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Abstract: Aberrant alternative splicing (AS) is increasingly linked to cancer; however, how AS
contributes to cancer development still remains largely unknown. AS events (ASEs) are largely
regulated by RNA-binding proteins (RBPs) whose ability can be modulated by a variety of genetic
and epigenetic mechanisms. In this study, we used a computational framework to investigate the
roles of transcription factors (TFs) on regulating RBP-AS interactions. A total of 6519 TF–RBP–
AS triplets were identified, including 290 TFs, 175 RBPs, and 16 ASEs from TCGA–KIRC RNA
sequencing data. TF function categories were defined according to correlation changes between
RBP expression and their targeted ASEs. The results suggested that most TFs affected multiple
targets, and six different classes of TF-mediated transcriptional dysregulations were identified. Then,
regulatory networks were constructed for TF–RBP–AS triplets. Further pathway-enrichment analysis
showed that these TFs and RBPs involved in triplets were enriched in a variety of pathways that were
associated with cancer development and progression. Survival analysis showed that some triplets
were highly associated with survival rates. These findings demonstrated that the integration of TFs
into alternative splicing regulatory networks can help us in understanding the roles of alternative
splicing in cancer.

Keywords: alternative splicing; RNA-binding protein; transcription factor; TF–RBP–AS triplets;
regulation mechanism

1. Introduction

Renal cell carcinoma (RCC) is a common malignant tumor that, according to 2020 global
cancer data released by the International Agency for Research on Cancer (IARC), accounts
for 2.2% of all new cancer cases, with approximately 431,288 new cases and 179,368 deaths
worldwide, and there will be approximately 73,587 new cases and 43,196 deaths in China.
There are different types of RCC, and kidney renal clear cell carcinoma (KIRC) is the most
common type of RCC, accounting for about 75% of adult RCC malignancies [1]. Since
KIRC is radiotherapy- and chemotherapy-resistant, surgery is currently the most effective
treatment [2]. Despite early surgical treatment, 30% of patients with a localized tumor
eventually develop metastases, and the five-year overall survival rate of metastatic KIRC
is only 12% [2–4]. Although immune-checkpoint and targeted therapeutics inhibitors
have changed the landscape of treatment for KIRC, most patients have never experienced
significant clinical benefits [5,6]. Therefore, it is essential to reveal the underlying molecular
mechanisms of KIRC and find more powerful diagnostic biomarkers or therapeutic targets.

Alternative splicing (AS) is a pivotal process that increases the diversity of proteins [7].
The destruction of this process may lead to disorders of normal cell functions and eventu-
ally develop cancer. The dysregulation of alternative splicing is a new hallmark of cancer

Int. J. Mol. Sci. 2021, 22, 8789. https://doi.org/10.3390/ijms22168789 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-1817-7982
https://doi.org/10.3390/ijms22168789
https://doi.org/10.3390/ijms22168789
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22168789
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22168789?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 8789 2 of 18

and can be used as a biomarker for drug therapy [8,9]. The regulation of alternative splicing
is a complicated process, including cis-regulatory elements and trans-acting factors [10,11].
Growing evidence indicates that alternative splicing is strongly associated with kidney can-
cer. For example, some specific alternative splicing events (ASEs) are potential prognostic
biomarkers of kidney cancer [12], some ASEs were predicted to be associated with cancer
stemness in KIRC [13], and a novel prognostic index based on prognosis-related AS events
was revealed in KIRC [14]. However, comprehensively understanding the alterations of
AS in KIRC remains unknown. Thus, exploring the regulatory patterns that control AS
provides valuable molecular insights and provides solutions for cancer treatment [15].

ASEs are largely regulated by RNA-binding proteins (RBPs) that can bind to cis-
regulatory elements in introns and exons to regulate splicing [16]. Specifically, RBPs recruit
different factors and enzymes to form different complexes that bind to specific regulatory
sequences of their target pre-mRNA, thus modulating RNA alternative splicing [17,18].
However, the mechanism of interactions between splicing complexes and target pre-mRNA
is complex. An RBP can act on hundreds of mRNA target genes, but under the influence of
environmental stimuli, an RBP only acts on a subset of its RNA target genes [15], which is
often influenced by transcription factors (TFs). By regulating the activity of RBP, TFs can
affect downstream alternative splicing outcomes. Therefore, discovering and elucidating
the interactions between RBPs, AS events (ASEs), and TFs are necessary for understanding
the mechanisms of alternative splicing.

AS could be mediated by nonsense-mediated mRNA decay (NMD), which is an
mRNA surveillance pathway in eukaryotic cells that can rapidly degrade mRNAs bearing
premature translation termination codon (PTC) to protect cells from adverse effects of
truncated proteins [19,20]. Some studies showed that AS coupled to NMD (AS-NMD) as a
novel post-transcriptional mechanism is closely related to cancer [21,22]. Thus, studying
AS-NMD may provide a novel view on understanding AS mechanisms in kidney cancer.

