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Objective. Bladder cancer (BC) is the most common malignancy in the urinary system and is prone to recurrence and metastasis.
Pyroptosis is a kind of cell necrosis that is triggered by the gasdermin protein family. lncRNAs are noncoding RNAs that are more
than 200 nucleotides long. Both pyroptosis and lncRNAs are associated with tumor development and progression. This study is
aimed at exploring and establishing a prognostic signature of BC based on pyroptosis-related lncRNAs. Methods. In this study,
The Cancer Genome Atlas (TCGA) database provided us with the RNA sequencing transcriptome data of bladder cancer
patients, and we identified differentially expressed pyroptosis-related lncRNAs in bladder cancer. Then, the prognostic
significance of these lncRNAs was assessed using univariate Cox regression analysis and LASSO regression analysis.
Subsequently, 4 pyroptosis-related lncRNAs, namely, AL121652.1, AL161729.4, AC007128.1, and AC124312.3, were identified
by multivariate Cox regression analysis, thus constructing the prognostic risk model. Then, we compared the levels of immune
infiltration, differences in cell function, immune checkpoints, and m6A-related gene expression levels between the high- and
low-risk groups. Result. Patients were divided into low-risk or high-risk groups based on the median risk score. Kaplan–Meier
survival analysis indicated that the overall survival of bladder cancer patients in the low-risk group was substantially superior
to that in the high-risk group (p < 0:001). The receiver operating characteristic (ROC) curve further confirmed the credibility
of our model. Moreover, gene set enrichment analysis (GSEA) indicated that these were different signal pathways significantly
enriched between the two groups. Immune infiltration, immune checkpoint, and N6-methyladenosine-related gene analysis
also reflected that there were notable differences between the two groups. Conclusion. Therefore, this prognostic risk model is
based on the level of pyroptotic lncRNAs, which is conducive to individualized assessment of the risk of patients and provides
a reference for clinical treatment. This will also help provide insights into the prognosis and treatment of bladder cancer.

1. Introduction

Bladder cancer (BC) is the most common malignancy in the
urinary system and the ninth most common cancer world-
wide [1]. In the United States, more than 16,000 people die
from bladder cancer each year [2]. At present, although
transurethral resection of bladder tumors, radical cystec-
tomy, pelvic lymphadenectomy, and other methods can be

used for treatment, there are limitations such as neoplasm
recurrence, neoplasm metastasis, and poor quality of life in
postoperative patients. As a consequence, constructing an
individualized prognostic risk model at the molecular level
for bladder cancer patients is of tremendous significance in
evaluating the risk level and carrying out treatment interven-
tion promptly to improve the curative effect and prolong the
survival time of BC patients.
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Pyroptosis is a kind of cell necrosis that is triggered by the
gasdermin protein family. Studies have shown that cytotoxic
lymphocytes depend on pyroptosis to kill tumor cells, which
are associated with the occurrence, development, and progno-
sis of bladder cancer [3]. In bladder cancer, the susceptibility
of tumor cells to treatment is strongly linked with pyroptotic
activity. That is, the more active pyroptosis in tumor cells,
the better the patient prognosis. lncRNAs are noncoding
RNAs that are more than 200 nucleotides long. Although
without the ability to encode proteins, lncRNAs can not only
regulate gene expression at epigenetic, transcription, and
posttranscriptional levels but also function in many biological
activities, including chromatin modification [4], transcrip-
tional activation, and interference [5, 6]. In particular,
lncRNAs can regulate the expression of pyroptosis-related
genes and the activity of pyroptosis-related proteins [7]. As a
result, lncRNAs play a crucial role in increasing or inhibiting
tumor cell growth and spread. For example, knocking down
lncRNA-XIST stopped non-small-cell lung cancer (NSCLC)
from progressing by pyroptosis [8]. Moreover, exogenous
overexpression of lncRNA GAS5 restrained ovarian cancer
cell proliferation and colony formation by pyroptosis [9].
Nevertheless, the role pyroptosis-related lncRNAs play in
bladder cancer has not been expounded. As a consequence,
we tried to investigate the correlation between pyroptosis-
related lncRNAs and bladder cancer.

