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Addiction is a chronic, relapsing disorder. The progression to pathological drug-seeking is thought to be driven by mal-

adaptive learning processes which store and maintain associative memory, linking drug highs with cues and actions in

the environment. These memories can encode Pavlovian associations which link predictive stimuli (e.g., people, places,

and paraphernalia) with a hedonic drug high, as well as instrumental learning about the actions required to obtain

drug-associated incentives. Learned memories are not permanent however, and much recent interest has been generated

in exploiting the process of reconsolidation to erase or significantly weaken maladaptive memories to treat several

mental health disorders, including addictions. Normally reconsolidation serves to update and maintain the adaptive rele-

vance of memories, however administration of amnestic agents within the critical “reconsolidation window” can weaken or

even erase maladaptive memories. Here we discuss recent advances in the field, including ongoing efforts to translate pre-

clinical reconsolidation research in animal models into clinical practice.

Addiction is a complex disorder believed to be driven by many dys-
functional psychological and neurobiological factors. One pro-
minent account suggests that pathological learning mechanisms
drive the cravings, compulsions, and propensity for relapse that
characterize the disorder (Everitt et al. 2001; Everitt and Robbins
2005). Given the critical role of maladaptive learning in addiction,
significant excitement has arisen at the possibility of erasing, or
significantly weakening, memory through targeted disruption of
memory reconsolidation—the process by which memories become
destabilized under certain conditions of retrieval and require restabi-
lization to persist in the brain (for recent review of the phenomenon
see Lee et al. 2017b). Exploiting this phenomenon clinically offers
the opportunity to selectively target pathologicalmemories, includ-
ing those underpinning the propensity for relapse in addiction.

Once a psychological curiosity (Lewis 1979) it is now believed
reconsolidation represents a biological process which most, likely
all, memories naturally undergo in order to optimize their predic-
tive accuracy (Lee et al. 2017b). Since the initial recognition of the
therapeutic potential of reconsolidation blockade for the treatment
of addiction (Lee et al. 2005; Miller and Marshall 2005), much
research has focused on characterizing potential methods—both
pharmacological and behavioral—for memory disruption, and the
translation of this preclinical work to human populations. Here,
we review current translational studies, discuss alternative pharma-
cological targets to disrupt reconsolidation, and consider some of
the challenges facing the translation of reconsolidation-blockade
treatments to the clinic, and how these have been addressed to date.

Early proof-of-principle studies established

reconsolidation as a potential therapeutic strategy

for relapse prevention in drug addiction

Reconsolidation presents a promising target for relapse prevention
in addiction therapy. Owing to the strong impact of drug-associated

cues in precipitating relapse in animal models (Bossert et al. 2013),
as well as activating corticostriatal-limbic reward circuitry (for re-
view, see Jasinska et al. 2014)—which correlates with craving mea-
sures in drug-addicted humans (Volkow et al. 2006; Sjoerds et al.
2014)—much of the early research into drug memory reconsolida-
tion focused on the reconsolidation of Pavlovian reward memory
and its effect on cue-induced relapse (Lee et al. 2005; Milton
et al. 2008b). Aswell as investigating the efficacy of reconsolidation
blockade to reduce relapse behavior in animal models, many
studies aimed to characterize the molecular mechanisms under-
pinning Pavlovian drug memory reconsolidation. It was demon-
strated, for example, that drug memory reconsolidation depends
upon protein synthesis (Valjent et al. 2006; Dunbar and Taylor
2016), ERK signaling (Valjent et al. 2006), activity at NMDA recep-
tors (NMDARs) (Milton et al. 2008a, 2012), and expression of the
immediate early gene zif268 (Lee et al. 2005, 2006; Théberge
et al. 2010). While providing valuable information on the basic
mechanisms of memory persistence and proof-of-principle of the
reconsolidation blockade approach, these molecular targets have
been rather challenging to translate to human patients.

Consequently, many trials of the reconsolidation blockade
approach in humans have focused on less invasive behavioral
techniques such as the “retrieval-extinction” procedure (Lee et al.
2017b). This putatively involves destabilizing a memory with an
appropriate reactivation session, followed by extinction of the
behavior within the “reconsolidation-window” (up to 4–6 h
post-reactivation, though typically intervals of <1 h are used). In
contrast to conventional extinction learning, in which a newly
learnedmemory suppresses the old trace, retrieval-extinction is be-
lieved to directlyweaken the originalmemory. However, it remains
unclear whether this truly represents “unlearning” or enhanced
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extinction, in which case the original cue-drug memory could re-
cover (Baker et al. 2013). Further understanding of the molecular
boundaries between reconsolidation and extinction is needed for
this question to be addressed (Merlo et al. 2014).