In this study, we established a computational method for studying the relationships
between RBPs, ASEs, and TFs. Our method discovers how alternative splicing outcomes
change under the regulation of the same RBP when transcription factor expression is
different. A triplet contains three elements: a specific ASE, a specific RBP that may regulate
the ASE, and a TF that may change the splicing regulation of the RBP. We first used the
TCGA-KIRC dataset to analyze and select key cancer-specific alternative splicing, and
differentially expressed RBPs and TFs in cancer; then, we applied linear mixed models to
identify triplets in kidney cancer. A regulatory network for triplets in KIRC was established,
and the potential mechanisms were explored. Survival analysis showed that these triplets
were highly associated with survival rates. The results provided another perspective for
further investigations into the molecular pathogenesis of kidney cancer and the selection
of the potential therapeutic targets for the treatment of kidney cancer.

2. Results
2.1. Screening of Key ASEs in Kidney Cancer

The file of ASEs was composed of PSI values of 46,415 ASEs involved 10,600 genes for
533 KIRC patients and 77 normal samples. According to their splicing pattern, these ASEs
were divided into seven types: exon skip (ES), mutually exclusive exons (ME), retained
intron (RI), alternate promoter (AP), alternate terminator (AT), alternate donor site (AD),
and alternate acceptor site (AA), which are illustrated in Figure 1A. Furthermore, an UpSet
plot was generated to visualize the intersecting sets of each AS type, as shown in Figure 1B.
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Figure 1. Overview of AS events profiling in KIRC. (A) Seven types of AS events: exon skip (ES), mutually exclusive ex-
ons (ME), retained intron (RI), alternate promoter (AP), alternate terminator (AT), alternate donor site (AD), and alternate 
acceptor site (AA). (B) UpSet plot of interactions between the seven types of detected AS events (n = 46,415) in KIRC. (C) 
Heat map of significant ASEs (n = 33). Horizontal axis shows clustering information of samples (normal or tumor); left 
longitudinal axis shows clustering information of ASEs. Gradual change in color from green to red represents PSI value 
of ASEs altered from low to high. (D) Splice graphs of some representative ASEs. Exons were drawn to scale, and con-
necting arcs represent splice paths. (E) Boxplots of four differentially expressed ASEs showing different expressions of AS 
events between KIRC and normal samples. Wilcoxon test was used for data comparison. 

By comparing the expression of ASE in KIRC and normal samples, 33 ASEs were 
identified as differentially expressed ASE through the iterative MI-SIS method, among 
which there were 19 APs, 2 ESs, 11 ATs, and 1 AD. Detailed information on the differen-
tially expressed ASEs is listed in Table 1. A receiver-operating-characteristic (ROC) curve 
was drawn to show the prediction accuracy of our method, as shown in Supplementary 
Figure S1, which suggested that our method reached a high area under the curve (AUC = 
0.993). A heat map was used to elaborate the expression differences of the 33 differen-

Figure 1. Overview of AS events profiling in KIRC. (A) Seven types of AS events: exon skip (ES), mutually exclusive exons
(ME), retained intron (RI), alternate promoter (AP), alternate terminator (AT), alternate donor site (AD), and alternate
acceptor site (AA). (B) UpSet plot of interactions between the seven types of detected AS events (n = 46,415) in KIRC.
(C) Heat map of significant ASEs (n = 33). Horizontal axis shows clustering information of samples (normal or tumor); left
longitudinal axis shows clustering information of ASEs. Gradual change in color from green to red represents PSI value of
ASEs altered from low to high. (D) Splice graphs of some representative ASEs. Exons were drawn to scale, and connecting
arcs represent splice paths. (E) Boxplots of four differentially expressed ASEs showing different expressions of AS events
between KIRC and normal samples. Wilcoxon test was used for data comparison.

By comparing the expression of ASE in KIRC and normal samples, 33 ASEs were
identified as differentially expressed ASE through the iterative MI-SIS method, among
which there were 19 APs, 2 ESs, 11 ATs, and 1 AD. Detailed information on the differ-
entially expressed ASEs is listed in Table 1. A receiver-operating-characteristic (ROC)
curve was drawn to show the prediction accuracy of our method, as shown in Supple-
mentary Figure S1, which suggested that our method reached a high area under the curve
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(AUC = 0.993). A heat map was used to elaborate the expression differences of the 33 dif-
ferentially expressed ASEs between the tumor and normal samples, as shown in Figure 1C.
Some of the differentially expressed ASEs are depicted as splice graphs, which summarize
the transcript variations into directed acyclic graphs, and represent exons as rectangular
nodes and splice junctions as edges (Figure 1D). Furthermore, the boxplots of four differen-
tially expressed ASEs are shown in Figure 1E. Both the heat map and boxplots suggested
that the 33 differentially expressed ASEs could be used as diagnostic biomarkers for KIRC.

Table 1. Detailed information of 33 cancer-specific ASEs.

