPTL4 was highly expressed in the early
stage of collagen-induced arthritis and recombinant mouse ANGPTL4 played a role in angiogenesis in human um-
bilical vein endothelial cells (HUVECs). Chong et al. [70] demonstrated that recombinant cANGPTL4 accelerated
wound re-epithelialization in diabetic mice by stimulating wound angiogenesis. They reported that ANGPTL4 regu-
lated angiogenesis via keratinocyte-to-endothelial cell communication. ANGPTL4-induced nitric oxide production
through integrin/JAK/STAT3-mediated up-regulation of inducible nitric oxide synthase expression in wound ep-
ithelia [70]. Sodhi and co-workers [73] demonstrated that recombinant human ANGPTL4 stimulates immortalized
human dermal microvascular endothelial cells (HMEC-1) tubule formation in vitro in a dose-dependent manner and
stimulates corneal neovascularization in vivo. On the other hand, ANGPTL4 seems to be an anti-angiogenic factor.
Cazes et al. [71] provided the first evidence that ANGPTL4 reduces HUVECs migration and decreases tube formation
and sprouting of HMEC-1 cells. Ushijima and co-workers [74] demonstrated that ANGPTL4 inhibits vascular tube
formation and proliferation of HUVECs due to inhibition of the extacellular signal-regulated kinase (ERK) signaling
pathway. Yang et al. [18] demonstrated that the C-terminal end of ANGPTL4 alone is essential for the inhibition
of angiogenesis through the Raf/MEK/ERK1/2 MAPkinase pathway in HUVECs. Furthermore, N-glycosylation of
C-ANGPTL4 contributes to its anti-angiogenic activities. Chomel et al. [75] demonstrated that the N-terminal do-
main of ANGPTL4 binds to the extracellular matrix (ECM) in endothelial cells and plays a role in the inhibition of hy-
poxic HUVECs adhesion, migration, and sprouting. Furthermore, the glycosylated C-terminal FLD of ANGPTL4 was
shown to play anti-angiogenic role, both the N-terminal and C-terminal of ANGPTL4 did not display anti-angiogenic
properties [75]. Until now, we cannot explain the discrepancy between these evidence, it is highly possible that the
function of ANGPTL4 in modulating angiogenesis differs in different tissue contexts and also involves in its binding
partner, release, and proteolysis. There is a large amount of research showing that various factors induce ANGPTL4
function in angiogenesis. Padua et al. [76] demonstrated that TGF-β induces ANGPTL4 expression via the Smad
signaling pathway which plays a role in tumor metastasis. Furthermore, other factors such as placental growth factor
(PlGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and platelet-derived growth
factor (PDGF) were shown to induce ANGPTL4 function in angiogenesis [77-79].

