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1  | INTRODUC TION

The knowledge of how a depleted population recovers is essen-
tial for conservation biology and sustainable harvest of natural 
resources (Kuparinen et al., 2014). In aquatic systems, collapses 
and impaired recovery have been particularly well documented 

(Hutchings, 2015; Neubauer et al., 2013), often in the absence of 
substantial reductions in habitat carrying capacities. For example, 
the abundance of the northern Atlantic cod (Gadus morhua, Gadidae) 
was estimated to be 2% of the maximum estimated population size 
(Nmax) in 1992 (Hutchings, 2015) and a moratorium on the Northern 
Cod fishery was declared. Despite the moratorium, the abundance 
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Abstract
Many considerably declined fish populations have not fully recovered despite re-
ductions in fishing pressure. One of the possible causes of impaired recovery is the 
(demographic) Allee effect. To investigate whether low- abundance recruitment dy-
namics can switch between compensation and depensation, the latter implying the 
presence of the Allee effect, we analysed the stock– recruitment time series of 17 
depleted cod- type and flatfish populations using a Bayesian change point model. 
The recruitment dynamics were represented with the sigmoidal Beverton– Holt and 
the Saila– Lorda stock– recruitment models, allowing the parameters of the mod-
els to shift at a priori unknown change points. Our synthesis study questions the 
common assumption that recruitment is stationary and compensatory and the high 
amount of scatteredness often present in stock– recruitment data is only due to 
random variation. When a moderate amount of such variation was assumed, stock– 
recruitment dynamics were best explained by a non- stationary model for 53% of 
the populations, which suggests that these populations exhibit temporal changes in 
the stock– recruitment relationship. For four populations, we found shifts between 
compensation and depensation, suggesting the presence of temporary Allee effects. 
However, the evidence of Allee effects was highly dependent on the priors of the 
stock– recruitment model parameters and the amount of random variation assumed. 
Nonetheless, detection of changes in low- abundance recruitment is essential in stock 
assessment since such changes affect the renewal ability of the population and, ulti-
mately, its sustainable harvest limits.
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of the cod stayed below 10%Nmax for the next 25 years (DFO, 2017; 
Hutchings, 2015). Similarly, the targeted and by- catch fishing mor-
tality of south Newfoundland white hake (Urophycis tenuis, Phycidae) 
was greatly reduced in 1994, the year in which its abundance was 
estimated to be 6%Nmax, but it stayed below 10%Nmax for the follow-
ing 15 years (Hutchings, 2015).

One of the possible causes of impaired recovery has been sug-
gested (Neubauer et al., 2013) to be the (demographic) Allee effect, 
that is, the positive dependence between the per capita population 
growth rate and population size at low abundance (Courchamp 
et al., 1999). However, the statistical evidence of Allee effects across 
species and populations is still limited (Gregory et al., 2010; Kramer 
et al., 2009; Liermann & Hilborn, 2001), including fish populations 
(Hilborn et al., 2014; Hutchings, 2014; Liermann & Hilborn, 1997; 
Myers et al., 1995). Finding evidence of Allee effects may have 
been hindered by methodological and data limitations (Perälä & 
Kuparinen, 2017). For detecting Allee effects, data at low abun-
dances are crucial as the lack of low- abundance data necessar-
ily leads to large uncertainty about the low- abundance dynamics 
(Perälä & Kuparinen, 2017). Moreover, evidence of Allee effects can 
be obscured by dispersion of data due to collecting it at the spe-
cies level instead of the population level (Perälä & Kuparinen, 2017). 
Also, at the population level, signals of Allee effects can be buried in 
noise which is often regarded as being caused by, e.g. the influences 
of climate or measurement error (Gregory et al., 2010). Yet, one un-
explored aspect regarding Allee effects is whether the dependence 
between the per capita population growth rate and population size 
can change in time and Allee effects remain unnoticed with models 
not adjustable to such temporal changes. Indeed, it has been sug-
gested that Allee effects can be strengthened by, that is, climate 
change and harvesting (Winter et al., 2020). More generally, popu-
lation dynamics may change in time as part of an ecological regime 
shift, which incorporates persistent changes in the structure and 
function of the ecosystem (Conversi et al., 2015; Lees et al., 2006; 
Scheffer et al., 2001; Vasilakopoulos & Marshall, 2015). Many ma-
rine and freshwater ecosystems are known to have gone through 
such regime shifts in their dynamics (Conversi et al., 2015; Möllmann 
et al., 2015).

Studies exploring Allee effects in natural populations utilize 
fecundity and mortality data (Liermann & Hilborn, 2001). For ma-
rine fish populations, the [per capita] birth rate is essentially (Begon 
et al., 2007) the number of recruits (the number of young fish en-
tering the fished population after surviving the larval phase) per the 
number of spawners often approximated from the spawning stock 
biomass (SSB). Here, the number of recruits can be defined as the 
number of individuals still alive at any specified time after the egg 
stage but usually, at the time of recruitment to a fishery (Hilborn & 
Walters, 1992). If the ratio of the number of recruits to SSB is reduced 
at low SSB (depensatory recruitment or depensation (Needle, 2001), 
the population exhibits the Allee effect. On the other hand, although 
a population exhibits compensatory recruitment (the ratio of the 
number of recruits to SSB is negatively dependent on SSB), the Allee 

effect can still occur, if the per capita mortality rate is high at low 
abundance (Neuenhoff et al., 2019).

Knowing the relationship between the number of recruits and 
SSB is essential when projecting future fish population dynamics 
and, thus, models for this relationship, i.e. stock– recruitment (S- R) 
models, play an important role in fisheries management (Hilborn & 
Walters, 1992; Mangel et al., 2013; Needle, 2001). S- R models tra-
ditionally used in fisheries management represent compensatory 
and time- invariant recruitment dynamics, and the high amount of 
scatteredness often present in S- R data is explained by random vari-
ation from the average S- R relationship. However, compensatory 
recruitment dynamics of fish populations have been studied with 
non- stationary models: In the Bayesian framework, the recruitment 
dynamics of Japanese sardine were modelled with the Ricker model 
(Ricker, 1954), a hidden Markov model describing two states of pro-
ductivity (Munch & Kottas, 2009). In addition, in the Bayesian frame-
work, recruitment dynamics of fish populations have been modelled 
with the Ricker and Beverton– Holt (Beverton & Holt, 1957) mod-
els allowing an unknown number of change points at which the pa-
rameters of the S- R models may change (Perälä et al., 2017). All of 
the studied fish populations experienced shifts in their recruitment 
dynamics and such shifts cannot be captured by a model that as-
sumes time- invariant parameters (Munch & Kottas, 2009; Perälä 
et al., 2017). Moreover, different statistical models were explored 
within the Ricker S- R framework including the addition of a step-
wise change in the S- R relationship (Ottersen et al., 2013). In 27 of 
38 North Atlantic fish populations studied, the S- R relationship was 
not constant but instead was better explained by a model allow-
ing for a stepwise change (Ottersen et al., 2013). The results with 
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compensatory models suggest that abrupt changes in S- R relation-
ships are common.

