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Abstract

Background: DNA methylation, a biochemical modification of cytosine, has an important role in lipid metabolism.
Fatty liver hemorrhagic syndrome (FLHS) is a serious disease and is tightly linked to lipid homeostasis. Herein, we
compared the methylome and transcriptome of chickens with and without FLHS.

Results: We found genome-wide dysregulated DNA methylation pattern in which regions up- and down-stream of
gene body were hypo-methylated in chickens with FLHS. A total of 4155 differentially methylated genes and 1389
differentially expressed genes were identified. Genes were focused when a negative relationship between mRNA
expression and DNA methylation in promoter and gene body were detected. Based on pathway enrichment
analysis, we found expression of genes related to lipogenesis and oxygenolysis (e.g., PPAR signaling pathway, fatty
acid biosynthesis, and fatty acid elongation) to be up-regulated with associated down-regulated DNA methylation.
In contrast, genes related to cellular junction and communication pathways (e.g., vascular smooth muscle contraction,
phosphatidylinositol signaling system, and gap junction) were inhibited and with associated up-regulation of DNA
methylation.

Conclusions: In the current study, we provide a genome-wide scale landscape of DNA methylation and gene
expression. The hepatic hypo-methylation feature has been identified with FLHS chickens. By integrated analysis, the
results strongly suggest that increased lipid accumulation and hepatocyte rupture are central pathways that are
regulated by DNA methylation in chickens with FLHS.

Keywords: DNA methylation, RNA-seq, Fatty liver hemorrhagic syndrome, Lipid metabolism, Cellular junction and
communication

Background
For chickens, fatty liver hemorrhagic syndrome (FLHS)
is a serious disease, which is characterized by massive
lipid accretion and hemorrhagic spots of the liver [1].
The prevalence of FLHS has been reported to be 4% and
even up to 16% [2, 3], especially for native chickens. The

physiological characteristics of FLHS are quite different
from common fatty liver syndrome (FLS). FLHS is more
serious than FLS due to the severe rupture of hepato-
cytes and blood vessels with conspicuous hemorrhagic
liver spots. For standard chicken farming, FLHS ac-
counts for 28 to 74% of all mortality [4, 5].
FLHS is tightly linked to lipid homeostasis, with disor-

ders of synthesis, transport, and oxygenolysis [6]. Indi-
viduals with FLHS have elevated lipid metabolism,
dominated by an anabolic process. With increased
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triglyceride (TG) deposition in hepatocytes, enlarged he-
patocytes and histological injury are observed [7]. More-
over, the disappeared cellular boundaries and destroyed
cellular junction are discovered, and the impaired hep-
atocyte structure is observed distinctly [8, 9].
Both environmental and genetic factors contribute to

FLHS with possibility for involvement of epigenetic
modifications [10, 11]. In particular, DNA methylation,
an important epigenetic modification, has been closely
associated with hepatic lipogenesis and fatty liver [12,
13]. It is widely recognized that transcriptional activation
is inversely correlated with DNA methylation [14].
Therefore, an integrative analysis of both the transcrip-
tome and the methylome is necessary for a full under-
standing of the involvement of epigenetics in FLHS.
Previous reports have demonstrated lipid metabolism to
be up-regulated with differential gene methylation in in-
dividuals with fatty liver disease [15]. Liu et al. identified
lipid metabolism genes (ACACA and MTTP) to be up-
regulated due to alterations in DNA methylation [16].
Sookoian et al. demonstrated hyper methylation of
PPARγ in fatty liver subjects [17].
In previous study, Zhang et al. described a chicken

FLHS model [3]. However, they did not evaluate the role
of DNA methylation in the model. Herein, the aim of
this study was to perform an integrated analysis of this
FLHS model by examining the DNA methylome and
transcriptome of chickens with FLHS.

Results
Comparison of DNA methylome profiles of chickens with
and without FLHS
Hepatic DNA methylomes of chickens with and without
FLHS were compared to determine whether hepatic lipid
metabolism was regulated by methylation changes. Overt
lower genome-wide methylation levels were detected in
the fatty liver group (Fig. 1a). The hepatic CpG (C repre-
sents cytosine and G represents guanine, while p

represents phosphate bond between nucleotides) methy-
lation levels of FLHS were lower in regions up- and
down-stream of gene bodies, while it’s not identical to
that in the gene body, the methylation difference in the
gene body was relative small (Fig. 1b). Methylation levels
of various functional regions around the gene body were
assessed and found to be decreased in promoter and
exon regions, but elevated in 5’UTR, intron, 3’UTR, and
repeat region (Fig. 1c). Similar methylation alterations
were detected in CHG and CHH sites (H represents A,
C, or T) (Supplementary Figure S2).