Numerous published studies have signified that ANGPTL4 has an essential role in cancer onset, progression, metas-
tasis, and anoikis resistance. High levels of ANGPTL4 are associated with a poor prognosis in solid tumors, such as
prostate cancer, melanoma, hepatocellular carcinoma, bladder cancer, scirrhous gastric cancer, giant cell tumor, oral
tongue cancer, and tongue squamous cell carcinoma [80-88]. Tan et al. [89] found that T266M cANGPTL4 bound
to integrin α5β1 contributed to the weaker activation of downstream signaling molecules, leading to reduced pro-
liferation, anoikis resistance, migratory capability, and impaired adenylate energy charge. In urothelial carcinoma,
ANGPTL4 exerted both oncogenic and tumor-suppressive roles, furthermore, circulating ANGPTL4 level was a
biomarker of tumor progression. In breast cancer, knockdown of ANGPTL4 had no effect on tumor metastasis in
local lymph nodes and bone, but could inhibit metastasis in the lung [76]. ANGPTL4 may be used to indicate prog-
nosis in hepatocellular carcinoma patients. Li et al. [90] demonstrated that ANGPTL4 promotes transendothelial
migration and metastasis of hepatocellular carcinoma by stimulating vascular cell adhesion molecule-1 (VCAM-1)
and activation of the VCAM-1/integrin β1 axis. Specifically, hypoxia can induce expression of the prostaglandin E2
(PGE2) receptor EP1, in colorectal cancer. PGE2 binds to EP1 and activates the EP1 signaling pathway, which in
turn promotes tumor expression of ANGPTL4 and cANGPTL4 via activation on transcriptional activator (STAT) 1
(STAT1). This signaling pathway in turn promotes tumor growth and proliferation in colorectal cancer. The present
study further showed that cANGPTL4 mainly regulates tumor cell proliferation, and induces STAT1 production de-
pending on sarcoma gene (Src) /MAPK signaling pathway activation [91]. These conclusions are consistent with the
findings of Zhu et al. [92] who suggested that secreted cANGPTL4 binds to integrin β1/β5 and activates focal adhe-
sion kinase (FAK) and ras-related C3 botulinum toxin substrate (Rac1), and then activates Src through PI3K/PKRα
and ERK signaling, ultimately promoting tumor growth. Germain and co-workers [93] reported that use of in vivo
DNA electrotransfer overexpressing ANGPTL4, 3LL cells expressed less lung metastasize, suggesting that ANGPTL4
exert a role in preventing metastasis. Kirsch et al. [94] observed that ANGPTL4 binds to syndecans to forms a ternary
complex with Wnt co-receptor lipoprotein receptor-related protein 6 (LRP6) which has a role as a Wnt signaling antag-
onist. Yao and co-workers [95] demonstrated that ANGPTL4 up-regulates bone morphogenetic protein 7 (BMP7),
therefore, inhibiting apoptosis of colorectal cancer cells and promoting metastasis. Montaner and co-workers [96]
demonstrated that in Kaposi’s sarcoma, viral G-protein-coupled receptor (vGPCR) might promote angiogenesis and
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vascular permeability by up-regulation of ANGPTL4. Therefore, the expression and mechanism of ANGPTL4 may
be related to tumor type. Tarhoni et al. [97] first developed custom immunobead assays for several mechanistically
important targets and evaluated these against sera from a patient cohort with non-small cell lung cancer (NSCLC).
They successfully developed and analytically validated a triplex immunobead assay for the quantitation of midkine,
syndecan-1, and ANGPTL4 from patient sera which will be an important tool for future studies delineating the role
of angiogenesis in lung cancer progression [97].

The endothelial barrier sustains vascular and tissue homeostasis and contributes to many physiological processes.
Disruption in barrier function can stimulate tissue damage during disease progression. Although the molecular mech-
anisms related to vascular leakage have been studied for years, recent evidence has identified new therapeutic targets
that have begun to show preclinical promise. Despite plenty of evidence that has implicated the role of ANGPTL4 in
cancer metastasis, the role of ANGPTL4 in vascular integrity remains unclear. Few studies have indicated that abnor-
malities in ANGPTL4 expression are extending to play key roles in modulating vascular integrity. However, its precise
role in vascular biology remains debatable. Padua et al. [76] demonstrated that human recombinant ANGPTL4 and
cells overexpressing ANGPTL4 cause acute disruption of HUVEC endothelial cell–cell junctions. Huang et al. [15]
reported that recombinant cANGPTL4 associated with the adhesive domains of VE-cadherin and claudin-5, con-
tributing to their declustering and internalization, translocation ofβ-catenin to the nucleus, and a leaky endothelium.
Besides cANGPTL4 induces endothelial disruption by binding and activating integrinα5β1-mediated Rac1/PAK sig-
naling [15]. While, Germain and co-workers [98] proposed ANGPTL4 as a therapeutic approach aimed at decreasing
cerebrovascular permeability during stroke. They demonstrated that in a mouse model of ischemic stroke, recom-
binant human ANGPTL4 decreased VEGFR2–VE-cadherin complex disruption via Src signaling, which increased
endothelial cell barrier integrity in the cerebral microcirculation [98].