Commercially exploited fishes are a potential group of species 
to find productivity- related time series at diverse population abun-
dances (Jensen et al., 2012), and thus, they provide an ideal case for 
studying temporal changes in reproductive dynamics. Furthermore, 
the study of Allee effects requires that population abundances have 
declined to the level at which possible Allee effects would manifest 
(Hutchings, 2014). Time- series data on such populations are most 
abundantly available in cod- type species and flatfishes. Thus, to in-
vestigate whether recruitment can switch between compensation 
and depensation, the latter implying the Allee effect, we analyse S- R 
time series of gadids and flatfish populations. Among all such popula-
tions available in the RAM Legacy Stock Assessment Database (RAM 
Database) (Ricard et al., 2012), we select the ones for which both 
recruit and SSB data are available and which have been depleted to a 
low abundance at some point during their monitoring period.

We model the S- R dynamics of the chosen fish populations by 
the sigmoidal Beverton– Holt (SBH) (Needle, 2001) and Saila– Lorda 
(SL) (Saila et al., 1988) models, which adjust to describing both com-
pensatory and depensatory recruitment, and let the parameter val-
ues shift at a priori unknown change points. By using non- stationary 
models, we take an approach that is alternative to the common as-
sumption of a high amount of random variation in S- R data, letting 
part of the variation be explained by temporal changes in the average 
S- R relationship. We demonstrate in the Bayesian framework that, 
when a moderate amount of random variation is assumed, drastic 
temporal changes in recruitment may be revealed and among them, 
signals of temporary Allee effects can be discovered. However, we 
notice that the evidence of Allee effects is highly dependent on the 
priors of the S- R model parameters and the amount of random vari-
ation assumed.

2  | METHODS AND DATA

2.1 | Change point model

We modelled S- R dynamics with a change point model that consists 
of an S- R model and an unknown number of change points at which 
the S- R model parameters change. The S- R model relates SSB and 
the number of recruits with a given lag, and we denote SSB in the 
years of recording by S1, S2,…, ST and the corresponding numbers 
of recruits, adjusted to be for age- 0 recruits, by R1, R2,…, RT. The 
change points divide the data into segments, � = 1, 2,…, I, where I  
is the number of change points. We assumed that the time elapsed 
since the last change point, the run lengths,rt ∈ {0, 1,…, t − 1}, 
t = 1, 2,…, T form a Markov chain.

The same underlying predictive model was assumed for the 
data in different segments so that only the parameters of the model 
vary between segments. The parameters of the underlying predic-
tive model in different segments, denoted by ��, � = 1, 2,…, I were 

assumed to be independent and identically distributed. The random 
variable �(r)

t
, t = 1,…, T denotes the approximation of �� at time t, 

inferred from a run length rt. Given the segments � and the model 
parameters ��, we assumed Rt, t = 1,…, T to be independent of each 
other.

The Bayesian change point model consisted of the following con-
ditional probability distributions:

Above, the output distribution (1) is defined by the underlying 
predictive model, and (2) is the joint prior distribution of the model 
parameters. The transition probability (3) is the change point prior 
and (4) is the initial run length distribution.

2.2 | Underlying predictive model

For the simplicity of notation, we occasionally omit (r) and t, as well as 
ρ, in this and the following section. With this notation, the logarithm 
of R was modelled as a normally distributed random variable, 
log (R) ∼ N

(
�, �2

)
, with segment- wise constant standard deviation, � 

and mean, � = log
(
R̂ (S)

)
− �2∕2. With this model,R obeys a lognor-

mal distribution with mean R̂ (S) and standard deviation proportional 

to the mean, 
√
exp

(
�2

)
− 1R̂ (S). This is a reasonable choice since 

there is a tendency for variability about the S- R curve to be higher at 
larger spawning stock sizes (Hilborn & Walters, 1992). The estimation 
errors of SSB and the number of recruits were not considered in our 
model.

The function R̂ describes the average relationship between the 
number of recruits and SSB in a segment. In this study, we modelled 
this relationship with two different models, the sigmoidal Beverton– 
Holt and Saila– Lorda S- R models (Needle, 2001; Saila et al., 1988). 
The SBH model (Figure 1) can be formulated as:

so that � =
(
R∞, S50, c

)
, where R∞ is the asymptotic maximum number 

of recruits, S50 is the SSB that produces half of R∞ and the parameter 
c > 0 controls whether the recruitment dynamics are compensatory or 
depensatory. This model produces compensatory recruitment when 
c ≤ 1 (c = 1 corresponds to the traditional Beverton– Holt model) and 

(1)p
(
log

(
Rt
) |St , �(r)t−1

)
, t = 1,…, T ,

(2)p
(
�
(0)

t

)
, t = 1,…, T ,

(3)p
(
rt|rt−1

)
, t = 2,…, T and

(4)p
(
r1
)
.

(5)R̂ (S) =
R∞

1 + (S50∕S)
c
,
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depensatory recruitment when c > 1. The SL model (Figure 1) can be 
parameterized as follows:

so that � =
(
k, Sk , c

)
, where k is the maximum number of recruits, pro-

duced when S = Sk, and c denotes the depensation parameter as for 
SBH.

2.3 | Prior distributions for the underlying 
predictive model

A priori, we assumed the parameters of the underlying predictive 
model to be independent. For each parameter, we chose to use a 
weakly informative prior: a uniform distribution (Unif) or a mixture 
of uniform distributions. With such priors, we only constrained the 
parameter values to realistic ones but did not favour any particular 

values in the chosen ranges. Moreover, we carried out sensitivity 
analysis in terms of the chosen ranges.

The priors of the parameters R∞ (SBH) and k (SL) were set to 
R∞, k ∼ Unif

(
Rmin, a ⋅ Rmax

)
, with Rmin = min

t = 1,...,T
Rt and Rmax = max

t = 1,...,T
Rt 

(Table S9). In the empirical data, the coefficient a was set to 1 for 
populations the time series of which contained SSB values higher 
than SSBmsy (the amount of SSB that corresponds to maximum sus-
tainable yield). For populations with all SSB data below SSBmsy, we 
set a = 5. Similarly, the prior distributions of the parameters S50 
(SBH) and Sk (SL) were set to S50, Sk ∼ Unif

(
Smin, b ⋅ Smax

)
 with 

Smin = min
t = 1,...,T

St and Smin = min
t = 1,...,T

St (Table S9), using the values b = 1 

and b = 5 for populations which had some SSB data above SSBmsy or 
had all SSB data below SSBmsy respectively. The values set for a and b 
were arbitrary and we carried out a sensitivity analysis fitting the 
models for all populations with several different values of a and b. In 
method validation with simulated S- R data sets, we set a = 3 and 
b = 3.

The prior distribution of the depensation parameter c was set 
to a mixture of two uniform distributions that gives equal prior 
probabilities for depensatory and compensatory recruitment: 
c ∼ (1∕2) ⋅ Unif (0.05, 1) + (1∕2) ⋅ Unif (1, d). This is similar to the 
prior distribution of c used by Perälä and Kuparinen (2017), except 
that with the change point detection method used in this study, the 
density function does not need to be differentiable. In order to keep 
the value of c strictly positive, the support of the distribution was 
bounded from below by 0.05. For the upper bound of the support, 
we set d = 5 when the coefficients of the upper bounds of the other 
S- R model parameters were set to a = 1 or 5, and b = 1 or 5. In the 
sensitivity analysis, we also explored higher values for d in the em-
pirical data sets. In method validation, we set d = 5.