Due to the rapid development of bioinformatics in recent
years, sifting pyroptosis-related mRNA or lncRNA as prog-
nostic signatures has become a reality, which is helpful to
understand their role in the occurrence, development, and
prognosis of carcinoma and provide new ideas for clinical
prevention and treatment [10, 11]. In the current study, we
downloaded and analysed a dataset of lncRNA expression in
bladder cancer from The Cancer Genome Atlas (TCGA).
Then, we filtered four pyroptosis-related lncRNAs that had
considerable prognostic significance and built a prognostic
model, which has great potential to independently predict
the survival prognosis of bladder cancer patients.

2. Methods and Materials

2.1. Data Sources and Acquisition. TCGA was used to obtain
the RNA sequence data and clinical information of BC.
Expression and clinical information (including age, gender,
stage, and prognosis) for RNA-seq (including mRNAs and
lncRNAs) were obtained from TCGA database (https://tcga-
data.nci.nih.gov/) on September 26, 2021. As the sequencing
data from TCGA are publicly available, no further approval
from the ethics committee is required. TCGA bladder cancer
cohort included 411 tumor samples and 19 nontumor
samples. Patients’ samples were exempt from analysing if their
follow-up information was not complete.

2.2. Identification of Pyroptosis-Related lncRNAs in Bladder
Cancer. First, 33 pyroptosis-related encoding genes (mRNAs)
were obtained from previous reviews [12–15]. Then, the expres-
sion level of 33 pyroptosis-related mRNAs was extracted from
the expressionmatrix of TCGA bymeans of the limma package.
Next, to identify pyroptosis-related differential lncRNAs, we

used correlation tests (cor Filter = 0:4; p value Filter = 0.001)
to screen lncRNAs related to pyroptosis-related mRNAs in
bladder cancer. After that, we performed differential analysis
on pyroptosis-related encoding genes and lncRNAs mentioned
above, with the criteria of ∣log2 Fold Change ðFCÞ ∣ >0:5 and
the False Discovery Rate ðFDRÞ < 0:05.

2.3. Construction of a Prognostic Model for Bladder Cancer.
After we obtained differentially pyroptotic lncRNAs, we
conducted univariate Cox regression analysis, least absolute
shrinkage and selection operator (LASSO) regression analy-
sis, and multivariate Cox regression analysis to evaluate their
prognostic value. Then, based on the above results, we
selected the most representative candidates through LASSO
analysis. Subsequently, these lncRNAs associated with sur-
vival were subjected to multivariate Cox regression analysis
to construct the BC prognostic model. Moreover, on the
basis of the median risk score, the patients were classified
into one high-risk group and the other low-risk group.

Risk scores = 〠
n

i=1
coef lncRNA ið Þ ∗ Expr lncRNA ið Þð Þ: ð1Þ

2.4. Evaluation of the BC Prognostic Model. First, we carried
out Kaplan–Meier survival analysis to compare the survival
probability and survival time between the high- and low-
risk groups. Then, we applied ROC curves to assess the accu-
racy of the prognostic model in predicting bladder cancer
patient survival. In addition, the t-distributed stochastic
neighbor embedding (t-SNE) method was used to display
the allocation of patients in different groups. Furthermore,
Cox regression was used to determine whether patients’ risk
scores were an independent predictor for BC.

2.5. Nomogram Construction and Validation. A nomogram
including clinical features such as age, sex, stage, and risk
score obtained from prognostic signatures was constructed,
which was able to analyse the survival probability at 1 year,
3 years, and 5 years. The range of total points was from 80
to 220.

2.6. Gene Set Enrichment Analysis (GSEA). We conducted
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way analysis to explain the differential signaling pathways
of bladder cancer patients between the high-risk group and
the low-risk group, thus deriving their biological functions.

2.7. Immune Infiltration, Immune Checkpoint, and N6-
Methyladenosine-Related Gene Analysis. We downloaded
the bladder cancer immune cell infiltration file from TIMER
2.0. Subsequently, limma and heat map packages were
applied to generate a correlation heat map that visualized
and compared the differences in immune cell infiltration
between the high- and low-risk groups. Then, the “limma,”
“GSVA,” “GSEABase,” “ggpubr,” and “reshape2” packages
were utilized to perform ssGSEA, aimed at counting the
immune cell infiltration scores and assessing the discrepancy
in immunologic function between the high-risk group and
the low-risk group. Furthermore, with the benefit of the
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“limma,” “reshape2,” “ggplot2,” and “ggpubr” packages, we
detected the expression levels of immune checkpoint-
related genes and N6-methyladenosine-related genes
between the high-risk group and the low-risk group. Box
plots were generated to visualize the differences.