Inflammation
Compelling evidence has indicated that ANGPTL4 is involved in many inflammation-associated diseases. ANGPTL4
was induced by interleukin (IL)-1β (IL-1β) treatment via the JNK-MAPK signaling pathway in murine MC3T3-E1
osteoblastic cells [99]. Increased expression of ANGPTL4 in osteoarthritis has been reported, furthermore, matrix
metallopeptidase (MMP) expression is induced by ANGPTL4 and played a role in cartilage matrix remodeling. These
results suggest that in osteoarthritis ANGPTL4 is a potential factor in pathogenic cartilage destruction [100,101]. Guo
et al. [102] demonstrated that ANGPTL4 siRNA promoted sirtuin 1 (SIRT1) expression and inhibited the nuclear
factor κB (NF-κB) p65 pathway, suggesting that ANGPTL4 is an essential gene for the treatment of lipopolysaccha-
ride (LPS)-induced acute lung injury [102]. Schumacher et al. [103] identified ANGPTL4 as an up-regulated protein
during inflammatory conditions in the bone marrow of mice and determined recombinant ANGPTL4 plays a vital
role during early and late stages of hematopoieticon, specifically megakaryopoietic, reconstitution following stem cell
transplantation [103]. Higher ANGPTL4 levels were reported after exposure to interleukins, tumor necrosis factor-α,
interferon-γ, and prostaglandins in 3T3-L1 adipocytes [45,46]. Lichtenstein et al. [104] reported that in peritoneal
macrophages incubated with chyle, ANGPTL4 reduced macrophage foam cell formation, inflammatory factors ex-
pression, and chyle-induced activation of the endoplasmic reticulum (ER) stress pathway, contributing to protection
against the pro- inflammatory effects of dietary saturated fat. This indicates that ANGPTL4 is a crucial regulator of
macrophage functions. Later, Aryal et al. [105] addressed the direct role of macrophage ANGPTL4 during athero-
genesis. They demonstrated that ANGPTL4 reduces the progression of atherosclerosis by regulating the net blood
monocyte content in lipid-rich conditions, suppressing lipid overloading in macrophages and preventing generation
of foam cells and inflammation [105]. Phua et al. [106] showed that ANGPTL4 regulated the expression of triste-
traprolin (TTP), an mRNA destabilizing agent, via the activation of cAMP-response element binding protein (CREB)
and NF-κB in human colonic epithelial cells, indicating that ANGPTL4 may be targetted to influence cell infiltra-
tion via TTP-mediated chemokine mRNA stability [106]. These results suggest that ANGPTL4 may exert both anti-
and pro-inflammatory effects, the mechanisms by which ANGPTL4 modulates inflammation requires further explo-
ration.

ANGPTL4 as a biomarker in various ocular diseases
The target of current treatments for neovascular retinopathy is direct inhibition of VEGF. Although most treatments
achieve sufficient results, there are many patients who are insensitive to anti-VEGF therapy. The ensuing problems
associated with anti-VEGF therapy also deserve attention because VEGF produced by the retinal pigment epithelium
is essential to maintaining the health and homeostasis of the choriocapillaris, vascular bed, and photoreceptor cell
layer [107]. This growth factor also exerts a role as a neurotrophic factor in the neurosensory retina [108]. Several
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Table 1 ANGPTL4 dysregulation involved in various eye diseases

Disease Dysregulation Tissue and cell type Pathogenic functions References

Diabetic eye disease Up-regulated MIO-M1 cells/Müller cells, HMEC-1 cells,
OIR mice, aqueous and vitreous from DM
patients, retinas of DM rats

Promotes EC proliferation, migration, and
tube formation in vitro

[52,115-117]

ARPE-19, human retinal endothelial cells Increases retinal microvascular permeability
in vivo

[20]

Branch retinal vein
occlusion

Up-regulated Aqueous from BRVO patients Biomarker for the severity of retinal
ischemia and vascular hyperpermeability

[120]

Branch retinal artery
occlusion

Up-regulated Vitreous from BRAO patients Increases retinal neovascularization in vivo [121]

Age-related macular
degeneration

Up-regulated Plasma and aqueous from AMD patients Potential diagnostic and therapeutic
biomarker in AMD

[123,124]

Sickle cell retinopathy Up-regulated Retina, aqueous and vitreous of PSR
patients

Contribute to the development of
pathological angiogenesis in PSR

[126]

Apterygium Up-regulated Surgically excised pterygia Contribute to the angiogenic phenotype of
pterygia

[128]

Uveal melanoma Up-regulated UM cell lines, MCTS Participate in the promotion of
angiogenesis in UM

[130,131]

Abbreviations: AMD, age-related macular degeneration; BRAO, branch retinal artery occlusion; BRVO, branch retinal vein occlusion; DM,
diabetes mellitus; MCTS, multicellular tumor spheroid; PSR, proliferative sickle cell retinopathy; UM, uveal melanoma.

compounds that target VEGF have been tested and demonstrate unparalleled effects in randomized clinical trials pre-
venting vision loss, retinal atrophy, and glaucoma in the majority of patients with neovascularization [63,109,110].
There are other factors that contribute to neovascular (NV) formation, growth, and persistence, including mem-
bers of the PDGF family, epidermal growth factor family, angiopoietin-like family, and so on [111]. Here, we review
the aberrant expression of ANGPTL4 in eye diseases and summarize specific its pathogenic functions and possible
mechanisms (Table 1).