The standard error � of the underlying predictive model was also 
given a uniform prior distribution: � ∼ Unif

(
�reg, 2

)
. To see the impact 

of our assumptions about the amount of random variation present in 
the S- R dynamics on the results, we carried out a sensitivity analysis in 
the empirical data by testing the values 0.05, 0.1, 0.3, 0.5, 0.7 for �reg. 
In the simulated data sets, we tested the performance of the method 
in two cases: (i) �reg = 0.05 and (ii) �reg set to the actual value of � 
used in simulation. The upper bound of the support was higher than 
the sample standard deviations of the empirical data sets. By setting 
the upper bound to a value this high, we did not force any segmenta-
tion in the data sets; with this prior, all variation in the data sets could 
be described by dispersion from the mean S- R curve of a stationary 
model. If any change points were to be detected, dividing the time 
series in segments would, presumably, decrease the value of �. With 
the uniform prior, we also considered the possibility of the dispersion 
from the segment- wise mean S- R curve varying between segments.

2.4 | Change point prior

The change point prior was defined using a constant hazard function 
(Adams & MacKay, 2007):

(6)R̂ (S) = k

(
S

Sk

)c

exp
(
c
(
1 − S∕Sk

))
,

F I G U R E  1   The sigmoidal Beverton– Holt (SBH) and Saila– Lorda 
(SL) stock– recruitment models describe the relationship between 
the number of recruits (vertical axis) and spawning stock biomass 
(SSB; horizontal axis). With SBH, recruitment monotonically 
increases with increasing SSB to the asymptote, R∞. The amount 
of SSB that produces R∞∕2 is denoted by S50. SL is domed shaped; 
it is increasing when SSB < Sk and decreasing when SSB > Sk, and 
its maximum, k, is obtained when SSB equals Sk. With their third 
parameter, c, SBH and SL allow the possibility of a convex region 
at low SSB representing depensatory recruitment (Iles, 1994). 
The models produce compensatory recruitment when c ≤ 1 (c = 1 
corresponds to the traditional Beverton– Holt and Ricker models) 
and depensatory recruitment when c > 1. Compensatory and 
depensatory recruitment are illustrated with c = 0.3, 1 and c = 5, 
respectively, while R∞ = k = 20, 000 and S50 = Sk = 1, 000

(a)

(b)
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for t = 2,…, T. With this model, the prior probability of a change point 
is 1∕�. We assumed that a change point occurred before the first data 
point, i.e. p

(
r1 = 0

)
= 1. Moreover, we set a high prior probability for a 

change point in the empirical data by fitting the model to the data sets 
with � = 10. In method validation, we also tested the impact of a lower 
prior probability (� = 50) on the results.

2.5 | Bayesian inference

To infer the run lengths and the model parameters, we applied the 
Bayesian online change point detection method (BOCPD; Adams 
& MacKay, 2007), combined with simulation- based filtering (Liu & 
West, 2001; Perälä et al., 2017). The method processes data in a se-
quential manner, updating estimates for the parameter values and 
computing posterior probabilities of run lengths after each data 
point. The run length posterior probabilities were used for computing 
smoothed run length probabilities (Perälä et al., 2017; Appendix S1: 
Section 1), i.e. run length probabilities in retrospect, given the whole 
data. The smoothed run length probabilities are not affected by single 
outliers, and based on them, the data sets were divided into segments. 
In this, we maximized the product of the smoothed run length prob-
abilities over all possible segmentations (Appendix S1: Section 1.2), 
obtaining the most likely segmentation (MLS) (Perälä et al., 2017) of 
each data set. In MLS, we set the maximum number of segments to 
five in each data set and considered only segments that consisted of 
at least 3 years, except at the beginning and the end of the time series, 
since the data cannot inform when the first segment started or the 
last one ended. Although we focused on MLS, inspection of alterna-
tive segmentations of the data is also easy with the chosen approach.

For parameter estimates, we considered the conditional prob-
ability distribution of the S- R model parameters given the data 
belonging to a given segment at time t (the run- specific posterior 
distribution of the model parameters) (Appendix S1: Section 1.3). 
We were mainly interested in the marginal posterior distribution of 
the depensation parameter c and, related to it, we studied the poste-
rior probability of depensation inferred at the end of the segments, 
denoted by p� (D), � = 1,…, Is , where Is is the number of segments in 
the given segmentation. This probability simply answers the ques-
tion of what is the probability that the depensation parameter has a 
value greater than 1, indicating depensatory recruitment at the end 
of the segment. In this, we also considered the median of the mar-
ginal posterior distribution of c at the end of the segments. When the 
posterior probability of depensation and the posterior median indi-
cated depensation at the end of a given segment, the results implied 
that recruitment was depensatory during that particular time period. 
Moreover, although we considered parameter estimates according 

to a certain segmentation, the chosen approach also provides full 
parameter posterior distributions which account for the uncertainty 
related to the location of the change points.

When combined with simulation- based filtering, BOCPD is a 
stochastic method. Thus, there was variation between inferred S- R 
dynamics when fitting was repeated by using a different set of ran-
dom samples in the filter, although the priors were not changed. This 
variation was decreased when the number of samples was increased, 
and also more informative priors could make the results more stable. 
To estimate the robustness of the results obtained in the empirical 
data with a chosen number of samples in the filter, we first repeated 
the model fitting twice using different samples. For the populations 
for which evidence of depensation was found in this initial trial, we 
repeated the model fitting once more so that, in total, we obtained 
three replicates for each model and each prior setting for these pop-
ulations. Initially, we fitted the models using 106 samples in the filter. 
If there were considerable differences in the results obtained by dif-
ferent samples, we increased the number of samples in the filter to 
5 × 106 and obtained results with sufficiently low variation.

2.6 | Empirical data

Of the various fish populations in RAM Database, we focused on cod- 
type species and flatfishes, extracting the populations that could poten-
tially exhibit the Allee effect according to a suggested reference point 
(Hutchings, 2014). More specifically, we chose populations which met 
the Allee effect abundance threshold (Hutchings, 2014), i.e. SSB had 
been below 0.26SSBmsy in some year during the monitoring period. All 
populations that met such criterion did not have both recruit and SSB 
data available, and in total, we studied 17 populations (Table 1). Also, 
in RAM Database, the recruit time series are adjusted to be for age- 0 
recruits when that age data are available, and for some populations, 
S- R data were partly missing at the beginning or end of the time series. 
Such years were not included in the analysis and consequently, one of 
the chosen time series (Yellowtail flounder Southern New England/
Mid- Atlantic) did not include the data of the only year in which SSB 
had been below the Allee effect abundance threshold. However, the 
preceding recorded value of SSB was very close to the threshold, with 
respect to the range of SSB values in the data, and thus, we regarded 
this population to have data at low abundance. Moreover, one of the 
populations (Petrale sole Pacific Coast) had data from 1876 onwards 
but at the beginning of the time series, there were long periods at which 
recruitment was constant. These early records were not regarded as 
reliable estimates and we chose to analyse only data from 1940 on-
wards, the latest estimates being from 2016. Overall, the length of the 
analysed time series ranged from 7 to 76 years.