2.8. Statistical Analysis. All of the statistical analyses in our
study were performed using R version 4.1.1. We evaluated
the correlation through Pearson correlation analysis and
constructed survival curves through Kaplan–Meier analysis.
Univariate and multivariate Cox regression analyses were
utilized to examine the independence of our prognostic risk
model in predicting the prognosis of bladder cancer patients.

The ROC curve was used to assess our model’s accuracy in
predicting BC patient survival.

3. Result

3.1. Identification of Pyroptosis-Related lncRNAs and
Construction of a Risk Score Model. Univariate Cox regression
analysis showed that the expression of 9 pyroptosis-related
differential lncRNAs, namely, MCCC1-AS1, AL008718.3,
LINC02604, AL121652.1, AL161729.4, KLF7-IT1, AC007128.1,
AC124312.3, and AC007128.2, was tightly associated with over-
all survival in bladder cancer patients. (Figure 1(a)). Then, we
used LASSO regression analysis to reduce variables and select
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Figure 1: Identification of pyroptosis-related lncRNAs and construction of a risk score model. (a) The risk ratio forest plot indicated that 9
pyroptosis-related lncRNAs were associated with the overall survival of bladder cancer patients. (b) Adjustment of the parameters in LASSO
regression analysis. (c) Diagram of the LASSO coefficient spectrum of prognostic pyroptosis-related lncRNAs.
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Figure 2: Continued.
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Figure 2: Evaluation of the pyroptosis-related lncRNA prognostic model for bladder cancer. (a) The risk curve consisted of risk scores in
each sample, according to our prognostic risk model. The scatterplot consisted of survival status in each sample. The green dots represent
alive, while the red dots represent dead. The heat map shows the expression levels of 4 pyroptosis-related lncRNAs in the low-risk group and
high-risk group. (b) Kaplan–Meier survival analysis indicated that the survival time of bladder cancer patients in the high-risk group based
on the pyroptosis-related lncRNA prognostic model was markedly shorter than that in the low-risk group. (c) t-SNE (t-distributed stochastic
neighbor embedding) based on four pyroptosis-related lncRNAs showed two distinct distribution modes between the low- and high-risk
groups. (d) The ROC curve indicated that the AUCs for 1-year, 2-year, and 3-year overall survival predicted were 0.663, 0.649, and
0.632, respectively. (e) The ROC curve showed that the pyroptosis-related lncRNA prognostic model was better than other predictive
indicators, such as age, sex, and stage.
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Figure 3: Correlation of the four pyroptosis-related lncRNA signatures with clinical features. (a) Univariate Cox regression analysis and (b)
multivariate Cox regression analysis were applied to inspect whether the pyroptosis-related lncRNA prognostic model was independent of
age, sex, and stage. (c) The nomogram included sex, age, risk score, and stage for predicting the 1-year, 3-year, and 5-year survival rates of
bladder cancer patients.
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the most representative candidates for downstream analysis.
The cross-validation verified that the optimum value in LASSO
regression analysis was the best (Figures 1(b) and 1(c)). Subse-
quently, multivariate Cox regression analysis was applied to
compute their respective coefficients, thus selecting the candi-
dates, namely, AL121652.1, AL161729.4, AC007128.1, and
AC124312.3, to construct the risk score model. The equation
used for calculating the risk score of BC patients was as follows:
Risk score = 0:925819034 ∗ expr ðAL121652:1Þ – 0:549027307
∗ expr ðAL161729:4Þ – 0:673077592 ∗ expr ðAC007128:1Þ +
0:692429639 ∗ expr ðAC124312:3Þ.

The former and latter of each item in the equation were
regarded as the coefficient of pyroptosis-related lncRNAs
through multivariate Cox regression analysis and the expres-
sion of pyroptosis-related lncRNAs, respectively.