Identification and distribution of differentially methylated
regions (DMRs)
A total of 7623 DMRs were identified between the two
groups. The length of DMRs ranged from 51 bp to more
than 400 bp, with most DMRs centered on limits of 50
bp to 200 bp. Absolute methylation difference was under
40% (Fig. 2a-b). Chromosome distribution of DMRs is
shown in Fig. 2c, with the number of DMRs in various
functional region enumerated (Fig. 2d). Most enrich-
ment was in intron, with little enrichment in TSS,
5’UTR, 3’UTR, or TES regions.

Global gene methylation profile and differentially
methylated genes (DMGs) detection
We defined the DMGs when DMRs overlapped with an-
notated genes. A total of 4155 DMGs were detected
(Supplementary Table S1). Among which 561 DMGs
were identified as DMRs in promoter regions including
227 hyper-methylated DMGs and 330 hypo-methylated
DMGs, with four DMGs identified as both hyper- and
hypo-methylated DMRs in promoter regions (Fig. 3a).
Likewise, 3830 DMGs were identified as DMRs in gene
body regions including 964 hyper-methylated DMGs
and 2180 hypo-methylated DMGs, with 686 DMGs
identified as both hyper- and hypo-methylated DMRs in
gene body regions (Fig. 3a). The number of DMGs with

Fig. 1 Global methylation pattern in normal and liver and fatty liver. a Genome-wide methylation level in two groups. b Distribution of
methylation in gene body, up-stream and down-stream. Gene body, from TSS to TES; Up-stream (2 kb), 2000 bp of upstream region from TSS;
Down-stream (2 kb), 2000 bp of downstream region from TES. c Distribution of methylation in various regions. Including promoter, 5’UTR, 3’UTR,
intron, exon and repeat region

Tan et al. BMC Genomics            (2021) 22:8 Page 2 of 9



various DMR number are shown in Fig. 3b. Most DMGs
possessed less than three DMRs within corresponding
regions.

Integrative analysis of differentially expressed genes
(DEGs) and DMGs
The role of DNA methylation in mRNA expression was
explored by integrative analysis of whole-genome bisul-
fite sequencing (WGBS) and RNA-seq. A total of 1389
DEGs were defined (Supplementary Table S2), of which
318 overlapped with DMGs (Supplementary Table S3).
In addition, some of the overlapping genes were anno-
tated to be closely linked to lipid metabolism and

transport (e.g., ACACA, APOA4, and SCD) as well as
cellular junction and communication (e.g., PRKG1,
ITPR1, and DGKH) (Fig. 4a-b), which suggests an im-
portant role for DNA methylation in lipid homeostasis
and hepatocyte structure. In promoter regions (2 kb up-
stream of gene bodies), methylation levels were nega-
tively correlated with gene expression. Methylation levels
were stable for genes with high and no expression, with
a decreasing tendency for regions up-stream of the TSS
site of the genes with low and medium expression (Fig.
4a-b, Supplementary Figure S3). In down-stream regula-
tory regions, specific and stable methylation was found
for genes with various expression levels (Fig. 4c-d,

Fig. 2 Statistic for DMR in genome-wide scale. a The count and methylation difference of hyper DMR with various length. The x-axis indicates
the DMR length, the left and right y-axis indicates the number and methylation difference of DMR with various length. b The count and
methylation difference of hypo DMR with various length. c Statistic for hyper and hypo DMR count in each chromosome. d Statistic for hyper
and hypo DMR in various regions. Including promoter, TSS, 5′ and 3′ UTR, intron, exon, TES, and repeat region

Fig. 3 Methylation pattern and DMR number within DMGs. a Overlapping for DMGs with multiple DMRs. b Statistic for DMGs number with
different number of DMRs
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Supplementary Figure S3). In the gene body, the methy-
lation levels were similar to those in down-stream re-
gions, with higher levels compared to the up- and down-
stream regulatory regions.