2.7 | Data simulation for method validation

To validate our method, we simulated data that resemble S- R 
time series of depleted populations which have changes in their 

(7)p(rt�rt−1) =

⎧
⎪⎪⎨⎪⎪⎩

1

�
if rt =0

1−
1

�
if rt = rt−1+1

0 otherwise
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low- abundance recruitment dynamics. In this, we generated data 
sets with two segments, the first one representing depensatory 
recruitment dynamics and the second one compensation. This 
appeared to be the most common order in the empirical data sets 
in which we found changes between compensation and depen-
sation. The lengths of the depensation and compensation seg-
ments were sampled uniformly from the values 3 to 8 and 10 to 
12 respectively. Compared to the empirical data sets for which 
we found depensation evidence, the test data sets were simpler 
as they resembled only those parts of the empirical time series 
in which changes between compensation and depensation were 
found.

We generated S- R data using the SBH and SL models. Assuming a 
considerable difference in low- abundance recruitment between the 
segments, we sampled the value of the depensation parameter from 
the intervals 

[
2, 3

]
 and 

[
0.2, 1

]
 in the segments of depensation and 

compensation respectively. Values of other S- R parameters were 
sampled from ranges similar to the values inferred for the empirical 

data sets with depensation evidence (Appendix S1: Section 1.4). 
While the value of S50 (or Sk) was kept constant, the value of R∞ (or k) 
was set higher in the depensation segment than in the compensation 
segment, taking into account the possibility of co- operation moving 
the carrying capacity upwards (Lidicker, 2010).

SSB data were generated such that the SSB values were evenly 
scattered in the segments and concentrated on small values 
(Appendix S1: Section 1.4). Moreover, we set the lowest SSB values 
in the depensation segments to 0.05 ⋅ S50 (or 0.05 ⋅ Sk). In most of the 
test data sets, we generated SSB values to appear in a random order. 
However, we also tested the performance of the method in data 
sets in which the segment- wise SSB values appeared in the order 
of magnitude. With the sampled SSB data and parameter values, re-
cruit data were generated from the lognormal distribution described 
above using � = 0.1, 0.3, 0.5, 0.7. In this, we required that the gener-
ated recruit data were evenly scattered around the mean S- R curves 
(Appendix S1: Section 1.4). For a given value of �, we generated 50 
data sets for each S- R model.

TA B L E  1   The names of the 17 cod- type or flatfish populations studied, the number of segments as well as the years of change points 
according to the most likely segmentation (MLS) using different values of �reg, and the time periods included in the analysis

The number of segments and the years of change points in MLS
Time 
periodPopulation name\�reg 0.3 0.5 0.7

Atlantic halibut (Hippoglossus, Pleuronectidae) Scotian 
Shelf and Southern Grand Banks

2– 3 (84,05) 1 1 1970– 2013

Atlantic cod (Gadus morhua, Gadidae) NAFO 2J3KL 1 1 1 1992– 2011

Atlantic cod Georges Bank 1 1 1 1978– 2009

Atlantic cod Gulf of Maine 1 1 1 2007– 2013

Atlantic cod West of Scotland 1 1 1 1981– 2016

Flathead sole (Hippoglossoides elassodon, 
Pleuronectidae) Bering Sea and Aleutian Islands

2 (10) 2 (10) 1 1977– 2011

Northern rock sole (Lepidopsetta polyxystra, 
Pleuronectidae) Eastern Bering Sea and Aleutian 
Islands

4 (92,00,06) 2– 3 (00,06– 07) 2 (07) 1975– 2014

Japanese flounder (Paralichthys olivaceus, 
Paralichthyidae) East China Sea

1 1 1 1986– 2012

Japanese flounder Sea of Japan North 1 1 1 1999– 2013

Petrale sole (Eopsetta jordani, Pleuronectidae) Pacific 
Coast

1 1 1 1940– 2015

Summer flounder (Paralichthys dentatus, Paralichthyidae) 
Mid- Atlantic Coast

2 (89) 1 1 1982– 2014

Winter flounder (Pseudopleuronectes americanus, 
Pleuronectidae) Southern New England/
Mid- Atlantic

2 (98– 99) 2 (98) 1 1981– 2010

Witch flounder (Glyptocephalus cynoglossus, 
Pleuronectidae) NAFO−5Y

2– 3 (88,00– 01) 1 1 1982– 2011

Yellowtail flounder (Limanda ferruginea, Pleuronectidae) 
Cape Cod/Gulf of Maine

1 1 1 1985– 2013

Yellowtail flounder Georges Bank 2 (81– 82) 1 1 1973– 2007

Yellowtail flounder Southern New England/Mid- Atlantic 3– 4 (87,89– 90,11) 3 (89,11) 2– 3 (89,13) 1973– 2013

Yellowfin sole (Limanda aspera, Pleuronectidae) Bering 
Sea and Aleutian Islands

3 (66,84) 1 1 1954– 2014
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3  | RESULTS

3.1 | Method validation

The accuracy of the simulation- based filtering method (Liu & 
West, 2001) in parameter inference played a major role in how accu-
rately parameter values were estimated for the change point model. 
In the simulated time series, a lack of data and their scatteredness 
could affect the estimation accuracy of the filter. Overall, estimates 
were more accurate in the compensation segments than in the 
depensation segments (Appendix S1: Tables S1, S2, S5, S6), when 
considered according to the actual segmentations. This reflects the 
availability of data; the compensation segments were set longer than 
the depensation segments and covered a wider range of SSB values. 
Moreover, when dispersion in the data sets increased, the accuracy 
in parameter estimation decreased. Regularization by setting �reg to 
the actual value of � used in simulation improved the accuracy of 
the filter in parameter estimation considerably. Particularly, for the 
depensation parameter, approximation was decent (the root mean 
square deviations between the posterior medians and the true val-
ues were ≤ 0.36; Appendix S1: Tables S5– S6) for � ≤ 0.5 for both 
models. When the SSB values appeared in the order of magnitude, 
the accuracy in parameter estimation was not consistently higher or 
lower, compared to the unordered data (Table S4).