3.2. Evaluation of the Prognostic Risk Score Model. Based on
the median risk score, the BC patients could be divided into
two groups: high and low risk. The risk curve demonstrated

a relationship between the risk score and risk level. Patients
were ranked according to the pyroptosis-related lncRNA
prognostic model. The higher the score, the greater the risk.
A scatterplot revealed the relationship between the survival
time and risk score of bladder cancer patients based on the
pyroptosis-related lncRNA prognostic model. Both of them
showed that the mortality of bladder cancer patients relied
on their risk score (Figure 2(a)). In addition, Kaplan–Meier
survival analysis indicated that the overall survival (OS) of
bladder cancer patients in the low-risk group was substan-
tially superior to that of patients in the high-risk group
(p < 0:001) (Figure 2(b)). Moreover, t-SNE indicated two
substantially distinct distribution modes between the high-
and low-risk groups (Figure 2(c)). Finally, the AUC values
for 1-year, 2-year, and 3-year overall survival were 0.663,
0.649, and 0.632, respectively (Figure 2(d)). The ROC curve
analysis also proved that the four pyroptosis-related lncRNA
signatures were a superior and reliable predictive model of
prognostic value (AUC = 0:663) (Figure 2(e)).
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Figure 4: Heat map of the correlation between four pyroptosis-related lncRNAs and clinical features.
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Figure 5: KEGG pathway analysis showed that four pyroptosis-related lncRNAs participated in the following physiological processes:
cytokine cytokine-receptor interaction, hematopoietic cell lineage, systemic lupus erythematosus, melanoma, metabolism of xenobiotics
by cytochrome, and retinol metabolism.
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3.3. Correlation of the Four Pyroptosis-Related lncRNA
Signatures with Clinical Features. Univariate and multivariate
Cox analyses of clinical features, including age, sex, stage, and
risk scores, indicated that the four pyroptosis-related lncRNA
signatures were independent prognostic factors (p < 0:001)
(Figures 3(a) and 3(b)). We also devised a nomogram that
included sex, age, risk score, and stage (Figure 3(c)). Further-
more, a heat map of the correlation between four pyroptosis-
related lncRNAs, namely, AL121652.1, AL161729.4,
AC007128.1, and AC124312.3, and clinical features, such as
age, sex, and stage, was generated (Figure 4).

3.4. Gene Set Enrichment Analysis. The KEGG pathway analy-
sis showed that cytokine cytokine-receptor interaction, hema-
topoietic cell lineage, and systemic lupus erythematosus were
enormously enriched in the high-risk group (Figure 5(a)),
while melanoma, metabolism of xenobiotics by cytochrome,
and retinol metabolism were substantially enriched in the

low-risk group (Figure 5(b)). It is of tremendous significance
for us to conduct further studies, based on the results men-
tioned above, on the mechanisms by which pyroptosis-related
lncRNAs affect the occurrence, development, and prognosis
of bladder cancer.

3.5. Immune Infiltration, Immune Checkpoint, and N6-
Methyladenosine-Related Gene Analysis. This study revealed
significant variations in areas of immune response between
the high-risk and low-risk groups, including immune cell infil-
tration, immunologic function, and immune checkpoint-
associated genes. We also compared the difference in N6-
methyladenosine-related genes between the two groups. The
relative infiltration abundance of immune cells is shown in
the heat map. Among them, CD8+ T cells, activated NK cells,
macrophages, and myeloid dendritic cells infiltrated more in
the high-risk group than in the low-risk group (Figure 6). In
addition, the box plot of immunologic function analysis
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Figure 6: Heat map of immune cell infiltration analysis between the low- and high-risk groups of bladder cancer patients.
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Figure 7: Continued.
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showed that immune reactions, specifically cytolytic activity
and inflammation promotion, were significantly stronger in
the high-risk group than in the low-risk group (Figure 7(a)).
In addition, the box plot of immune checkpoint analysis
revealed that, compared to low-risk group samples, the expres-
sion of representative immune checkpoint-related genes,
including HAVCR2, IDO1, CD44, and LAIR1, was remark-
ably upregulated (Figure 7(b)). Finally, the box plot of N6-
methyladenosine-related gene analysis illustrated that in the
low-risk group, YTHDC1, YTHDF1, and METTL3 were
downregulated in the high-risk group (Figure 7(c)).

4. Discussion

Bladder cancer is a common malignant tumor of the urinary
system. Due to its high recurrence rate and easy metastasis,
bladder cancer has become the ninth leading pathogeny of
tumor-associated mortality around the world [16]. Annu-

ally, 3.0% of all newly diagnosed cancer cases and 2.1% of
all cancer mortality can be attributed to bladder cancer
[17]. Fortunately, thanks to the rapid development of high-
throughput biological technology, predicting the prognosis
of bladder cancer by their risk level assessment has become
a reality. Based on the pyroptosis-related 4 lncRNAs listed
above, we created a prognostic risk model that has been val-
idated with considerable prognostic value in BC.