Diabetic retinopathy
Diabetes mellitus (DM), a condition where a patient has fasting plasma glucose values ≥ 7.0 mmol/l (126 mg/dl), is in-
creasingly common throughout the world. DM is now recognized as a common pathophysiology involving metabolic
disorders, oxidative impairment, and vicious cycles that aggravate organ dysfunction that drives the diabetic state
throughout its disease course and clinical presentations. Diabetes poses an increased risk for cardiovascular disease,
kidney failure, and blindness [112]. Diabetic retinopathy (DR) is a common cause of vision impairment, affecting
93 million people globally. Vision loss in DR prominently contributes to diabetic macular edema (DME) but may
also be a consequence of proliferative DR (PDR), such as vitreous hemorrhage from neovascularization, proliferating
membrane formation, and tractional retinal detachment, or neovascular glaucoma [113]. Development of drugs that
target VEGF such as bevacizumab, ranibizumab and aflibercept have changed the treatment management involved
with DME and have had a significant role in the management of DR. These anti-VEGF drugs have been reported to
be safe and effective in multiple clinical trials. Despite their efficacy, there are a proportion of patients who have an
incomplete response to therapy [73,114].

Xin et al. [52] first confirmed ANGPTL4 as a possible vasoactive cytokine that may contribute to the promotion
of vascular permeability and macular edema (ME), in patients with ischemic retinal disease. They demonstrated that
hypoxia induces ANGPTL4 in retinal Müller glial cells, furthermore, in the retina of ischemic retinal disease models
and in eyes of patients with diabetic eye disease, the expression of ANGPTL4 is considerably high [52]. ANGPTL4
neutralizing antibody could inhibit the aqueous vasoactive effect in patients with PDR, in samples from patients with
either low VEGF levels or patients who had received anti-VEGF therapy, suggesting that targetting both ANGPTL4
and VEGF may be essential for more effective management of DME and PDR [73]. Kwon et al. [115] observed that
patients with DME secondary to DR had significantly higher aqueous ANGPTL4 levels than the control cataract
group and aqueous ANGPTL4 levels related positively with the severity of ME.

Lu et al. [116] observed that ANGPTL4 levels were obviously increased and the ANGPTL4 expression was related
to the VEGF expression in the vitreous and serum of patients with PDR. ANGPTL4 levels were also markedly cor-
related with serum lipids in patients with PDR which suggest that ANGPTL4 may be used as a potential therapeutic
target for the treatment of DR [116]. In a follow-up experiment, they demonstrated that ANGPTL4 regulates diabetic
retinal inflammation and angiogenesis by, at least partly, activating profilin-1 both in human retinal microvascular
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endothelial cells (HRMEC) and in diabetic rats. They also showed that the activation of the ANGPTL4 was depen-
dent on the overexpression of its upstream mediating factor, HIF-1α, under high-glucose conditions both in vivo
and in vitro. This finding calls for future studies to identify a pharmacological inhibitor of ANGPTL4, alone or in
combination with an inhibitor of the profilin-1 signaling pathway, as a therapeutic target and diagnostic screening
biomarker for PDR and other vitreous-retinal inflammatory diseases [117].

It is important to note that there is contradiction between the relationship of the VEGF and ANGPTL4. Sodhi
and co-workers [118] reported that aqueous ANGPTL4 levels were increased in patients who had been treated with
anti-VEGF and in which VEGF levels were markedly reduced, implicating that ANGPTL4 expression was inde-
pendent of VEGF level. However, Lu et al. [116] illustrated that the ANGPTL4 expression was directly correlated
with the VEGF expression in the vitreous and serum of patients with PDR. Later, Lu et al. [117] assessed the role of
ANGPTL4 in the changes in VEGF expression levels under high glucose conditions in HRMECs, with the knock-
down of ANGPTL4, VEGF mRNA and secretion declined indicating the upstream role for ANGPTL4 with respect
to VEGF.