Moreover, the prior probability of a change point may have a 
considerable impact on the accuracy of change point detection by 
MLS and thus, on the accuracy of parameter estimation for the 
change point model. Often, the change points in the simulated time 
series were not detected exactly but with a lead or delay. When the 
prior probability of a change point was set high (� = 10), most of the 
change points (96%– 98%) were detected with the maximum differ-
ence of two data points between the true and inferred change points 
for all values of � for SBH, using �reg = 0.05. For SL, the proportion 
of detected change points was lower (88%– 92%) for � = 0.5, 0.7. 
Nonetheless, when � = 10 and �reg = 0.05, the method produced a 
considerable amount of false change points, in addition to the actual 
ones (Appendix S1: Tables S1, S2). For � = 0.1, almost all of them oc-
curred at the beginning of the time series where the segment length 
was not limited, but for larger values of �, falsely inferred change 
points could appear in the middle of the compensation and depensa-
tion segments. Setting the prior probability of a change point higher 
(� = 50) decreased the number of falsely inferred change points 
while it did not considerably decrease the number of actual change 
points found (Appendix S1: Table S3). However, regularization by 
setting �reg to the actual value of � had the most remarkable impact 
on the accuracy of change point detection. For SBH, all of the change 
points were detected with the maximum difference of three data 
points between the actual and inferred ones, and no false alarms 
of change points were produced even for � = 0.5, when � = 10. For 
SL, the results were similar for � ≤ 0.3, but 8% of the change points 
remained unnoticed and also false alarms were given (6% of the all 
change points detected) for � = 0.5. When the data were highly scat-
tered (� = 0.7), a considerable proportion of detected change points 

(8%– 12%) were false alarms, despite regularization by the actual 
value of �. Also, many of the change points remained undetected 
(8% for SBH, 24% for SL).

To correctly identify changes between compensation and de-
pensation, the accuracy of the methods in inferring the type of 
low- abundance recruitment is most essential. Considering the 
possibility of inaccuracy in estimation of the depensation param-
eter, we regarded the posterior of c as indicating depensation only 
when the posterior probability of depensation was high (≥ 0.8) and 
the posterior median was over 1.3. Applying these criteria, the fil-
ter performed, overall, almost perfectly in detecting depensation 
for SBH for � ≤ 0.5 and for SL for � ≤ 0.3, when using �reg = 0.05 
(Appendix S1: Tables S1, S2). For larger values of �, the filter per-
formed decently for SBH, but was prone to inferring depensation 
for SL. Also, when the performance of the filter was tested only 
on short segments consisting of three data points, the inference 
of the type of recruitment could be considerably less accurate, 
depending on the availability of low- abundance data (Table S7). 
Furthermore, the inaccuracy of change point detection could affect 
the inference. Nevertheless, for � ≤ 0.3 for both of the S- R models, 
the fitted change point models correctly implied depensation for a 
large proportion (91%– 99%) of the data points that actually repre-
sented depensation while producing false inference of depensation 
in 1%– 5% of the data points that represented compensation, using 
� = 10 and �reg = 0.05. While the method could fail to infer the type 
of recruitment correctly in falsely inferred segments within the ac-
tual segments (for SL) and also when the actual segmentation was 
found, in most cases, false inference of depensation was caused by 
a delay in the change point detection. In such a case, the data at 
the beginning of the compensation segment were located in such 
a way that they could be regarded as belonging to the depensation 
segment as well. Vice versa, some of the data points in the depensa-
tion segments remained undetected due to a lead in change point 
detection, or the posterior distributions otherwise not meeting the 
thresholds we set for depensation. For � = 0.5, 0.7, the inference of 
the type of recruitment for the change point model was consider-
ably less accurate for both S- R models.

Regularization by setting �reg to the actual value of � improved 
the accuracy in inferring the type of low- abundance recruitment 
for the change point model, particularly for SBH for which 93%– 
100% of the data points representing depensation were detected 
and ≤ 1% of the data points in the compensation segments were 
falsely inferred representing depensation for � ≤ 0.5. For SL, such 
regularization increased the proportion of detected depensation to 
96%– 100% for � ≤ 0.5 and decreased false inference of depensation 
to ≤ 3% for � ≤ 0.3. However for SL, the proportion of false infer-
ence of depensation remained high (11%) for � = 0.5. For both of 
the models, the inference of low- abundance recruitment was inac-
curate for � = 0.7, despite the regularization. For � ≤ 0.5, false infer-
ence of depensation was only caused by a delay in the change point 
detection for SBH. This also hold for SL except that, in a few data 
sets for SL, when � = 0.5, the whole time series was inferred rep-
resenting depensation, when the data points in different segments 
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were very close to each other. Depensation remained undetected 
in some of the data points due to a lead in change point detection, 
or the posterior distributions otherwise not clearly indicating dep-
ensation according to the chosen thresholds. Moreover, on short 
segments consisting only of three data points, the availability of 
low- abundance data had a considerable impact on the detection of 
depensation. While depensation could remain undetected in short 
segments, false inference of depensation did not occur, using the 
regularization (Appendix S1: Table S8).

3.2 | Change points in the empirical data

The minimum amount of random variation around the segment- 
specific mean S- R curves that we assumed to be present in the em-
pirical data had an impact on the number of change points inferred 
by MLS. Naturally, when a high amount of random variation from 
the mean curves was assumed and �reg was set large, more changes 
in the S- R time series were explained by dispersion from the mean 
S- R relationship than with a smaller value of �reg. For example, for 
�reg = 0.3, the maximum likelihood segmentation consisted (Table 1) 
of more than one segment for nine populations (53% of the total) 
for both S- R models, while for �reg = 0.5 or 0.7, change points were 
inferred for four (24% of the total) or two populations respectively.

There were some differences in the inferred years of change 
points when different S- R models and values of �reg were used. Also, 
some differences appeared in the results when fitting was repeated 
using a different set of random samples. For some values of �reg, some 
of the change points were not detected with either of the S- R models 
or when fitting was repeated using other samples. However, when 
the number of change points matched, the difference in the results 
was not more than 1 year in most cases, including regularization by 
0.3 − 0.7 (Appendix S1: Sections 2.2 and 2.3). Moreover, the prior 
probability of a change point was set high in the analysis of the em-
pirical data sets and decreasing it would result in fewer change points 
inferred. Yet, the priors of the S- R parameters had an impact on the 
inferred recruitment dynamics and the change points detected.

All the change points in the empirical data found by MLS were 
not related to notable changes in the depensation parameter c. Since 
MLS does not distinguish between changes in the model parameters, 
a change point could be inferred based on a considerable shift in any 
of the model parameters. Also, although the parameters were a pri-
ori assumed independent, samples representing them could become 
correlated at the end of the segments (Appendix S1: Section 2.9) and 
more than one parameter could contribute to an inferred change in 
the S- R dynamics. Nonetheless, at some of the change points, there 
was a considerable shift in the marginal posterior distribution of the 
depensation parameter.

3.3 | Populations with evidence of depensation

For four populations (Northern rock sole Eastern Bering Sea and 
Aleutian Islands, Summer flounder Mid- Atlantic Coast, Yellowtail 

flounder Cape Cod/Gulf of Maine and Yellowtail flounder Southern 
New England/Mid- Atlantic; Table 2, Figures 2 and 3), we found 
one segment for each in MLS at which the posterior probability of 
depensation was over 0.75 at the end of the segment for both S- R 
models, at least with some value of �reg, and at which the recorded 
values of SSB and recruits were relatively low. Previously, Perälä 
and Kuparinen (2017) reported strong evidence for depensatory re-
cruitment dynamics, when the posterior probability of depensation 
was 0.74 or higher. Actually, in most of these segments in which our 
method predicted depensation, the posterior probability of depen-
sation was ≥ 0.90. In these segments of suspected depensation, the 
medians of the posterior distributions of the depensation parameter 
were also high (> 1.8) at the end of the segments. Despite this, un-
certainty about the value of the depensation parameter remained 
rather large in these segments. For the Northern rock sole, the 
methods actually inferred two depensation segments for SBH, but 
the latter segment did not include data at low SSB and thus, we did 
not regard the results to provide evidence of depensation in the last 
segment. Also, there were some populations, for which the method 
inferred high posterior probabilities of depensation in some time pe-
riods but such segments did not include low- abundance data (either 
SSB was not below or close to the Allee effect threshold or recruit-
ment was higher than in the rest of the data), only one of the S- R 
models indicated depensation or the posterior predictive distribu-
tions did not clearly indicate a good fit to the data.