Pathway enrichment analysis of overlapping genes
KEGG enrichment analysis was performed with the
overlapping genes of DMGs and DEGs. For all overlap-
ping genes, six of 14 pathways directly related to lipid me-
tabolism were significantly enriched. Some of the key
genes of lipid metabolism enriched in those pathways
were ACACA, SCD, and APOC3, as well as other overlap-
ping genes. In addition, the phosphatidylinositol signaling
pathway, related to cellular communication, was also
found to be significantly enriched (Fig. 5a). For overlap-
ping hyper-methylated DMGs and down-regulated DEGs,
glycerolipid metabolism was significantly enriched, which
indicates a reduced synthesis of diacylglycerol. Gap junc-
tion and the phosphatidylinositol signaling pathway were
down-regulated. Both are related to cellular junction and
communication and included ITPR1, PRKG1, and IPPK,
as well as other genes (Fig. 5b). For overlapping of hypo-

methylated DMGs and up-regulated DEGs, 13 pathways
were significantly enriched, which indicates the activation
of lipogenesis and oxygenolysis (e.g., PPAR signaling path-
way, fatty acid metabolism, and fatty acid biosynthesis)
(Fig. 5c).

Discussion
FLHS is distinguishable from FLS in chickens based on
hemorrhagic symptoms. Both FLHS and FLS feature by
excessive lipid accumulation [9]. With lipid deposition
and no treatment, mild FLS develops in to severe FLHS.
In previous studies, we reported an induction method
and reproduction mode by which to generate a fatty liver
chicken line [3]. For successive generations of the line,
fatty liver becomes less severe and presents only hepato-
cyte steatosis rather than a hemorrhagic phenotype. We
previously compared the epigenetic features of chickens
with mild FLS rather than severe FLHS [15]. Herein, we
compared the methylome and transcriptome of chickens
with and without FLHS, to identify the effect of DNA
methylation on regulatory pathways during FLHS.

Fig. 4 Overlapping genes between DMGs and DEGs. a Methylation and transcription levels of overlapping genes with DMR in promoter region,
red point indicates the lipid related genes while blue point indicates the cellular junction and communication related genes. b Methylation and
transcription levels of overlapping genes with DMR in gene body region. c The methylation levels of all genes with different transcriptional levels
in gene body, up- and down-stream in fatty liver group. d The methylation levels of all genes grouped by transcriptional levels in gene body, up-
and down-stream in control group
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The analysis of epigenetic modifications is widely
regarded as a valid approach to investigate the molecular
basis for a syndrome [18]. DNA methylation analysis is a
common approach and has been shown to play a crucial
role in the development of fatty liver [19]. In a previous
study, we reported lower methylation levels in gene bod-
ies, which included up- and down-stream regions [15].
Our results here are similar to those of our previous
study, in that lower methylation levels were also identi-
fied in regulatory regions (up- and down-stream of the
gene body). These results suggest comprehensive alter-
ations of the gene expression profile, indicating a global
effect on the FLHS methylome. A similar methylation
profile was reported by the non-alcoholic steatohepatitis
(NASH) study, with 76% hypo-methylated and 24%
hyper-methylated CpG sites in patients suffering ad-
vanced NASH compared to mild NASH [13]. This is
consistent with our findings, and suggests that distinct
characteristics of the methylome may be useful for diag-
nosing fatty liver.
Although the relationship among DNA methylation and

gene expression is quite complex and difficult to fully ex-
plain, DNA methylation is often considered a mechanism
for transcriptional repression [20]. In this study, four DEG
groups with none, low, medium, and high gene expression
levels were generated and the average methylation level of
those genes in each group was calculated and compared
correspondingly (Fig. 4c-d). This approach could show the
correlation of DNA methylation and gene expression glo-
bally, although no typical correlation coefficient was calcu-
lated and provided [21]. A negative correlation was found
for genome-wide methylation and gene expression.
Within promoter regions, a decreasing methylation trend
close to the TSS site was observed for genes with medium
and low expression level, which is consistent with tran-
scriptional activation. For highly expressed genes, loss of

methylation may result in elevated expression levels [21].
For a fine and effective methylation map of fatty liver, a
smoothing method was applied to detect DMRs highly as-
sociated with metabolic syndrome [22, 23]. A total of 7623
DMRs were identified with lengths between 50 bp and
200 bp, with DMR length approaching a normal distribu-
tion [24].
DMGs were identified by the overlap between func-