A number of recent studies have proposed some prognos-
tic models for bladder cancer. Lu et al. constructed a 10 m6A-
related ncRNA prognostic risk model for bladder cancer [18].
Xu et al. developed and validated a six-gene prognostic model
for bladder cancer [19]. Yi et al. constructed an 8-gene model
based on ferroptosis-related genes [20]. These models build
risk models that can be used for bladder cancer based on
different mechanisms. These models are beneficial for predict-
ing the prognosis of bladder cancer patients and also help to
deepen our understanding of the role of ferroptosis, m6A,
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Figure 7: Discrepancy between the low-risk group and the high-risk group in terms of immunologic functions, immune checkpoint
analysis, and N6-methyladenosine-related gene analysis. (a) The box plot of immunologic function analysis. APC: antigen-presenting
cell; CCR: chemokine receptors; HLA: human leukocyte antigen; MHC class I: major histocompatibility complex class I; Type I IFN
response: type I interferon response. (b) The box plot of immune checkpoint analysis. LGALS9: galectin 9; HAVCR2: hepatitis A virus
cellular receptor 2; TNFRSF8: TNF receptor superfamily member 8; NRP1: neuropilin 1; TNFSF4: TNF superfamily member 4; CD48:
CD48 molecule; CD27: CD27 molecule; IDO1: indoleamine 2,3-dioxygenase 1; PDCD1LG2: programmed cell death 1 ligand 2;
TNFRSF25: TNF receptor superfamily member 25; CD274: CD274 molecule; CD44: CD44 molecule; CTLA4: cytotoxic T lymphocyte-
associated protein 4; IDO2: indoleamine 2,3-dioxygenase 2; BTLA: B and T lymphocyte-associated; LAIR1: leukocyte-associated
immunoglobulin like receptor 1; CD86: CD86 molecule; CD80: CD80 molecule; TIGIT: T cell immunoreceptor with Ig and ITIM
domains; TNFSF18: TNF superfamily member 18; CD200: CD200 molecule; CD40LG: CD40 ligand; TNFRSF4: TNF receptor
superfamily member 4; PDCD1: programmed cell death 1; LAG3: lymphocyte-activating 3; TNFRSF9: TNF receptor superfamily
member 9; CD28: CD28 molecule; TNFSF14: TNF superfamily member 14; ICOS: inducible T cell costimulator. (c) Box plot of N6-
methyladenosine-related gene analysis. YTHDC1: YTH domain-containing 1; RBM15: RNA-binding motif protein 15 ZC3H13: zinc
finger CCCH-type containing 13; FTO: FTO alpha-ketoglutarate-dependent dioxygenase; ALKBH5: AlkB homolog 5, RNA demethylase;
WTAP: WT1-associated protein; HNRNPC: heterogeneous nuclear ribonucleoprotein C; YTHDC2: YTH domain-containing 2;
YTHDF2: YTH N6-methyladenosine RNA-binding protein 2; METTL3: methyltransferase 3, N6-adenosine-methyltransferase complex
catalytic subunit; METTL14: methyltransferase 14, N6-adenosine-methyltransferase subunit YTHDF1: YTH N6-methyladenosine RNA-
binding protein 1.
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and other mechanisms in bladder cancer. However, these
models did not take into account the role of pyroptotic
lncRNAs in bladder cancer, nor did they further consider the
relationship between high-risk patients and immune infiltra-
tion, immune checkpoint genes, and so on. Based on the
constructed pyroptosis lncRNA prognostic model, we also
explored the differences in immune cell infiltration, immune
function, immune checkpoint genes, and m6A-regulated genes
among different risk groups. These results will help provide
insights into the prognosis and treatment of bladder cancer.