Although the posterior probabilities of depensation were high in 
the considered segments for the Northern rock sole and the three 
flounder populations, and those segments contained low- abundance 
data, some uncertainty surrounded the existence of depensation. 
For the yellowtail flounder Cape Cod/Gulf of Maine population, the 
segment of suspected depensatory recruitment consisted only of 
4 years. Yet, although all the SSB values in the depensation segment 
were below the Allee effect abundance threshold of this population, 
recruitment was not at its minimum in this segment, compared to 
the rest of the data (Figure 2e). The evidence of depensation was 
strongly dependent on the recorded number of recruits in 1987 
(Figure 2f). Although MLS grouped the data in 1987 into the first 
segment, the posterior probability that this data point started a new 
segment was high, and as it was not clear how long such segment 
would last, this data point could also be an outlier (Appendix S1: 
Figure S2a). Moreover, if the years 1987– 1988 formed a segment, 
the posterior probability of depensation would still be high but such 
segment would have high recruitment (Appendix S1: Figure S3c). For 
the summer flounder, the depensation segment was 7 years long but 
the evidence of depensation was dependent on the data in 1988 
(Figure 2d), which was the only year in the depensation segment in 
which SSB had been below the Allee effect abundance threshold. 
While recruitment was very low in 1988, the rest of the data in the 
suspected depensation segment corresponded to high or average 
recruitment compared to the rest of the data (Figure 2c). For the 
Northern rock sole (Figure 2a and b), the depensation segment con-
sisted of 17 years, but there were only two SSB values (1975– 1976) 
below the Allee effect abundance threshold. In 1974, recruitment 
had been low (3.4 × 105), but the corresponding value of SSB was 
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not recorded. Yet, although the posterior run length probabilities 
strongly suggested grouping the data in 1975– 1991 into one seg-
ment, another possible segmentation of these data would have 
resulted in a model suggesting that non- stationary recruitment for 
this population was merely caused by changes in the asymptotic 
maximum number of recruits (Appendix S1: Figure S3a). For the 
yellowtail flounder Southern New England/Mid- Atlantic popula-
tion (Figure 3), the depensation segment consisted only of 3 years 
(2011– 2013) and in all of them, SSB had been above the Allee ef-
fect abundance threshold, although SSB in 2013 was close (893) 
to the threshold, considering the range of SSB values in the whole 
time series. The following value of SSB in 2014 was very low (243) 
and below the threshold, but the corresponding number of recruits 
was missing. Nonetheless, there could be a delay in the detection of 
the last change point which started the depensation segment. If this 
was the case, the depensation segment could be considerably longer 
(Appendix S1: Figures S2b and S3e).

The amount of depensation evidence that we found was depen-
dent on the amount of random variation from the mean S- R curves 
we assumed to be present in the empirical data. Indeed, for most of 
the four populations with evidence of depensation, increasing the 
lower bound of the variance parameter, �reg, decreased the number 
of change points that were found and also decreased the evidence 
of depensation; either the fitted models began to clearly imply com-
pensation, or the uncertainty of low- abundance recruitment in-
creased (Appendix S1: Sections 2.4.2 and 2.7). For example, for the 
Northern rock sole, setting �reg = 0.7 resulted in data at the begin-
ning of the time series showing stronger evidence for compensation 
than depensation for both S- R models, while setting �reg = 0.1 or 0.3 
resulted in evidence for depensation. For the summer flounder and 
the yellowtail flounder Cape Cod/Gulf of Maine population, recruit-
ment was inferred compensatory and stationary for 𝜎reg > 0.3 and 
𝜎reg > 0.1 respectively. However, for the other yellowtail flounder 
population, the strongest evidence of depensation was found with 
�reg = 0.3.

Moreover, the prior distributions of R∞ and S50 (or k and Sk, respec-
tively) had an impact on the inferred S- R dynamics and the amount 
of depensation evidence we found for some of the populations. For 
the Northern rock sole, the posterior probability of depensation at 
the first segment decreased when the upper bound of R∞ (or k) was 
increased, particularly for SBH, but the posterior predictive distri-
butions suggest that when the upper bound of the carrying capacity 

was set very high, the methods did not fit the models to the data well 
(Appendix S1: Section 2.7.1). On the other hand, in the first and third 
segments, the posteriors of R∞ were, to some extent, concentrated 
on values close to the upper bound of their support (Figure 2b), sug-
gesting that the asymptotic maximum number of recruits can also 
be clearly higher than the maximum value recorded, although this 
population had data in various abundances of SSB. For the yellowtail 
flounder Cape Cod/Gulf of Maine population, overall, the posterior 
probability of depensation increased when the upper bounds were 
increased. However, for the summer flounder, the impact of the pri-
ors R∞ (or k) and S50 (or Sk) on the inferred depensation probabilities 
was not considerable. For the yellowtail flounder Southern New 
England/Mid- Atlantic population, the data were very scattered and 
the results obtained by using different S- R models, samples in the 
filter and values of �reg varied considerably. Nonetheless, since this 
population had data at various abundances, the maximum recorded 
values for the number of recruits and SSB were regarded as decent 
upper bounds for the values of R∞ (or k) and S50 (or Sk).

Despite the sensitivity, the results obtained by MLS and setting 
the value of �reg low suggest that recruitment can change in time from 
depensation to compensation and particularly, vice versa. Evidence 
for the former was found in the data sets of three populations (the 
Northern rock sole, the summer flounder and the yellowtail flounder 
Cape Cod/Gulf of Maine population; Table 2, Figure 2), while only 
the yellowtail flounder Southern New England/Mid- Atlantic popu-
lation showed evidence for a change from compensation to depen-
sation (Table 2, Figure 3). All of these populations had at least one 
segment at which recruitment was inferred compensatory and which 
appeared immediately after or before the depensation segment, al-
though for the Northern rock sole, such segment did not include 
data at low abundance.