tional genes and DMRs. A total of 4155 DMGs were
found between the two groups based on transcriptional
profile, with 318 overlapping genes between DMGs and
DEGs identified. For these, genes related to lipid metab-
olism had increased expression levels and hypo-
methylated DMRs. ACACA, a key enzyme of de novo
lipogenesis [25], was hypo-methylated with up-regulated
expression. In fatty liver chickens, pathways of lipogen-
esis were found to be substantially elevated, with similar
alterations of both methylation and expression as previ-
ously reported [16, 26]. APOA4 has been tightly linked
to hepatic triglyceride export into serum [27]. Kim et al.
reported a negative correlation between DNA methyla-
tion and gene expression of APOA4 in fatty liver individ-
uals [28], which is consistent with our results. Likewise,
SCD, ELOVL6, and APOC3 were found to have an alter-
ation in both DNA methylation and gene expression.
Each of these genes could be a target gene regulated by
epigenetic modification in the process of FLHS. Genes
related to cellular junction and communication were
found to have hyper-methylated DMRs and decreased
expression levels. PRKG1 is involved in the gap junction
pathway and is related to metabolic syndromes. Hong
et al. demonstrated PRKG1 to be hypo-methylated and
increasingly expressed in a fatty liver model induced
with oleic acid [29]. Differences in that study from ours
may be due to different pathological processes resultant
form differences in the methods of induction. Rachel

Fig. 5 Pathway enrichment analysis of overlapping genes. a-c Pathway enrichment result with all the overlapping genes, hyper-methylated and
down-regulated genes, and hypo-methylated and up-regulated genes, respectively
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et al. demonstrated ITPR1 specific knock-out mice could
reverse fatty liver [30], although methylation data were
not provided. We found ITPR1 to be involved in cellular
junction and communication pathways, with hyper-
methylated DMRs and lower expression levels. These re-
sults are slightly different from previous reports and may
be due to differences in animal models. Our model is
more influenced by the rupture of hepatocytes and ves-
sels with genes down-regulation.
Due to the comprehensive nature of the relationship

between DNA methylation and gene expression, in-
volved pathways were enriched with the common genes
described above. For hyper-methylated and down-
regulated genes, most were enriched in the cellular junc-
tion and communication pathways (e.g., gap junction,
phosphatidylinositol signaling system, and vascular
smooth muscle contraction). Manuel et al. demonstrated
that impaired intercellular communication and gap junc-
tion were involved in the fatty liver pathological process,
with gap junction playing a protective role by mainten-
ance of homeostasis through cell-to-cell communication
[31]. Reduced glycerolipid metabolism indicates decreased
synthesis of diacylglycerol, which serves as a second mes-
senger for cell signal transduction [32], in conjunction
with the phosphatidylinositol signaling pathway. We iden-
tified blocked phosphatidylinositol signaling transduction
as well as dysfunction of the synthesis of diacylglycerol by
FLHS individuals, indicating impaired signaling transduc-
tion in hepatocytes. The result is an accumulation of TG,
hepatocyte rupture, and hemorrhagic spots. Broken hep-
atocyte and blood vessel structure could account for the
dysfunction of cellular junction and communication path-
ways as well as vascular contraction. We found these path-
ways to be regulated by DNA methylation, which implies
that hepatocyte rupture and a hemorrhagic phenotype are
regulated by DNA methylation.
Hypo-methylated and up-regulated genes related to

fatty acid metabolism were involved in biosynthesis and
elongation of fatty acids, as well as PPAR signaling path-
ways. The PPAR signaling pathway is widely regarded as
a hub target for lipid metabolism, the inhibition of which
could dampen hepatic fat accumulation, relieving fatty
liver [33]. Sookoian et al. found hyper-methylation of
PPARγ in fatty liver subjects [17], which suggests a
methylation regulatory target for FLHS. In previous re-
ports, we have discussed the status of lipid metabolism
pathways and related genes [3], but methylation analysis
was not performed. In this study, we found most genes
(e.g., ACACA, APOA4, and SCD) enriched in lipid re-
lated pathways have hypo-methylated DMRs and are up-
regulated in FLHS. These results suggest a global eleva-
tion of lipid biosynthesis, transport, and oxygenolysis to
be regulated by methylation network. Furthermore, ana-
bolic pathways, especially the lipogenesis process,

dominated the pathological process of FLHS, which is
consistent with Liu’s study [16]. Which indicates the
methylation changes on lipid metabolism could be a
major cause for FLHS.