Branch retinal vein occlusion
Branch retinal vein occlusion (BRVO) is a relatively frequent retinal vascular disorder of elderly people, the resulting
ME is the most common cause of visual loss [119]. Kim et al. [120] found that patients with ME due to BRVO had
markedly higher aqueous ANGPTL4 levels than the control patient group with cataracts. Furthermore, ANGPTL4
levels in patients with BRVO correlated positively with both central subfield macular thickness (CSMT) and total
macular volume (TMV) which are indexes of macula edema, and are increased by vascular hyper-permeability [120].
These results suggest that ANGPTL4 may be a possible biomarker for the severity of retinal ischemia in patients with
ME due to BRVO.

Branch retinal artery occlusion
Sodhi co-workers [121] discovered that an ischemic branch retinal artery occlusion (BRAO) demonstrated progres-
sion of retinal NV despite scatter laser treatment and addition of anti-VEGF therapy resulted in transient regression
of NV. Conversely, levels of ANGPTL4 were markedly increased in this patient compared with the control, which
supports future studies examining the effect of ANGPTL4 in the development of retinal NV in patients with ischemic
BRAOs [121].

Age-related macular degeneration
Age-related macular degeneration (AMD) is one of the most prevalent causes of irreversible vision impairment
amongst the elderly people in the Western world. The severity and socio-economic effect of AMD combined with
its increasing occurrence requires immediate attention [122]. Ioanna et al. [123] found elevated plasma levels of
ANGPTL4 in dry AMD patients suggesting new therapeutic target for dry AMD, a finding consistent with the conclu-
sions of the study of Park and co-workers [124] which investigated the relationship between aqueous ANGPTL4 levels
and clinical features in neovascular AMD, and found that ANGPTL4 level was related to the lesion area and the fre-
quency of anti-VEGF treatment. Both studies suggested that ANGPTL4 may be a possible diagnostic and therapeutic
biomarker in AMD.

Sickle cell retinopathy
Sickle cell retinopathy (SCR) is the most common ophthalmologic complication of sickle cell disease (SCD), a
hemoglobin disease affecting adults and children. According to existing studies, the ocular manifestation of SCD is
vaso-occlusive and affects every vascular bed. Conventional treatment for SCR includes chemotherapy, intravenous
phlebotomy to reduce total HbS red cells. In serious cases, laser-mediated photocoagulation and surgery are required
[125]. Jee et al. [126] observed increasing expression of ANGPTL4 in autopsied eyes, aqueous and vitreous samples
of proliferative SCR (PSR) patients compared with controls. This suggests that ANGPTL4 contributes to the devel-
opment of retinal angiogenesis in sickle cell patients and could therefore be a potential avenue for the treatment of
PSR [126].

Pterygium
A pterygium is a non-neoplastic, degenerative, fibrovascular proliferation of conjunctival tissue that extends into
the cornea. Surgical excision remains the most effective intervention but recurrences remain common [127]. Meng
et al. [128] reported that HIF-1a accumulation in primary rabbit conjunctival epithelial cells promotes ANGPTL4
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expression, and inhibition of ANGPTL4 expression is sufficient to inhibit the angiogenic phenotype of these cells.
They further demonstrated that ANGPTL4 expression is observed in the conjunctival epithelium of surgically ex-
cised pterygia. These observations suggest that pharmacotherapy independently targetting VEGF and ANGPTL4, or
targetting HIF-1 to inhibit both, may be a more effective anti-angiogenic treatment for patients with pterygia [128].

Uveal melanoma
Melanocytes within the uveal tract lead to uveal melanoma (UM), the most prevalent primary intraocular malig-
nancy amongst adults [129]. Hu et al. [130] discovered that vitreous samples from UM patients who had an incom-
plete response to anti-VEGF treatment had elevated levels of ANGPTL4. Using a tumor array, they demonstrated
an increase in ANGPTL4 in almost 80% of UM tumors, with elevating expression of either VEGF or ANGPTL4 in
99% primary UM tumors. They also observed that ANGPTL4 is involved in the promotion of neovascularization in
UM in vitro and in vivo [130]. Ness et al. [131] demonstrated that the multicellular tumor spheroids (MCTS) cul-
tures from UM patients showed metabolic shift traits related to anoikis resistance as demonstrated by an increase in
ANGPTL4 which implies that ANGPTL4 might play an important role in orchestrating lipid metabolism in MCTS.
These findings sustain the potential role for ANGPTL4 in the promotion of metastasis in UM and provide a basis for
future investigations to determine more effective therapies like combining inhibition of both ANGPTL4 and VEGF
to simultaneously target tumor-induced angiogenesis and metastasis.