For these four populations with evidence of temporary depen-
sation, the inferred change points could also be related to consid-
erable changes in other model parameters than the depensation 
parameter (Table 2). For the Northern rock sole, there were consid-
erable shifts in the posterior medians of R∞, which, approximately, 
alternated between two values, the higher one of them being twice 
as large as the lower one. However, in all of the segments, uncer-
tainty about the value of R∞ was large (Figure 2b). For the sum-
mer flounder, the posterior medians indicated a considerable drop 
in the value of R∞ at the first change point (1989), followed by a 
smaller change at the second change point, but uncertainty about 

F I G U R E  2   The 90% credible intervals of the stock– recruitment function R̂ (average recruitment; figures a, c and e) in each inferred 
segment with respect to spawning stock biomass (SSB), and the marginal posterior distributions of the model parameters (figures b, d and 
f) after each iteration step in the segments for populations with evidence of depensation for which recruitment changed from depensatory 
to compensatory. The method updates the parameter values at every time step when a new data point arrives and after going through 
the whole time series, finds its most likely segmentation. For approximation of R̂, we considered the posterior distributions of the model 
parameters at the end of the inferred segments. The segments are illustrated with colours scaled to the segment- wise posterior probability 
of depensation, p� (D), inferred at the end of the segments. The shaded areas and the dashed lines within them show the intervals between 
the 5th and the 95th percentiles and the medians respectively. The threshold c = 1 between compensation and depensation is plotted with a 
black line in figures b, d and f. The data (figures a, c and e) are shown with filled circles or squares connected with lines corresponding to the 
order of recording, and they are coloured according to p� (D). The first data points in the segments have black edges. In figure e, the fourth 
segment, consisting of only 2 years, is not presented
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the value of R∞ was large in the first and third segments (Figure 2d). 
Interestingly, similar changes were inferred for the yellowtail floun-
der populations in 1989, although large uncertainty about the pa-
rameter value was again present in their first segment (Figures 2f 
and 3c). For the yellowtail flounders, the changes in the posterior 
median of R∞(or k  ) were relatively largest. For all these four pop-
ulations, there were also changes in the posterior median of S50 
(or Sk) but in almost all inferred segments, uncertainty about the 

parameter value was very large. The posterior medians of the vari-
ance parameter � were, in most cases, close to the value used in 
regularization. However, the method inferred the high scattered-
ness in the data of the yellowtail flounder Southern New England/
Mid- Atlantic population in 1973– 1988 as random variation and 
produced a posterior concentrated on values clearly greater than 
�reg (Figure 3c). In the second segment, the posterior of � was con-
centrated on smaller values.

(a) (b)

(c) (d)

(e) (f)
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As already noted, there was some synchrony in the inferred 
change points for the populations for which the evidence of dep-
ensation was found. Actually, the results strongly indicated that, 
for the summer flounder and the yellowtail flounder Southern New 
England/Mid- Atlantic populations, both of the inferred shifts in their 
recruitment dynamics appeared exactly at the same years. The first 
and the third change points of the yellowtail flounder Cape Cod/
Gulf of Maine population differed from these by 1 year at maximum. 
The second change point of this population differed from the change 
point inferred for the Northern rock sole in 2000 by 2 years at max-
imum. However, the difference between the other change points of 
the Northern rock sole and the change points of other three pop-
ulations was at least 3 years when �reg = 0.3. When �reg was set a 
lower value, the difference could be smaller and the method could 
also infer a change point for the northern rock sole in 2010– 2012 
(Appendix S1: Tables S11, S12).

4  | DISCUSSION

The results of the present study suggest that low- abundance re-
cruitment dynamics may change in time, but they also demonstrate 
that such changes can be hard to detect and their actual presence 
can be difficult to verify. Indeed, the results suggest that recruit-
ment dynamics may change between compensation and depensa-
tion, but they also show that signals of temporary depensation in 
data can easily be interpreted merely as random variation from a 
compensatory mean S- R curve. The amount of random variation we 
assumed to be present in the data of the studied 17 fish populations 
had a considerable impact on the number of change points and the 
amount of evidence for depensation found in our Bayesian analysis. 
Overall, we found evidence of depensation for four (24%) popula-
tions and, for these populations, the evidence of depensation was 
not found across the whole monitoring period but in particular time 
periods when the amount of random variation was assumed moder-
ate (Figures 2 and 3). The results also suggest non- stationary S- R 
dynamics for most (53%) of the populations studied, if the amount 
of random variation is assumed moderate, but some of the change 
points found were not related to changes between compensatory 
and depensatory recruitment. Since changes at low- abundance re-
cruitment may affect population recovery potential and be related 
to ecosystem- level regime shifts, the key objective of the present 
study was to question the common assumption that recruitment is 
stationary and compensatory and the high amount of scatteredness 
often seen in S- R data is only due to random variation from a mean 
compensatory S- R curve.

Occurrence of depensatory recruitment in some time periods 
implies that the population exhibits the Allee effect in that time 
period. The number (and proportion) of populations we found with 
evidence of depensatory recruitment dynamics and thus, Allee ef-
fects, was higher than what was found in previous studies (Liermann 

F I G U R E  3   The 90% credible interval of the S- R function 
R̂ (average recruitment, figure a) and the marginal posterior 
distributions of the model parameters (figure c) for the yellowtail 
flounder Southern New England/Mid- Atlantic population, 
illustrated in the same way as for populations in Figure 2. For 
this population, recruitment changed from compensatory to 
depensatory. Figure b illustrates data at low abundance and reveals 
a short segment in which recruitment was inferred depensatory

(a)

(b)

(c)
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& Hilborn, 1997; Myers et al., 1995), in which the evidence of Allee 
effects was found only for a few of the 128 fish populations stud-
ied. Our results are more similar to a more recent study by Perälä 
and Kuparinen (2017) who found statistical support for Allee ef-
fects for four of the nine herring populations they studied. Similar to 
their study, we restricted our analysis only to populations that had 
been depleted to low abundance at some point during the monitor-
ing period and gave equal prior probabilities for depensatory and 
compensatory recruitment. These can be essential factors in find-
ing evidence of Allee effects (Perälä & Kuparinen, 2017). In addi-
tion, our results demonstrate the role of detecting temporal changes 
in the population dynamics in discovering signals of Allee effects. 
Regarding temporal changes in general, our results are similar to the 
results by Ottersen et al. (2013), obtained by analysing recruitment 
dynamics of 38 commercially harvested fish stocks in the northern 
North Atlantic. The authors (Ottersen et al., 2013) found that the 
recruitment of approximately 70% of the studied fish populations 
was best explained by some kind of a change point model, although 
they assumed compensatory recruitment dynamics.

The Bayesian framework in which we chose to analyse the re-
cruitment dynamics has its key strength in that if, a priori, neither 
compensation nor depensation is favoured and a clear choice be-
tween compensatory and depensatory recruitment cannot be made 
based on the data, uncertainty about the low- abundance recruit-
ment remains large (Perälä & Kuparinen, 2017). The lack of low- 
abundance data is likely to result in such uncertainty. Thus, to be able 
to estimate the low- abundance recruitment dynamics, we only con-
sidered population which had been depleted to low abundance, but 
otherwise, we did not set any requirements for the data. However, 
our analysis pointed out that, to obtain accurate estimates for all of 
the S- R model parameters, data at high abundance may also be re-
quired. When high- abundance data were not available, results were 
often sensitive to the prior distribution of the (asymptotic) maximum 
number of recruits. On the other hand, since we used weakly in-
formative priors, uncertainty about the high- abundance recruitment 
often remained large. Also, by requiring that the populations had 
been depleted to low abundance at some point of the monitoring 
period did not, naturally, guarantee that every inferred segment had 
low- abundance data, and in many cases, uncertainty about the low- 
abundance recruitment dynamics remained large. Yet, we did not 
consider how long the populations had stayed at low abundance, 
and the populations could have low- abundance data only in 1 or a 
few years. Overall, some of the depensation segments we found 
were short (3 or 4 years). However, when testing the performance 
of the method in simulated time series, the method could estimate 
the depensation parameter accurately enough for inferring the type 
of recruitment correctly in most of the cases where the segments 
were short but contained data at low abundance, when sufficient 
regularization was applied.