Conclusions
In conclusion, our study closely links methylation to
chicken FLHS. By integrative analysis, a genome-wide
hypo-methylation pattern for FLHS was constructed.
The pattern had the following attributes: mRNA expres-
sion of genes was inversely correlated with methylation
levels for promoters and gene bodies; hypo-methylated
and up-regulated genes were mainly enriched in lipid-
related pathways (e.g., fatty acid metabolism, PPAR sig-
naling pathway, and fatty acid biosynthesis); by contrast,
hyper-methylated and down-regulated genes were
mainly enriched in the cellular junction and communi-
cation related pathways (e.g., gap junction, phos-
phatidylinositol signaling pathway, and vascular smooth
muscle contraction). These results strongly suggest that
increased lipid accumulation and hepatocyte rupture are
central pathways that are regulated by DNA methylation
in chickens with FLHS.

Methods
Ethical statement
All chickens were obtained from the Institute of Animal
Sciences, Chinese Academy of Agricultural Sciences
(IAS-CAAS, Beijing, China). Ethical approval (reference
number: IASCAAS-AE-03) was conferred by the animal
ethics committee of IAS-CAAS, which is responsible for
animal welfare. All experimental protocols were con-
ducted in accordance with guidelines established by the
Ministry of Science and Technology (Beijing, China).

Animals
The fatty liver susceptible line and control line of
Jingxing-Huang chicken were used for experiments [3].
Briefly, for the fatty liver susceptible line, the initial
Jingxing-Huang chickens (F0 generation) were induced
by a high-fat diet, while the chickens were fed a basal
diet for control line. The occurrence of fatty liver, with-
out dietary induction, in the F1 generation was as high
as 41.5% (n = 82) in the susceptible line and 18.75% (n =
80) in control line. Details were described by Zhang
et al. previously [3]. In this study, the F1 generation of
the two groups were used and all were fed the basal diet.
The basal diet was formulated based on NRC (1994) and
NY/T (33–2004). Feed and water were provided ad libi-
tum. All the chickens were raised in three-story step
cages (one chicken per cage) using the recommended
environmental conditions.
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Sample collection
All chickens (n = 82 in fatty liver group, n = 80 in control
group) in F1 generation were euthanized by carbon di-
oxide anesthesia and exsanguination by severing the ca-
rotid artery at 36th week after hatching. The liver
samples were collected, snap-frozen and stored at -80 °C
for future methylation analysis. Identification of fatty
livers was as described [3]. Phenotypic features are
shown in Supplementary Figure S1. Four livers with ob-
vious symptom and four normal livers were selected for
high-throughput sequencing. Six out of eight liver sam-
ples were consistent with our previous report [3].

DNA library preparation, whole-genome bisulfite
sequencing, quality control and mapping
In F1 generation, male chickens with FLHS in the fatty
liver group and non-FLHS chickens in the control group
were assessed. Genomic DNA was isolated from liver
samples (n = 4 per group) using the phenol-chloroform
method. The integrity was assessed by agarose gel elec-
trophoresis and the purity was checked using the Nano-
Photometer® spectrophotometer (IMPLEN, CA, USA),
and the concentration was measured using Qubit® DNA
Assay Kit in Qubit® 2.0 Flurometer (Life Technologies,
CA, USA). After quality control of DNA, library prepar-
ation was conducted [34]. Briefly, a total amount of
5.2 μg genomic DNA and 26 ng lambda DNA were frag-
mented by sonication to generate fragments of 200–300
bp with Covaris S220 (Covairs, Woburn, MA), followed
by end repair and adenylation. Then, cytosine-methylated
barcodes were ligated to sonicated DNA fragments as in-
structions. All the DNA fragments were processed twice
with bisulfite using EZ DNA Methylation-GoldTM kit
(Zymo Research, Orange, CA), before the resulting single-
strand DNA fragments were PCR amplificated using
KAPA HiFi HotStart Uracil + ReadyMix (2X). The con-
centration of DNA library was quantified by Qubit® 2.0
Flurometer (Life Technologies, CA, USA) and quantitative
PCR, and insert size was assayed based on Agilent Bioana-
lyzer 2100 system. Due to one library failed, seven libraries
were sequenced with the Illumina HiSeq 2500 platform
(Novogene, Beijing, China) with more than 20G of raw
data produced, which were deposited in SRA database (ac-
cession number: PRJNA682326). After quality control,
clean reads were generated using Trimmomatic 0.36
(parameter: slidingwindow: 4:5, leading: 3, trailing: 3,
illuminaclip: 2:30:7) [35]. Before mapping, the refer-
ence genome (Gallus 5.0) was bisulfite-converted (C
to T and G to A) and indexed with bowtie2 [36]. The
clean reads were fully bisulfite-converted (C to T and
G to A) and then were mapped to the converted gen-
ome using Bismark 0.16.3 software (parameter: -X
700 --dovetail) [37].