Symbol Gene AS Type Exons From Exon To Exon Mean_T Mean_N Mi Value

Upregulated
PPFIA4_9430_AP PPFIA4 AP 19.1 0.816 0.345 0.354

ST6GAL1_68068_AP ST6GAL1 AP 1 0.932 0.161 0.347
RACGAP1_21628_AT RACGAP1 AT 20 0.944 0.216 0.341
TMEM213_81932_AT TMEM213 AT 4 0.565 0.070 0.340

SH3D21_1764_AP SH3D21 AP 4.1 0.924 0.600 0.338
GADL1_63808_AT GADL1 AT 12.2 0.986 0.549 0.338

ELF5_14951_AT ELF5 AT 4.2 0.648 0.026 0.336
PCNA_58649_AP PC AP 2.1 0.884 0.631 0.333
ZNF44_47791_AT ZNF44 AT 6.2 0.652 0.177 0.328

RALBP1_44603_AP RALBP1 AP 2 0.878 0.455 0.325
COL4A6_89859_AT COL4A6 AT 52 0.708 0.054 0.322

Downregulated
PPFIA4_9431_AP PPFIA4 AP 1 0.180 0.655 0.354

ST6GAL1_68067_AP ST6GAL1 AP 3 0.068 0.839 0.347
C7orf41_79109_AP C7orf41 AP 2 0.047 0.470 0.346
FGD3_86890_AP FGD3 AP 3 0.019 0.589 0.342

RACGAP1_21625_AT RACGAP1 AT 21 0.056 0.784 0.341
TMEM213_81931_AT TMEM213 AT 3 0.435 0.931 0.340

WNK1_19609_AP WNK1 AP 5 0.036 0.736 0.340
SH3D21_1763_AP SH3D21 AP 1 0.076 0.408 0.339
GADL1_63807_AT GADL1 AT 15 0.014 0.451 0.338

ELF5_14952_AT ELF5 AT 8 0.352 0.974 0.336
PCNA_58648_AP PC AP 1 0.116 0.369 0.333

SLC17A3_75564_ES SLC17A3 ES 5 4 6 0.358 0.707 0.331
APOC1_50368_ES APOC1 ES 4:5.1 3.2 7 0.424 0.692 0.331

SCARB1_25157_AD SCARB1 AD 13.3 13.2 15 0.089 0.151 0.326
SYK_86820_AP SYK AP 2 0.079 0.456 0.324

SLC17A3_75556_AP SLC17A3 AP 2 0.199 0.970 0.323
UBE2D2_73616_AP UBE2D2 AP 2 0.395 0.780 0.322
COL4A6_89858_AT COL4A6 AT 51.2 0.292 0.946 0.322
DCAF11_26830_AP DCAF11 AP 2.1 0.262 0.621 0.321
CYFIP2_74323_AP CYFIP2 AP 3 0.030 0.371 0.319
CRYAB_18693_AP CRYAB AP 5.1 0.060 0.224 0.318

FAM149A_71399_AP FAM149A AP 3 0.288 0.867 0.318

2.2. Identification of Differentially Expressed RBPs and TFs in Kidney Cancer

The method of log2FC and the Wilcoxon test were used to identify differentially
expressed TFs and RBPs from 1635 RBPs and 1826 TFs. Lastly, 302 TFs and 177 RBPs
were selected under the criteria of p value < 0.05 and |log2FC| > 1. All are shown in
Supplementary Tables S1 and S2.

2.3. Category of TF Action

Depending on whether the correlation of RBP-AS increased or decreased in two “abun-
dance” groups (low to high) of TFs, three possible modes of TFs action were identified:
“attenuates interaction”, “enhances interaction”, and “inverts interaction”. Among them,
each mode comprised two subtypes: strengthen attenuation interaction (SAI), weaken
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attenuation interaction (WAI); strengthen enhancement interaction (SEI), weaken enhance-
ment interaction (WEI); and invert positive to negative (IPN), invert negative to positive
(INP). These cases and details interpretations are listed in Table 2.

Table 2. Categories of TF-mediated RBP regulations on target AS.

Pattern PCClow PCChigh ∆PCC Subtype Mode

Enhances – —- |PCClow| < |PCChigh| Strengthens attenuation interaction (SAI)
Attenuates —- – |PCClow| > |PCChigh| Weakens attenuation interaction (WAI)

Inverts + – Inverts positive to negative (IPN)
Inverts – + Inverts negative to positive (INP)

Enhances + ++ |PCClow| < |PCChigh| Strengthens enhancement interaction (SEI)
Attenuates ++ + |PCClow| > |PCChigh| Weakens enhancement interaction (WEI)

“+” and “–” signs in the columns indicate positive and negative values of Pearson correlation coefficient, and “++” and “—-” indicate a
larger absolute value of Pearson correlation coefficient compared to its control group.

2.4. Detection of TF–RBP–AS Triplets in Kidney Cancer

Linear mixed-effects models were employed to identify TF–RBP–AS triplets for differ-
entially expressed TFs (n = 302), RBPs (n = 177), and ASEs (n = 33) based on Formula (1);
6519 TF-mediated significant triplets were statistically significant under our criteria as
described in Section 4 (Supplementary Table S3). The 6519 TF–RBP–AS triplets included
290 TFs, 175 RBPs, and 16 ASEs corresponding to 13 genes. According to the correlation
changes between RBP and ASE expressions under different abundance groups (low or high)
of TF, six subcategories were identified: 688 triplets in SEI, 1018 triplets in WEI, 777 triplets
in SAI, 1287 triplets in WAI, 1307 triplets in IPN, and 1442 triplets in INP (Figure 2A).