One molecular mechanism of reconsolidation identified by
early proof-of-principle studies has received extensive attention
due to its more straightforward translation to human studies.
Specific aspects of drug memory reconsolidation were shown to
require β-adrenergic receptor (βAR) activity (Milton et al. 2008b;
although see Milton et al. 2012; Dunbar and Taylor 2016). As the
βAR antagonist propranolol is approved for human use in treating
hypertension, it is readily available for deployment in human ex-
perimental medicine trials. Initially these human experiments fo-
cused on reconsolidation-disruption of fear memory (Kindt et al.
2009; Brunet et al. 2018) in fear-conditioned healthy participants
and patients with post-traumatic stress disorder, due to the more
extensive literature on fearmemory reconsolidation.More recently
however, human reconsolidation studies have begun to investigate
reconsolidation as a therapeutic strategy for drug addiction.

Application of reconsolidation blockade treatments

to addicted patient populations has produced

mixed outcomes

βAR antagonism
The potential of reconsolidation-based therapies to substantially
reduce the impact of drug-associated cues on relapse behavior
has begun to be widely recognized, and several studies have at-
tempted to translate rodent findings to humanpatients.Most stud-
ies have used the βAR antagonist propranolol as an amnestic agent,
given in conjunction with reactivation of the drug-associated cues
to destabilize memory; however, outcomes of experimental medi-
cine studies in humans have been mixed. Propranolol was shown
to reduce craving in individuals with a range of substance use dis-
orders (Lonergan et al. 2016), however themagnitude of this effect
was small and only emerged following multiple reactivation and
treatment sessions; follow-upwas also limited to 3wk, thus it is un-
clear whether treatment reduced long-term risk of relapse. Another
double-blind trial found cocaine cravings to be reduced 24 h after
propranolol administration with memory reactivation (Saladin
et al. 2013), but this effect had dissipated after just 1 wk. Thus, cur-
rent propranolol treatments appear to have limited long-term im-
pact. Moreover, several negative findings exist. Pachas et al. (2015)
found no effect of propranolol treatment on nicotine craving, and
one study even found cocaine craving to be enhanced by giving
propranolol at reactivation (Jobes et al. 2015). This highlights the
potential risks of our lack of understanding of reconsolidation
and its relationship to extinction. It is also worth highlighting
that several individuals in these studies were polydrug users and
undergoing continuing treatment (Jobes et al. 2015; Lonergan
et al. 2016), which may present problems for backtranslation, as
animal models of addiction typically only investigate a single
drug-of-abuse and a single treatment in isolation.

Why might these mixed results have arisen with the use of
propranolol to disrupt drug memory reconsolidation? Adrenergic
signaling has been shown to bidirectionally modulate memory
strength during the reconsolidation window. For example, en-
hancement of adrenergic signaling with the prodrug dipivefrin
within the reconsolidation window enhances the conditioned re-
inforcing properties of an alcohol-paired cue, thereby facilitating
its ability to support the acquisition of a new response for condi-
tioned reinforcement; while propranolol, but not the peripherally
acting adrenergic receptor antagonist nadolol, weakened the same
memory (Schramm et al. 2016). Propranolol has also been shown

to reverse cocaine-mediated synaptic modifications in the prelim-
bic mPFC followingmemory reactivation (Otis andMueller 2017),
supporting the view that the drug is directly affecting synaptic
plasticity.

Notably, propranolol has only been demonstrated to disrupt
certain types of drug memory, with some key negative findings.
Reconsolidation-disruption with propranolol does not reduce cue-
induced reinstatement of cocaine-seeking (Milton and Everitt
2009; Dunbar and Taylor 2016), and similarly does not disrupt
the reconsolidation of memories underlying Pavlovian condi-
tioned approach or instrumental-transfer for alcohol-associated
cues (Milton et al. 2012). Blockade of βARs has also been shown
to disrupt the reconsolidation of conditioned hyperactivity, but
not locomotor sensitization to morphine (Wei and Li 2014).
Propranolol administration directly to the basolateral amygdala
(BLA) did not disrupt reconsolidation of place aversion associated
with morphine withdrawal (Wu et al. 2014)—although it did dis-
rupt morphine-conditioned place preference when infused into
the BLA (Otis et al. 2013; Wu et al. 2014) or central nucleus of
the amygdala (CeN) (Zhu et al. 2017). However propranolol had
no effect on the reconsolidation of the memories underlying
cocaine-conditioned place preference (CPP) when infused into
the dorsal hippocampus, despite an acute impairment of retrieval
(Otis et al. 2014).Wu et al. (2014) also observed no effect on either
the reconsolidation of amorphine-conditioned place preference or
withdrawal-conditioned place aversion with the α-noradrenergic
receptor antagonist phentolamine. Together these results suggest
that amygdala βARs play a limited role in the reconsolidation of
a small number of types of drug memories—namely CPP and con-
ditioned reinforcement—which likely accounts for the lack of ef-
fect on cue-induced reinstatement (see Milton and Everitt 2010)
and the mixed results with propranolol in human trials.