Pyroptosis has been a hot topic in the field of cancer
research. Considerable surveys show that pyroptosis plays
a role in tumor cells and may act as a double-edged sword
under different circumstances. For instance, the downregu-
lation of GSDMD can significantly boost the proliferation
and metastasis of gastric cancer cells [21], while the overex-
pression of GSDMB is related to reduced survival, easy inva-
sion, and increased metastasis in breast cancer cells,
predicting low sensitivity to targeted therapy [22]. As men-
tioned earlier, lncRNAs participate in the regulation of cell
pyroptosis. Previous research has shown that pyroptosis-
related lncRNAs can be used as novel biomarkers for
NSCLC, ovarian cancer, and gastric cancer [8, 9, 23]. Never-
theless, there are few studies on pyroptosis-related lncRNAs
in malignant tumors of the urinary system, especially for
patients diagnosed with bladder cancer. Therefore, it is
essential to carry out further investigation on pyroptosis-
related lncRNAs in bladder cancer.

Considered new potential prognostic biomarkers, lncRNAs
have gained widespread popularity in cancer. According to our
study, among the four pyroptosis-related lncRNAs, AL161729.4
and AC007128.1 were protective factors, while AL121652.1 and
AC124312.3 were risk factors. That is, the higher the expression
of protective factors is, the better the prognosis of bladder can-
cer patients. The opposite is true for risk factors. To date, the
four pyroptosis-related lncRNAs in our model have not yet
been studied in bladder cancer. However, survival analysis
performed by Ma et al. indicated that lncRNA AC124312.3
was notably correlated with the OS of triple-negative breast
cancer patients and may be a promising therapeutic target
[24]. Moreover, the upregulation of lncRNA AC007128.1 is
associated with the poor prognosis of esophageal squamous cell
carcinoma patients [25, 26]. To summarize, it is suggested that
the four pyroptosis-related lncRNAs can be considered bio-
markers to judge the prognosis of bladder cancer patients.

Recent studies have clarified the relationship between
signaling pathways and pyroptosis. Functional enrichment
analysis conducted by Luo et al. showed that cytokine
cytokine-receptor interactions participate in the pathogene-
sis of bladder cancer [27]. Additionally, a meta-analysis
showed that systemic lupus erythematosus was correlated
with an increased risk for bladder cancers [28]. This result
ties well with the KEGG pathway analysis in our study,
where cytokine cytokine-receptor interactions and systemic
lupus erythematosus were found to be markedly enriched
in high-risk group patients. At the same time, these two
pathways can regulate pyroptosis and are associated with
the prognosis of BC. As a consequence, our study suggested
that pyroptosis-related lncRNAs play a vital role in the

occurrence, development, and prognosis of bladder cancer
through the cytokine cytokine-receptor interaction and
systemic lupus erythematosus signaling pathways.

Since pyroptosis-related lncRNAs are correlated with
immune microenvironment [29], the risk level of bladder
cancer patients may be potentially affected by immune infil-
tration. Zhang et al. found that high-risk group patients with
hepatocellular carcinoma exhibited higher expression of
immune checkpoint-related genes [30]. Moreover, Chen
et al. found that m6A RNA methylation regulators, includ-
ing METTL3, YTHDF2, and YTHDF1, were differentially
expressed in bladder cancer tissues compared with normal
tissues [31]. These results are aligned with the immune infil-
tration analysis in our study, where immune checkpoint-
and N6-methyladenosine-related genes were found to be
significantly upregulated in the high-risk group compared
with the low-risk group. A further novel finding was that
the more infiltration of immune cells, the worse prognosis
of bladder cancer patients and so did immunologic func-
tions. Consequently, immune infiltration plays a vital role
in revealing the risk of bladder cancer. Further exploring
the situation of immune infiltration will prove helpful in
seeking the targets of bladder cancer immunotherapy.

However, we recognized that there are a few limitations
and shortcomings in our study. First, the original data for
constructing the pyroptosis-related lncRNA prognostic risk
model were downloaded from TCGA. Moreover, biochemi-
cal experiments such as quantitative real-time PCR, immu-
nohistochemistry, and flow cytometry must be designed to
authenticate our model and further clarify the mechanism
by which pyroptosis-related lncRNAs regulate the patholog-
ical process of bladder cancer.

5. Conclusion

To summarize, our study indicated that the prognostic risk
model based on pyroptosis-related 4 lncRNAs can indepen-
dently estimate the survival prognosis of BC. Furthermore,
these 4 pyroptosis-related lncRNAs are potential prognostic
biomarkers and may make outstanding contributions to
seeking promising therapeutic targets for bladder cancer.

Data Availability

The RNA-seq data and clinical follow-up data associated
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