2.5. Construction of Splicing-Regulatory Network for Triplets

We constructed a splicing-regulatory network for 6519 triplets. The splicing-regulatory
network was visualized in Cytoscape. The relationships between TF and RBP (purple
lines), TF and ASE (green lines), and RBP and ASE (blue lines) are exhibited (Figure 3A).
The complexity of alternative splicing regulation can be seen from the triplet network.
In addition, we compared this splicing-regulatory network with the known human PPI
network in STRING and found that 18 triplets were connected in it as shown in Figure 3B.

In the network of 18 triplets, IRF1, NFKB2, and UBE2D2_73616_AP were the TF, RBP,
and ASE with the highest node degree, respectively. Interferon regulatory factor 1 (IRF1) is
a tumor-suppressor gene that is associated with RCC, which can promote the apoptosis of
tumor cells and increase tumor-cell sensitivity to chemotherapeutic drugs [23]. Nuclear
factor kappa B subunit 2 (NFKB2) regulates all important aspects of RCC biology, including
resistance to apoptosis, angiogenesis, and multidrug resistance [24]. Ubiquitin conjugating
enzyme E2 D2 (UBE2D2) plays an important role in the development of breast cancer [25].
These results showed that the triplet network may play key roles in the development
of RCC.

2.6. Survival and Functional-Enrichment Analyses for Triplets

To investigate the association between triplets and kidney cancer, we performed sur-
vival analysis in tumor samples by constructing prognostic-risk-score models through
Formula (2). For each triplet, on the basis of the expression of its components (i.e., an
RBP, a TF, and an ASE), each tumor sample had a calculated risk score. Then, all tu-
mor samples were divided into high- and low-risk subgroups with the median value
of risk scores as cutoff. Then, survival analysis was carried out for the 6519 triplets,
and the results suggested that there were significant survival differences between the
high- and low-risk subgroups for 5580 triplets (Supplementary Table S4). For example,
although GADL1_63808_AT and UBE2D2_73616_AP were two of the ASEs that did not
show too much differential expression, survival analysis indicated that triplets including
GADL1_63808_AT and UBE2D2_73616_AP in KIRC were significantly associated with
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overall survival outcomes by comparing the high- and low-risk subgroups (Figure 4A).
Survival plots of three representative triplets, namely RUNX2-RPL36-GADL1_63808_AT,
MYBL1-RL36-GADL1_63808_AT, and RUNX1-PRSS53-UBE2D2_73616_AP, are shown in
Figure 4A, suggesting that the high-risk subgroup had a worse survival rate for each triplet
(log-rank p values were 9.4 × 10−6, 0.00019 and respectively 1.7 × 10−15). The results of
survival analysis suggested that the detective triplets could serve as prognostic biomarkers
for kidney cancer.
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Pathway-enrichment analysis showed that these TFs and RBPs were highly enriched
in categories that are associated with cancer development and progression, including
herpes simplex virus 1 infection, meiotic cell cycle, and the negative regulation of cell dif-
ferentiation (Figure 4B,C). In addition, cancer-relevant modulators were identified through
a tumor-associated gene list from the Network of Cancer Genes (NCG, v6.0) [26] and the
Tumor Suppressor Gene (TSGene, v2.0) databases [27], separately (Figure 4D). The 2378 tu-
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mor diver genes obtained from NCG were 711 known cancer genes and 1667 candidate
cancer genes. Among all genes involved in the 6519 triplets, 122 genes overlapped with
tumor diver genes, almost reaching 25.58% (122/477) of the total numbers of triplet genes.
Approximately 12.37% (59/477) of the genes were tumor-suppressor genes. These results
suggested that these triplets were involved in the occurrence and development of cancer.

2.7. Analysis of Splicing Event of PCNA_58648_AP Influenced by Triplets in Kidney Cancer

In this study, 80 triplets were found to be involved in the ASE of PCNA_58648_AP,
including 28 TFs and 58 RBPs. Previously studies reported that PCNA had obvious
differential expression in RCC and played an important role in cell proliferation [28]. Some
triplets of PCNA_58648_AP are shown in Figure 5A.

For example, ETV7 is a modulator of IGF2BP2 and may change the role of IGF2BP2
on PCNA_58648_AP. In the low ETV7 expression group, correlation between IGF2BP2
expression and PCNA_58648_AP splicing level was −0.28, while such correlation became
0.14 when in the high ETV7 expression group. HOXA7, as a modulator of PPARGC1A,
enhanced the splicing regulation on PCNA_58648_AP. In the low HOXA7 expression
group, correlation between PPAGGC1A expression and PCNA_58648_AP splicing level
was 0.23, while such correlation became 0.51 in the high HOXA7 expression group. In
addition, ARNT2 had a similar effect on RBM47, and BHLHE41 had a similar effect on
SAMD14 (Figure 5B). Thus, the results showed that differentially expressed TFs changed
the role of RBPs on regulating PCNA_58648_AP, and these triplets could be diagnostic and
prognostic biomarkers of KIRC. This way of regulation can provide some insights into the
dysregulation of splicing results in many diseases, not only KIRC.
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Metascape for gene-enrichment analysis).
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Figure 5. PCNA_58648_AP influenced by TFs and RBPs involved in triplets in KIRC. (A) Examples of some TFs and RBPs
involved in triplets. (B) Four triplets influencing splicing of PCNA_58648_AP: four TFs (ETV7, HOXA7, ARNT2, BHLHE41)
and four RBPs (IGF2BP2, PPARGC1A, RBM47, SAMD14). Red, samples in high TF expression group (top 40%); green,
samples in low TF expression group (bottom 40%). X axis is the expression level of RBP, and Y axis is the PSI value of
PCNA_58648_AP.
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3. Discussion