NMDAR antagonism
An alternative pharmacological target is the NMDAR, consistent
with previous observations that NMDAR antagonists disrupt the
reconsolidation of drug memories (Alaghband and Marshall
2013; Alaghband et al. 2014) and the findings of a meta-analysis
that indicated a greater effect of NMDAR antagonism on memory
reconsolidation than βAR antagonism (Das et al. 2013). However,
despite previous animal literature and the findings of Vengeliene
et al. (2015), that NMDAR antagonism with memantine at reacti-
vation reduced subsequent cue-induced relapse in alcohol-seeking
rats, memantine proved ineffective at reducing nicotine cravings
in human smokers (Das et al. 2015)—and there may even have
been some evidence of a worsening of symptoms. There are several
potential explanations for the mixed effects of memantine. First,
the effects of memantine on cue-induced relapse to alcohol-
seeking in rats was not reactivation-dependent (Vengeliene et al.
2015), although only animals that had received memantine in
conjunction with reactivation showed impaired reacquisition fol-
lowing extinction. This suggests NMDAR antagonismmay have ef-
fects on drug seeking independent of its amnestic potency. Second,
memantine has relatively slow kinetics, meaning the drug must be
administered prior to memory reactivation. This is potentially
problematic as different subtypes of NMDAR are differentially
involved in the destabilization and restabilization of memories,
so prereactivation administrationmay have an impact onmemory
destabilization mechanisms. Findings from fear memory reconso-
lidation indicating a double dissociation in the requirement for
GluN2B- and GluN2A-containing NMDARs for memory destabili-
zation and restabilization, respectively (Ben Mamou et al. 2006;
Milton et al. 2013) have subsequently been supported in studies of
drug memory reconsolidation, with GluN2B-containing NMDARs
mediating the destabilization of methamphetamine-associated
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memories (Yu et al. 2016) and GluN2A-containing NMDARs being
critical for the restabilization of drug memories following reactiva-
tion (Wells et al. 2016; Hafenbreidel et al. 2017). Since memory
destabilization is also blocked by antagonism at NMDARs it
may be that memantine prevented reconsolidation from taking
place—indeed the protective effect of memantine on memory,
and slow kinetics, is what makes it attractive as a treatment option
for Alzheimer’s disease. The relatively low affinity of memantine
for synaptic NMDARsmay alsomake it a suboptimal choice for dis-
ruptingmemory reconsolidation (Rammes et al. 2008; see also Das
et al. 2015 for discussion).

Clinically, antagonizing GluN2A subunits of the NMDAR
therapeutically may maximize the benefits of reconsolidation-
disruption, while not blocking the GluN2B subunits required
for destabilization (and therefore required for any clinical effect
to take place). Moreover, targeting a single NMDAR subunit may
be more effective than universal antagonism (Wang et al. 2012),
and may also minimize psychotomimetic side effects (Jiménez-
Sánchez et al. 2014).

Improving the efficacy of reconsolidation-blockade

in human trials

How can the success of reconsolidation trials in humans be in-
creased? The recent literature has focused on threemajor strategies:
(i) the identification of new pharmacological targets; (ii) the dis-
ruption of other instrumental, rather than Pavlovian, associations,
and; (iii) optimizing the reactivation procedure to enhancememo-
ry destabilization, by furthering knowledge of the “boundary con-
ditions” that place limits on reconsolidation.