Moreover, the change point detection method we used is very 
sensitive to changes in sequential data and thus, it is a potential tool 
for detecting temporal changes in S- R data. However, in the simu-
lated data, when the possible amount of random variation around 

the segment- specific mean curves was bounded from below to mini-
mum, the method could infer false change points along with the true 
ones and fit the S- R model to shorter segments of data than were ac-
tually present. This kind of over- fitting could naturally lead to infer-
ring false patterns for the average S- R relationship, including patterns 
indicating depensation. Regularization by a higher value improved 
the accuracy of model fitting considerably, yielding sufficiently ac-
curate change point detection and depensation inference for the sig-
moidal Beverton– Holt model, except when the amount of random 
variation was very high in the simulated data sets. Despite regular-
ization, there could be a lead or delay in the detection of the change 
point, but the chosen approach enables consideration of alternative 
segmentations as well. In a previous study of non- stationary recruit-
ment using a change point model (Perälä et al., 2017), although the 
underlying predictive model was different, the authors also limited 
the amount of random variation that could be present in their model. 
In the present study, we did not aim to give directions about the 
appropriate amount of regularization but carried out a systematic 
and comprehensive analysis about the impact of different regular-
izations on model fitting on the empirical data. The depensation 
evidence was found by using a moderate amount of regularization, 
and it remains a question whether the inferred change points for the 
populations with evidence of depensation truly indicated changes in 
their average S- R relationships, and depensation really was present 
in these populations, or if the patterns resembling depensatory S- R 
curves were only caused by random variation from stationary S- R 
relationships. Indeed, if there are recruitment regimes present in the 
empirical data, what is the realistic amount of random variation in 
the segments? Naturally, when a stationary model is fitted to S- R 
data, the amount random variation around its mean curve can be 
very high.

Without considering any segmentation, it is also an essential 
question, how well the underlying predictive model can capture the 
recruitment dynamics of fish populations. Although the underlying 
predictive model for the S- R relationship was similar to traditional 
S- R models in their assumptions, these assumptions may not be re-
alistic. Our model did not consider any dependence in consecutive 
SSB values. Also, we assumed that the yearly numbers of recruits 
are independent, given the parameter values. However, the order 
of magnitude that was present in some of the SSB data suggest that 
the value of SSB in a given year might depend on its previous val-
ues. Also, the strong positive autocorrelation of the residuals sug-
gests against the independence assumptions (Appendix S1: Section 
2.10). Considering such dependences could naturally yield to differ-
ent kinds of results concerning changes in low- abundance recruit-
ment. The limitations of the model in mimicking real- life data should 
also be kept in mind when regarding the method validation results. 
Nonetheless, modelling S- R dynamics by considering temporal de-
pendence remains a topic for future research.

If temporary Allee effects existed, the reasons behind them 
would naturally be of interest. However, mechanisms underlying 
temporal changes in the recruitment was not addressed by the model 
in the present study and including such effects in the model remains 
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a topic for future research. A more holistic approach to the ecosys-
tem could explain the partial synchrony in the results we obtained 
and help in judging whether the Allee effects really were present for 
the studied populations in the first place. Overall, recruitment is a 
complex process incorporating, at least, adult survival, adult fecun-
dity, juvenile survival and juvenile growth (Begon et al., 2007) and 
thus, there are many possible drivers behind its temporal changes. 
For example, fishing may have a considerable impact on recruitment. 
For fish, size- selective harvesting reduces body size and its vari-
ance in the exploited population (Uusi- Heikkilä, 2020). All else being 
equal, populations with different age structure may differ in their 
recruitment such that a population of older, larger individuals has a 
higher recruitment than a population of younger, smaller individuals 
(Venturelli et al., 2008). Also, harvesting decays the genetic diver-
sity of the exploited population and consequently, inbreeding may 
result in descendants with decreased fertility (Uusi- Heikkilä, 2020). 
Recruitment dynamics of a population at low abundance may also 
change in time due to changes in abundance of its forage popula-
tions (predators or competitors of its young). For example, Atlantic 
cod in the southern Gulf of St. Lawrence was at low abundance in the 
mid- 1970s and 1990s but its recruitment rate differed considerably 
between these time periods (Swain & Sinclair, 2000). Remarkably 
high recruitment, and quick recovery, at the end of 1970s, coincided 
with low abundance of the populations preying on its larvae and eggs 
(Swain & Sinclair, 2000). Contrarily, the abundance of the forage pop-
ulations was not reduced in the 1990s which coincides with low re-
cruitment of the cod population (Swain & Sinclair, 2000). Ultimately, 
changes in the recruitment dynamics of a given population may result 
from an ecological regime shift that causes changes at the abundance 
of its forage populations. Moreover, although the mortality rates of 
the populations also have an impact on their growth rate, we only 
studied recruitment. Relatively modest increases in cod natural mor-
tality by predation/competition have been shown sufficient to gener-
ate a demographic Allee effect (Kuparinen & Hutchings, 2014).

The present study suggests that reproduction may change in time. 
Most importantly, previously compensatory recruitment may change 
into depensation. Thus, our results suggest that, when estimating the 
recovery potential of a population, recruitment should not, a priori, 
be assumed compensatory nor stationary. With an S- R model not ad-
justable to changes in the recruitment dynamics, patterns in data in-
dicating Allee effects in some time periods may remain unnoticed and 
be explained merely by random variation from a compensatory mean 
S- R curve. Taking into account the possibility of temporary Allee ef-
fects is especially important in fisheries management, in order to avoid 
over- exploitation and, eventually, extinction of populations depleted 
to low abundances (Hilborn & Walters, 1992; Kuparinen et al., 2014). 
In practice, stock-  assessment predictions about the fish population's 
future development and its responses to alternative harvest strate-
gies should be derived based on full posterior predictive distributions 
that incorporate uncertainties surrounding the prevailing regime and 
the depensatory/compensatory nature of the low- abundance dy-
namics (Perälä & Kuparinen, 2015). From the conservation point of 
view, the possibility of changes from compensation to depensation 

is of importance as such changes may reshape the system response 
to small shifts in the environmental conditions, to human- induced 
disturbances and, consequently, evoke catastrophic transitions in 
the abundance of single populations (Scheffer et al., 2001; Winter 
et al., 2020), which may ultimately lead to ecological regime shifts 
concerning the whole ecosystem. Similarly, the risks of population 
collapses and prolonged recovery times can be highly elevated should 
a declined population experience a regime shift towards depensatory 
dynamics (e.g. Kuparinen et al., 2014).
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