In this study, we proposed to use a linear mixed-effects model to identify TF–RBP–AS
triplets with which the expression level of TFs was associated in changing the targets AS
outcomes of RBPs in KIRC. A computational method was previously developed to identify
modulators whose expression levels could affect the relationship between the RBPs and its
target alternative splicing outcomes, and this only focused on target splicing outcomes of
QKI that can be influenced by the expression level of modulators [15]. In addition, several
computational methods were developed for identification modulators whose expression
levels could affect the regulation activity of TFs toward its target genes [29,30], and these
studies reported that the expression level of modulators can affect the transcriptional
activities of TFs. The unique ability of our method is that it can identify triplets by
considering the influence of some objective factors and discovering how the expression
level of TFs is associated with changing the target AS outcomes of RBPs. Our method aimed
to discover the impact of TFs on AS after acting on RBPs and provides a new perspective
for studying the network of alternative splicing mechanisms in cancers.

Not all ASEs are necessarily related to cancer, so it is an effective way to find a subset
of cancer-specific ASEs by comparing the PSI values of the ASE between normal and tumor
samples. Then, 33 ASEs corresponding to 23 genes were found by using the method of
iterative MI-SIS. A literature review found 10 (TMEM213, ELF5, PCNA, RALBP1, WNK1,
SLC17A3, APOC1, SCARB1, DCAF11, CRYAB) out of 23 genes to be related to kidney
cancer [28,31–39]. In particular, ELF5, SLC17A3, RALBP1, WNK1, APOC1, and CRYAB
were experimentally verified to play an important role in the occurrence and development
of kidney cancer. ELF5 is a tumor-suppressor gene for RCC; SLC17A3 is related to the
origin of RCC; RALBP1 plays an oncogenic role in RCC; WNK1 promotes renal tumor
progression by activating TRPC6-NFAT pathway; APOC1 is significantly correlated with
RCC tumor size and histological grade, and CRYAB promotes RCC tumor angiogenesis by
increasing vascular survival during tube morphogenesis. On the basis of the role of these
genes in kidney cancer, the influence of gene expression on kidney cancer is important.
Some of the remaining 13 genes also play important roles in kidney cancer. For example,
COL4A6 is related to hereditary nephropathy, and RACGAP1 can promote the proliferation
and suppress apoptosis of renal tubular cells [40,41]. This evidence indicated that these
ASEs are closely related to RCC.

In our study, 302 differentially expressed TFs, 177 differentially expressed RBPs, and
33 cancer-specific ASEs were formed to the combinations of TF–RBP–AS; all of them were
screened by linear mixed-effects models to obtain significant TF–RBP–AS triplets for further
study. Lastly, 6519 TF–RBP–AS triplets were identified as significant TF–RBP–AS triplets.
These triplets included 290 TFs, 175 RBPs, and 16 ASEs corresponding to 13 genes. The
results showed that the functions of TFs are very complicated, and even the same TF may
play different or opposite roles on the same RBP targets. For example, LYL1 plays an en-
hanced role on the C2orf15-TMEM213_81931_AT pair, but LYL1 inverts the splicing activity
of C2orf15 on RACGAP1_21625_AT. Detailed information can be found in Supplemen-
tary Table S2. Results demonstrated the complexity of the alternative splicing regulation
mechanism. Among the 16 ASEs involved in 6519 triplets, PCNA_58648_AP received more
attention because previous studies showed that PCNA has significant association with RCC.
Eighty TF-RBP-PCNA_58648_AP triplets were identified, including 28 TFs and 58 RBPs,
and LYL1-RELB-PCNA_58648_AP and HOXA7- PPARGC1A-PCNA_58648_AP were two
of them. LYL1 gene amplification was associated with the upregulation of cancer-related
pathways in uterine corpus endometrial cancer, and RELB gene plays an oncogenic role in
colorectal cancer [42,43]. Our results showed that the high expression of LYL1 tended to
attenuate RELB regulation role on PCNA_58648_AP. Correlation between RELB expres-
sion and PCNA_58648_AP PSI was −0.18 in the low LYL1 expression group, and such
correlation changed into −0.06 in the high LYL1 expression group. HOXA7-PPARGC1A-
PCNA_58648_AP was another inferred triplet. HOXA7 is associated with the metastasis
of liver cancer [44]. PPARGC1A overexpression promotes lung-cancer metastasis [45].
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When HOXA7 expression was low, correlation between PPARGC1A expression and the
PSI of PCNA_58648_AP was 0.51, while such correlation turned into 0.23 when HOXA7
expression became high.

Two ASEs (i.e., COL4A6_89859_AT and GADL1_63808_AT) in the triplets were the
fragments of the targeted RNA of NMD, which is a mechanism to degrade mRNA tran-
scripts containing PTC [19]. COL4A6 and GADL1 are related to cancer. The downregulation
of COL4A6 was associated with prostate cancer progression and metastasis, and the overex-
pression of GADL1 was associated with cancer cell migration and morphology (including
cell area, thickness, volume, perimeter length, irregularity, and eccentricity) [46,47]. The
expression of COL4A6 and GADL1 may be regulated by alternative splicing-coupled
NMD to promote the development of cancer. This evidence indicated that alternative
splicing-coupled NMD is related to RCC.