Alternative pharmacological targets

for the disruption of drug memories

An obvious possibility to improve the translation of treatments
based on reconsolidation blockade is the choice of pharmacologi-
cal target. Propranolol is generally less effective than NMDAR an-
tagonism (Milton et al. 2012; Dunbar and Taylor 2016); however,
NMDAR antagonists can have unacceptable side effects and chron-
ic use may result in cognitive deficits (Morgan et al. 2010). An
alternative may be to target other molecular mechanisms underly-
ing reconsolidation, or behavioral methods of modifying memory
such as retrieval-extinction (Xue et al. 2012; Luo et al. 2015) or
the application of a high cognitive load (Kaag et al. 2018).
Another possibility is to administer an agent which will enhance
the destabilization of a memory and promote the engagement
of reconsolidation processes. In principle this is possible and has
been demonstrated for fear memory by agonizing cannabinoid re-
ceptors (Lee and Flavell 2014) and NMDARs (Bustos et al. 2010);
moreover, thiswould benefit both behavioral and pharmacological
methods of memory alteration. Knowledge of the molecular
and neurochemical mechanisms underlying reconsolidation has
advanced in recent years and has characterized the process from
the (epi)genetic to cell-surface signaling levels, revealing new
targets-of-interest for reconsolidation-disruption which might
be a focus for new treatment development, even if not all can be
targeted with current pharmacotherapies.

Epigenetic regulation
Significant attention has been recently focused on the epigenetic
regulation of gene expression (Oliveira 2016), and epigenetic
mechanisms have been demonstrated to play a role in reconsolida-
tion of Pavlovian drug memories. Administration of the histone
acetyl-transferase inhibitor garcinol blocked the reconsolidation

of cue-cocaine memory, disrupting conditioned reinforcement
(Monsey et al. 2017) and preventing cue-induced relapse (Dunbar
and Taylor 2017). Shi et al. (2015) also demonstrated that inhibi-
tion of DNA methyl-transferase activity in the BLA following
reactivation of drug memory prevented cue- and drug-induced
relapse. In contrast, histone deacetylase inhibitors appear to en-
hance learning, and may facilitate extinction similarly to the
retrieval-extinction procedure—resulting in a “superextinction”
which does not recover over time (see Lattal and Wood 2013 for
discussion). Importantly, histone deacetylase inhibitors are sur-
prisingly well-tolerated given their current use as anti-cancer med-
ication (Subramanian et al. 2010); many side effects are reversible
and resolve quickly, meaning they may be highly clinically viable
in an acute intervention such as reconsolidation blockade.

Immediate early gene expression
It has been long known that reconsolidation of cue-drug memory
requires expression of the immediate early gene (IEG) zif268 in
the amygdala (Lee et al. 2005) and nucleus accumbens (Théberge
et al. 2010). More recent research has indicated that the expression
of this gene is increased at a vast number of neural loci following
memory reactivation, including the medial prefrontal cortex, hip-
pocampus, and ventral tegmental area (Li et al. 2016). Interestingly
Li et al. (2016) also observed that coantagonismof theD1-subtype of
dopamine receptor (D1R) and NMDARs in the nucleus accumbens
shell prevented increases in zif268 expression inmultiple neurobio-
logical reward loci, consistent with previous behavioral research
showing that coantagonism of these receptors in the nucleus
accumbens prevents appetitive memory reconsolidation (Exton-
McGuinness and Lee 2015). Thus, the nucleus accumbens may be
a vital coordinating hub for appetitive memory reconsolidation.

Recently attention has been directed toward the IEG arc.
Expression of Arc is greatly increased following reactivation of
memories underlying cocaine CPP (Alaghband et al. 2014; Lv
et al. 2015), and conditioned place aversion to morphine with-
drawal (García-Pérez et al. 2016). These increases in Arc were also
associated with elevated phosphorylation of CREB (Lv et al.
2015; García-Pérez et al. 2016) and appear to be caused by ERK
signaling upstream, as the MEK inhibitor U0126 prevented phos-
phorylation of ERK and CREB, and disrupted reconsolidation of
morphine CPP (Lv et al. 2015). Surprisingly, García-Pérez et al.
(2016) suggest that dysregulation of CREB signalingmay in fact en-
hance reconsolidation, rather than impair it. On the other hand,
as one might anticipate, knockdown of Arc expression with anti-
sense oligodeoxynucleotides prevented reconsolidation of CPP
and weakened later memory expression (Lv et al. 2015). Notably,
the precise mechanism by which Arc exerts effects on memory
has recently been called into question. Two studies have suggested
Arc may mediate intercellular communication by transferring
mRNA across synapses (Ashley et al. 2018; Pastuzyn et al. 2018).
Thus, the amnestic effect of Arc knockdown may be due to block-
ade of intercellular communication, rather than the gene in and of
itself contributing to intracellular memory storage. A greater un-
derstanding of how an individual neuron communicates with its
neighbors may reveal more targets for novel drug development.