The role of the ANGPTL4 in vascular leakage
The establishment and maintenance of vascular function depends on appropriate vascular maturation, endothelial
junction remodeling, and perivascular cell recruitment. In pathological circumstances such as ischemic retinopa-
thy (retinopathy of prematurity, DR, and AMD), angiogenesis is accompanied by vascular barrier disruption, which
leads to plasma leakage and retina edema [132]. Ito et al. [133] found that ANGPTL4 suppressed the proliferation,
tubule formation, and migration of endothelial cells. Furthermore, utilizing corneal neovascularization and Miles
permeability assays, they found that ANGPTL4 significantly inhibited angiogenesis and vascular leakiness induced
by VEGF in vivo [133]. Perdiguero et al. [134] first discovered that ANGPTL4 knockout mice presented with substan-
tially increased leakage of retinal capillaries with a reduction in pericytes, perturbation of caveolae, VE-cadherin, and
ZO-1. This study showed that hypoxia-induced angiogenesis vascular leakage led to a feedback loop via expression
of ANGPTL4 which limits plasma leakage and endothelial cell disorganization. However ANGPTL4 does not par-
ticipate in pericyte recruitment, although pericytes fail to spread on ANGPTL4-deficient endothelial cells [134]. In
further studies, Perdiguero et al. [134] reported that ANGPTL4 neutralized hypoxia-induced vascular permeability
through integrin αvβ3 binding. Stimulation of VEGFR2–Src kinase signaling leads to endothelial junction stabiliza-
tion, demonstrating therapeutic strategies using ANGPTL4 aimed at controlling vascular permeability in ischemic
and ocular diseases [12].

Conclusions and perspectives
Multiple developmental and pathological roles related to eye diseases are attributable to ANGPTL4 including the
promotion of angiogenesis, vascular permeability, and inflammation. However, the study of ANGPTL4 functional-
ity is in its infancy, leading to controversy and a lack of comprehensive investigation regarding the precise role(s)
of ANGPTL4 in various disease processes. This is even more complicated by the distribution of alternative cellular
functions to three cleavage isoforms of ANGPTL4. Further investigation of ANGPTL4 functions in different patholo-
gies is yet to be performed. It is essential to consider multiple cleavage products as well as the combined effects of
modifying various diseases processes on overall disease activity. Luo et al. [135] doubt the safety and application value
of developing anti-ANGPTL4 therapy because 93% perinatal mortality was found in newborn ANGPTL4 knockout
mice, suggesting that ANGPTL4 may be indispensable for normal embryonic development. Bouleti et al. [136] hy-
pothesized that although until now developing therapeutic agents aimed at blocking ANGPTL4 is intensely debated.
ANGPTL4 recombinant protein might be an effective therapeutic target in acute ischemic cardiovascular diseases be-
cause of its role in protecting vascular integrity [136]. Until now, ELISA, Western blot, and quantitative PCR have been
the preferred techniques for ANGPTL4 detection ascribed to its easy-use, accuracy, and high-throughput, but these
techniques ignore distinction of the different ANGPTL4 isoforms. Future investigation of ANGPTL4 should be ded-
icated to the detection and identification of the various ANGPTL4 isoforms in order to reveal the structure–function
relationship of this protein. Immunoblot of lysate, secretion medium, and ECM using anti-cANGPTL4 antibody and
anti-nANGPTL4 antibody should be applied at the same time.
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Despite a lack of comprehensive knowledge, ANGPTL4 must be considered to be an attractive potential therapeu-
tic tool. A blockade of ANGPTL4 might obviously affect disease progression via inhibition of multiple processes and
signal pathways. Promisingly, ANGPTL4 is hypothesized to be a new therapeutic target when used as a recombinant
protein. Before, HIF-1α was to be considered to be a potential target for treatment of ischemic retinopathies. How-
ever, development is thought to be limited by the lack of drugs that specially block the HIF pathway, limiting further
analysis of specific effects of HIF inhibition on ischemic retinopathies progression. Neutralizing anti-ANGPTL4 anti-
bodies have been utilized in murine models of disease and, as interest grows in targetting ANGPTL4 therapeutically,
humanized neutralizing anti-ANGPTL4 antibodies will be developed in the near future [137]. In our view, new in-
vestigations should not only focus on in-depth molecular mechanism but also on the selective development of new
compounds and drugs against specific ANGPTL4 isoforms.
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