On the basis of the 6519 inferred triplets, we constructed an interaction network
using TF–RBP–AS triplets and further refined the network by only including 18 TF–RBP–
AS triplets that had documented interactions from the STRING database. Some of the
interactions had already been reported by other studies. For example, IRF1 could inhibit
NFKB2 activity to induce breast cancer cell-specific growth inhibition [48]. MYC can
also suppress NFKB2 to accelerate lymphomagenesis, and IRF1 can bind to TLR3 to
regulate transcriptional activation in cellular antiviral activities [49,50]. Then, the study
of the IRF1-NFKB2-UBE2D2 _73616_AP triplets may have discovered their regulatory
mechanism in RCC. IRF1 is a tumor-suppressor gene that is associated with RCC [51,52].
NFKB2 is involved in inflammation and immune function and participates in activating
the Toll-like receptor 4 (TLR4) signaling pathway [53,54]. The UBE2D2 gene regulates the
degradation of misfolded, damaged, or short-lived proteins, which occurs via the ubiquitin
(Ub)-proteasome system (UPS), and can inhibit TLR4 signaling [55,56]. The NFKB2 and
UBE2D2 genes are related to TLR4. The TLR4 gene plays a fundamental role in pathogen
recognition and the activation of innate immunity, is required for IRF1 expression, and the
TLR4-IRF1 pathway plays important roles in many diseases [57,58]. UBE2D2 inhibits the
expression of IRF1, while NFKB2 promotes the expression of IRF1. When the expression of
IRF1 changes from low to high, UBE2D2 and NFKB2 have an enhanced negative correlation
trend, which is what we inferred. UBE2D2 and NFKB2 may go through TLR4 to influence
IRF1 to destroy the immune system and promote the occurrence and development of
cancer. This evidence indicated that interactions in the identified triplets play key roles in
the development of RCC and could be drug targets for in RCC.

We performed additional dry lab experiments to prove that the triplets we identified
could reveal the mechanism of alternative splicing. We compared interactions in our
6519 identified triplets with protein–protein interactions (PPIs) obtained from the STRING
database. The results showed that the 4456 TF-RBP pairs, 1509 TF-ASE pairs, and 1280 RBP-
ASE pairs involved in the triplet had 275 TF-RBP pairs, and 55 TF-ASE pairs and 93 RBP-
ASE pairs overlapped with PPI, respectively, which is shown in Supplementary Figure S2.
We also further confirmed interactions in the triplets through the following two aspects.
Firstly, we compared the interactions of TF-ASE/RBP in the triplets with known interactions
of TF targets. We combined the research results of Zhang [59] and Han [60] on transcription
factors and transcription factor target genes and obtained a dataset of 970 transcription
factor target genes. This dataset contained 167 transcription factors involved in our triplets.
We found that 3815 triplets involved the 167 transcription factors from 6519 triplets and
compared them with the 970 transcription factor target genes. The results suggested that
RBPs in 163 out of 2593 TF-RBP pairs were confirmed by the 970 transcription factor target
genes, and genes corresponding to ASEs in 159 out 861 TF-ASE pairs were confirmed by
the 970 transcription factor target genes, which are shown in Supplementary Figure S3.
Secondly, in order to verify RBP-ASE pairs, we used the results of Paz’s [61] study on
the binding site of RBP and RNA. However, only eight RBPs involved in 6519 triplets
had information of the binding site from Paz’s study, so we only compared 293 triplets
involving 64 RBP-ASE pairs with Paz’s results. Supplementary Tables S5 and S6 show
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that 24 of 64 RBP-ASE pairs found that RBP had binding sites on ASE. Of the 293 triplets,
145 were in involved in these 24 RBP-ASE pairs, suggesting that the triplets we inferred
could reveal the underlying mechanisms of alternative splicing.

In order to investigate whether TF–RBP–AS triplet signatures could act as independent
prognostic markers, survival analysis was also performed on each of the triplets on the
basis of the results of our constructed prognostic risk score models. Survival analysis results
showed that 85.60% (5580/6519) of the triplets were significantly related to the overall
survival (OS) of RCC patients. Additionally, although the combination of TF and RBP
expression and the PSI value of ASE successfully stratified patients, approximately 83.76%
(4674/5580) of the triplets included the component that was not significantly associated
with KIRC prognosis. This evidence indicated that these triplets could act as risk predictors
of RCC, and network-based biomarkers are expected to be more effective and provide deep
insights into the molecular mechanism of RCC progression.

Pathway-enrichment results showed that all TF and RBP genes involved in 6519 triplets
were enriched in cancer-development- and progression-related pathways, including herpes
simplex virus 1 infection, meiotic cell cycle, and the negative regulation of cell differen-
tiation. Herpes simplex virus 1 (HSV-1) infection is a risk factor in the development of
human malignancies which can induce apoptosis in neighboring human cancer cells and
can be used as a potential target to improve anticancer activity [62,63]. Meiotic errors of the
cell-cycle process are an important characteristic of kidney cancer [64,65], and cell differenti-
ation is involved in the process of many human cancers such as RCC [66,67]. This evidence
indicated that these TFs and RBPs are involved in the occurrence and development of RCC
and could serve as targets for the treatment of RCC.