Protein synthesis and proteolysis
Inhibition of protein synthesis is viewed as the canonical amnestic
intervention—linking changes in memory strength to biological
expression of new protein. Several studies have added to this un-
derstanding, demonstrating blockade of drug memory reconsoli-
dation using protein synthesis inhibitors such as anisomycin
(Yu et al. 2013; Wu et al. 2014; Sorg et al. 2015; Dunbar and
Taylor 2016), cycloheximide (Escosteguy-Neto et al. 2016) and
rapamycin (Barak et al. 2013; Lin et al. 2014). Of particular interest,
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Escosteguy-Neto et al. (2016) observed an extended window of
protein synthesis dependence following reactivation of a context-
morphine memory, requiring multiple injections of cyclohexi-
mide to disrupt the association. While the authors suggest that
consolidation and reconsolidation mechanisms may have been
triggered together, this result may represent differences in efficacy
between anisomycin and cycloheximide—either on protein syn-
thesis blockade, or intracellular signaling and IEG expression
(Zinck et al. 1995). Certainly, disrupting the consolidation of the
memories underlying morphine CPP requires repeated cyclohexi-
mide injections (Milekic et al. 2006). However, this result raises
interesting questions about the duration of the reconsolidation
window and the requirement for protein synthesis, the duration
of which may depend upon the reactivation procedure used to
destabilize the memory. Further investigation is required to under-
stand both the duration of initial protein synthesis dependence,
and whether multiple rounds of protein synthesis occur following
destabilization and reconsolidation of a memory as is the case for
memory consolidation (Bekinschtein et al. 2007, 2010).

One problem associated with the therapeutic use of protein
synthesis inhibitors is their high toxicity; however, alternative
targets may prove fruitful in the future. Jian et al. (2014) observed
dephosphorylation of eukaryotic initiation factor 2α-subunit
(eIF2α) and activating transcription factor 4 (ATF4) in the BLA,
but not CeN, following the reactivation of memories underlying
both cocaine and morphine CPP. Furthermore, preventing this
dephosphorylation with local infusion of the selective eIF2α phos-
phatase inhibitor Sal003 also blocked reconsolidation of cocaine
andmorphine CPP, and cue-heroinmemory. Interestingly, knock-
down of ATF4 with shRNA protected memory from amnesia, sug-
gesting that ATF4 may be required for the destabilization of the
memory at reactivation.

While protein synthesis has long been linkedwith the consol-
idation and reconsolidation of memories, protein degradation is
hypothesized to play a role in memory destabilization. Infusion
of the proteasome inhibitor lactacystin into the nucleus accum-
bens core prior to memory reactivation protected against the
amnestic effect of anisomycin (Ren et al. 2013), with this treatment
alsomaintaining levels of the AMPARGluR2-subunit expression at
the synapse. Notably lactacystin also prevented the extinction of
CPP, suggesting that protein degradation may be a more general
requirement for synaptic plasticity to occur. However, inhibition
of the protease calpain in the nucleus accumbens core has recently
been shown to disrupt reconsolidation of cocaine and morphine
cue memory (Liang et al. 2017). This contrasts with previous
studies which have suggested protein degradation mediates mem-
ory destabilization, rather than reconsolidation. Therefore, a more
complex dynamic cycling of proteinsmay be required for neuronal
plasticity.

Protein phosphorylation
Reconsolidation is regulated by multiple protein kinases. In line
with previous studies, ERK activity in the BLA (Wells et al. 2013)
and nucleus accumbens shell (Lv et al. 2015) is required for the
reconsolidation of contextual drug memory, and BLA inhibition
of CaMKIIα has been shown to disrupt reconsolidation and en-
hance extinction of cue-cocaine memory, being differentially reg-
ulated in both processes (Rich et al. 2016). By contrast PKA, but not
CaMKIIα, in the BLA was found to be required for reconsolidation
of context-cocainememory (Arguello et al. 2014). Notably, the pre-
cise role for PKA has been called into question with the discovery
of a parallel cAMP-dependent pathway. Activation of Exchange
Protein activated by cAMP (Epac) has been shown to disrupt recon-
solidation of cue-cocaine memory, and this amnestic effect was
rescued by coactivation of PKA (Wan et al. 2014). Thus PKA may

play roles in both the destabilization and reconsolidation of mem-
ories (see also Sanchez et al. 2010).