DNA methylation analysis and DMGs detection
Before methylation analysis, the duplication caused by
PCR amplification was removed using Bismark 0.16.3
[37]. Methylation levels were calculated using the
sliding-window (10 kb) method as described [15]. The
sum of methylated and unmethylated read counts in
each window were calculated. The methylation level for
each window and cytosine site is defined as: ML (C) =
reads (mC) / (reads (mC) + reads (umC)). Compared to
single methylated cytosine sites, DMRs were more effi-
cient for detection of methylation differences [23].
Therefore, DMRs were identified using DSS software,
with spatial correlation and biological replicates consid-
ered [38, 39]. The DMRs were divided into three types
according to the methylated cytosine types, including
mCpG, mCHG, and mCHH. Then, DMGs were defined
as genes whose promoter or gene body regions over-
lapped with a DMR.

DEGs detection and integrative analysis of DEGs and
DMGs
Samples for transcriptome analysis were the same as those
for WGBS. Transcriptional data were obtained from the
GEO database (accession number: GSE111909). The ana-
lysis procedure (quality control, mapping to genome, and
assembly) and calculation of primary read count were as
described in the Zhang et al. study [3]. Briefly, the clean
reads were produced from raw reads after removing the
reads with one of the standards: 1) the adapter sequence
was detected in read, 2) the percentage of N (unknown
base) was more than 10%, 3) low quality read (PHRED
score ≤ 20, percentage of low quality bases ≥50%). Then,
the clean reads were mapped to the reference genome
(Gallus 5.0) using HISAT 2.0.4 software with default
parameter [40]. And assembly and gene expression
quantification steps were performed using cufflinks
2.1.1 and HTSeq v0.6.1 software with default param-
eter [41, 42]. In this study, the identification of DEGs
was performed by DESeq2 (design = ~ group) [43]
with a specific standard: fold change (FC) > 1.5 or
FC < 0.67, wald p-value < 0.05.
To obtain the global profile of methylation and tran-

scription, all genes were ranked by expression level and di-
vided into none, low, medium, and high groups. Average
methylation level of those genes in each group was calcu-
lated [21]. A Venn plot was performed with the web-
based tool Draw Venn Diagram (http://bioinformatics.psb.
ugent.be/webtools/Venn/).

KEGG pathway enrichment analysis
Pathway enrichment analysis was conducted with the
overlapping genes of DMGs and DEGs using KOBAS
[44], p < 0.05 was set as the threshold for significant
enrichment.
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Statistical analysis
SPSS 25.0 (SPSS, Chicago, IL, USA) was used for statis-
tical analysis. Data are shown as mean ± standard error.
Comparisons were performed by Student’s t-test. A P
value < 0.05 (*) and P value < 0.01 (**) implied statisti-
cally significant difference and highly significant differ-
ence, respectively. Graphics were drawn using GraphPad
Prism 7 (GraphPad Software, San Diego, CA, USA).
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Additional file 1: Supplementary Figure 1. Apparent feature of fatty
liver and normal liver. (a) Phenotype of fatty liver. The liver presented a
yellow, hypertrophy, and greasy appearance, some hemorrhagic point
were emerged in the hepatic surface. (b) Phenotype of normal liver. The
liver presented a dark red and smooth appearance, no hemorrhagic
point were discovered.

Additional file 2: Supplementary Figure 2. Global methylation
pattern (mCHG and mCHH) in fatty liver and normal liver. (a-b)
Methylation level of specific site mCHG and mCHH in gene body, up-
and down-stream. (c-d) Methylation level of specific site mCHG and
mCHH in various genomic regions. Including promoter, 5′ and 3′ UTR,
exon, intron, and repeat region.

Additional file 3: Supplementary Figure 3. The methylation level
(mCHG and mCHH) of all genes with different transcriptional level in
gene body, up- and down-stream. (a-b) The methylation level with spe-
cific site mCHG and mCHH of all genes grouped by transcriptional level
in fatty liver group. (c-d) The methylation level with specific site mCHG
and mCHH of all genes grouped by transcriptional level in control group.

Additional file 4: Supplementary Table 1. Identification and
annotation of DMRs and DMGs between two groups.

Additional file 5: Supplementary Table 2. Identification and
annotation of DEGs between two groups.

Additional file 6: Supplementary Table 3. Overlapping genes
between DMGs and DEGs.
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