Although a model was established in this study, and TFs were integrated into regula-
tory networks to help improve the understanding of the regulatory network of AS, there are
some limitations. Firstly, the roles of triplets acing as a whole need to be further be further
confirmed by experiments. Moreover, the function and mechanism of how TF changes RBP
regulation on AS need to be further studied by experiments. Lastly, our study can provide
a perspective for understanding the regulatory mechanism of alternative splicing in cancer,
and the corresponding results are helpful for the treatment for RCC.

4. Materials and Methods
4.1. Data Acquisition and Processing

Data on mRNA splicing patterns of KIRC were downloaded from the TCGA SpliceSeq
portal (https://bioinformatics.mdanderson.org/TCGASpliceSeq) (accessed on 9 February
2020). TCGA SpliceSeq is a web-based bioinformatics resource with information of mRNA
splicing patterns of 33 different tumors, which provide the PSI value for each splicing
event in each cancer sample [68]. The PSI value uses a ratio to quantify the expression of
splicing events [69]. The name of each ASE is composed of the gene symbol, ID number,
and splicing type, for example, RACGAP1_21625_AT. In total, 72 normal samples and
533 KIRC samples were enrolled in the analysis of ASEs, and the mean value of each AS in
the normal and KIRC samples was used to replace the missing values of each ASE. We also
downloaded full clinical follow-up information data of 537 patients through TCGA Data
Commons (https://gdc.cancer.gov/) (accessed on 8 October 2020) for the KIRC cohort.

The expression datasets, including 20,501 genes for 72 normal samples and 529 KIRC
samples, were downloaded from The Cancer Genome Atlas (TCGA, http://cancergenome.
nih.gov/) (accessed on 24 July 2020). After removing genes that did not express in more
than 50% samples, 18,103 genes were left for further study. The list of 1826 RBPs was
obtained from hRBPome (http://caps.ncbs.res.in/hrbpome/) (accessed on 28 June 2020),
and each RBP had to be reported by at least two studies. The list of 1635 TFs came from a
review of human transcription factors [70].

We downloaded protein–protein interaction (PPI) datasets from the STRING database
version 10.5 (http://string-db.org) (accessed on 23 November 2020), which included direct
(physical) and indirect (functional) interactions.

https://bioinformatics.mdanderson.org/TCGASpliceSeq
https://gdc.cancer.gov/
http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
http://caps.ncbs.res.in/hrbpome/
http://string-db.org
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4.2. Identify Cancer-Specific Alternative Splicing Events

The mutual information-sure independence screening (MI-SIS) method [71] was used
to identify cancer-specific ASEs in our curated datasets. The mutual information value
between ASE and the classification of samples (i.e., tumor or normal samples) was first
computed for each ASE. Then, 50 ASEs with the highest mutual information value were
identified. On the basis of the top 50 ASEs, an event set composed of these 50 events was
processed to the next screening process by using the iterative sure independence screening
(ISIS) with tenfold cross-validation (CV) method, and LASSO as the penalty function for
intermediate penalized likelihood estimation to form the final set of those highly related to
cancer ASEs. Details of the MI-SIS method can be found in Supplementary Materials.

4.3. Identification of Differentially Expressed RBPs and TFs

The expression data of 1826 RBP genes and 1635 TF genes were screened from the
mRNA expression profiles. Then, log2FC and Wilcoxon test were used to select differ-
entially expressed RBPs and TF genes between tumor and normal samples. Only genes
with an absolute value of log2FC larger than 1 (|log2FC| > 1) and adjusted p value < 0.05
(Wilcoxon test) were selected as differentially expressed RBPs and TFs.

4.4. Construction of TF–RBP–AS Triplets in KIRC

In this study, a linear mixed-effects model as shown in (1) was used to build TF–RBP–
AS triplets. The model was as follows:{

YAS = β0 + β1XRBP + β2XTF + β3XRBP ∗ XTF + β4Xgender + β5Xstage + b1Zage + b2Zrace + b3Zyear + ε,
bi ∼ N(0, D), i = 1, 2, 3, ε ∼ N(0, Σ)

(1)

where YAS is the PSI value of an ASE, which is the dependent variable. XRBP and XTF
are the expressions of an RBP and a TF, respectively, and Xgender and Xstage are the age at
initial pathologic diagnosis and the year of initial pathologic diagnosis, respectively. XRBP,
XTF, Xgender and Xstage are the fixed effects. Zage, Zrace, and Zyear are age at diagnosis, race,
and year of diagnosis, respectively, which are random effects. β3 represents the interactive
effect of RBP and TF. If the interaction of RBP and TF affects AS, then β3 is expected to
be nonzero.

Only when the p values of RBP, TF, and the interaction term of RBP and TF were less
than 0.05, and the coefficient of the interaction term of RBP and TF was nonzero, were such
TF–RBP–AS triplets considered to be statistically significant. Details of this study design
are illustrated in Figure 6.

4.5. Protein–Protein Interaction Network Analysis

The protein–protein interaction network in which all TF–RBP–AS triplets were in-
volved was constructed and plotted by Cytoscape (https://cytoscape.org/) (accessed on
20 November 2020). In addition, the triplet network that was involved in the known PPI
network in STRING was plotted by Cytoscape.

4.6. GO Functional and KEGG Pathway Enrichment Analyses of Genes

TF and RBP genes contained in TF–RBP–AS triplets were selected to perform gene on-
tology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway-enrichment
analysis using Metascape (https://metascape.org/gp/index.html#/main/step) (accessed
on 4 January 2021). A p value less than 0.05 was statistically significant.

https://cytoscape.org/
https://metascape.org/gp/index.html#/main/step
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Figure 6. Research methodology. (A) Key ASEs and differentially expressed RBPs and TFs were identified, expression 
data of RBP and TF and PSI value of ASE were integrated, relevant clinical information of the patient from the data of 
TCGA-KIRC was extracted, and all data were integrated. (B) The linear mixed-effects model was used to predict triplets. 
Only triplets with significant β1, β2, and β3 p values were considered and selected for the following analysis. Each triplet 
contains three objects: the expressions of TF and RBP and the PSI value of ASE. (C) For each triplet, we grouped samples 
into “low” and “high” groups on the basis of the expression level of TF (bottom/top 40% samples) in the specific triplet, 
and we compared Pearson’s correlation coefficient values of RBP expression and PSI value of ASE in two groups, iden-
tifying TF function categories. (D) In order to explore the prognostic value of these triplets, clustering analysis was per-
formed, and a PPI network was constructed; enrichment and survival analyses were carried out. 
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Figure 6. Research methodology. (A) Key ASEs and differentially expressed RBPs and TFs were identified, expression
data of RBP and TF and PSI value of ASE were integrated, relevant clinical information of the patient from the data of
TCGA-KIRC was extracted, and all data were integrated. (B) The linear mixed-effects model was used to predict triplets.
Only triplets with significant β1, β2, and β3 p values were considered and selected for the following analysis. Each triplet
contains three objects: the expressions of TF and RBP and the PSI value of ASE. (C) For each triplet, we grouped samples
into “low” and “high” groups on the basis of the expression level of TF (bottom/top 40% samples) in the specific triplet, and
we compared Pearson’s correlation coefficient values of RBP expression and PSI value of ASE in two groups, identifying TF
function categories. (D) In order to explore the prognostic value of these triplets, clustering analysis was performed, and a
PPI network was constructed; enrichment and survival analyses were carried out.

4.7. Establishment of Triplet Signature for KIRC Prognosis

We used the R survival package and coxph function for survival analysis. RBPs, TFs,
and ASEs in TF–RBP–AS triplets were integrated into triplet signatures through calculating
risk scores with the following formula:

RS = Coefficient of ASE ∗ PSI value of ASE+
2

∑
i=1

Coefficient of Gene(i)∗ Expression of Gene(i). (2)

where RS is a triplet signature risk score, short for “risk score”; Coefficient of ASE is the
regression coefficient of ASE Gene in the model of univariate Cox regression; PSI value of



Int. J. Mol. Sci. 2021, 22, 8789 15 of 18

ASE is the PSI value of ASE for the sample. Coefficient of Gene is the regression coefficient
of the TF or RBP gene in the model of univariate Cox regression; Expression of Gene is the
expression value of the TF or RBP gene. On the basis of this formula, each sample could
obtain a triplet signature risk score. Then, the median risk score was used as the cutoff to
divide patients into high- or low-risk subgroups. A Kaplan–Meier (KM) survival curve
was created and the log-rank test was then performed to compare survival between the
high- and low-risk groups.

4.8. Statistical Analysis and Software

Data were analyzed and visualized using R statistics software version 3.6.1 and ggplot2
package. Correlations were assessed using Pearson’s correlation coefficient.

5. Conclusions

Our computational method identified TFs whose expression levels could affect the
relationship between RBPs and target alternative splicing outcomes. Using this method, we
identified 6519 significant TF–RBP–AS triplets, including 290 TFs, 175 RBPs, and 16 ASEs.
Regulatory networks constructed for TF–RBP–AS triplets explained the mechanism of the
dysregulation of AS by TF-dependent RBP. Pathway enrichment analysis indicated that
these triplets were highly correlated with the development of RCC. Therefore, they could
be used as therapeutic targets in novel treatment strategies in kidney cancer. Finally, the
survival analysis based on risk score models in our study seems to indicate that triplets
could also serve in the future as prognostic markers in RCC cases. Future research is
needed to confirm this hypothesis and promising data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22168789/s1, Figure S1: receiver operating characteristic curve of 33 ASEs; Figure S2: gene
pair relationship comparison of PPI and triplets; Figure S3: alignment results of transcription factor
target genes; Table S1: details of differentially expressed RBPs in kidney cancer; Table S2: details
of differentially expressed TFs in kidney cancer; Table S3: details of 6519 TF-mediated significant
triplets; Table S4: detailed information on 5580 triplets with significant survival differences; Table S5:
comparison results of eight RBPs with binding sites; Table S6: 145 triplets which RBP has binding
sites on ASE. Supplementary Materials: details of iterative MI-SIS method.
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