Two further kinases of interest are the Src family of tyrosine
kinases (SFK) and glycogen synthase kinase (GSK), and these
may present interesting future drug targets. Administration of the
GSK3 inhibitor SB216763 immediately after cocaine CPP memory
reactivation reduced subsequent place preference (Shi et al. 2014).
Similarly,Wells et al. (2016) demonstrated that SFKs are required in
the dorsal hippocampus for reconsolidation of contextual cocaine
memory. Furthermore, this group observed increased phosphory-
lation of the NMDAR subunit GluN2A followingmemory reactiva-
tion.Moreover, blockade ofGluN2Aphosphorylationwith the SFK
inhibitor PP2, or treatment with the GluN2A-selective NMDAR
antagonist PEAQX, in the dorsal hippocampus disrupted cocaine
memory reconsolidation. This is consistent with the prior dissoci-
ation of roles for GluN2A and GluN2B subunits in fear memory
restabilization and destabilization, respectively (Milton et al. 2013).

Conversely, blockade of GluN2B-containing NMDARs pre-
vented destabilization of methamphetamine CPP memory (Yu
et al. 2016). This required downstream activation of protein
phosphatase 1 (PP1) by calcineurin; inhibition of either of these
phosphatases prevented destabilization and protected against am-
nesia. Yu et al. (2016) also observed a reduction in AMPAR:NMDAR
ratio following destabilization, and suggest that destabilization
may be causally linked to internalization of AMPARs. Consistent
with this view, Yu et al. (2013) found that preventing AMPAR en-
docytosis with the interfering peptide Tat-Glu23γ prevented desta-
bilization of methamphetamine context memory.

Dopamine receptors
Interestingly NMDARs in the nucleus accumbens may interact
with the D1-subtype of dopamine receptor in the reconsolidation
of drug memory, by regulating expression of the IEG zif268 (Li
et al. 2016). Antagonism at D1Rs, or knockout of D3Rs, can weaken
the reconsolidation of cocaine CPP (Yan et al. 2014). While this re-
sult should be interpreted with caution as blockade of dopamine
receptors may affect the reinforcing capacity of cocaine, this result
did not appear to be dose-dependent thereforemay truly represent
a reconsolidation impairment.

It is not yet clear whether dopamine receptors play a role in
drug memory destabilization. This has begun to be characterized
for Pavlovian memories associated with natural reinforcers such
as sucrose (Merlo et al. 2015), and dysregulation of VTA dopamine
signaling can prevent destabilization of appetitive sucrosememory
(Reichelt et al. 2013). The prediction error hypothesis of memory
destabilization implies this should also be true for drug memories,
however this as yet remains untested.

Cannabinoids
Cannabidiol has been shown to disrupt reconsolidation of mor-
phine and cocaine CPP (de Carvalho and Takahashi 2017).
Previous work from the same group suggested blockade of CB1,
but not CB2 receptors, led to disruption of morphine CPP (De
Carvalho et al. 2014). They also observed that inhibiting
anandamide metabolism at reactivation led to an enhancement
of morphine CPP, suggesting that endocannabinoid signaling
may bidirectionally modulate memory strength.

The precise mechanism of cannabidiol’s mnemonic effects
is unclear, although its therapeutic potential is beginning to
be appreciated. It may be that it is directly disrupting reconsolida-
tion, but it may also enhance extinction (Stern et al. 2018).
Alternatively, cannabidiol may be more generally anxiolytic, lead-
ing to an “updating” of a memory’s salience during the reconsoli-
dation window, in addition to acute reductions in drug memory
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expression (Lee et al. 2017a). This would imply the effect of canna-
bidiol is mediated via the stress-axis.

Glucocorticoids
Blocking glucocorticoid receptors with mifepristone disrupted the
reconsolidation ofmorphine CPP andmorphine sensitization (Fan
et al. 2013). While this also prevented initial acquisition, suggest-
ing perhaps an effect on the rewarding value of the drug, mifepris-
tone did not in itself cause place aversion. In a similar study,
Stringfield et al. (2017) demonstrated the effect of mifepristone
was reactivation-dependent; however, they observe an inverted
dose-response relationship, and similar results when mifepristone
was given in conjunction with novelty stress. Together this sug-
gests that glucocorticoids do not mediate reconsolidation of drug
memory per se, although they may act synergistically to enhance
the process.

Cytoskeleton
A novel target for disrupting reconsolidation may be cytoskeletal
proteins. Inhibiting actin polymerization in the nucleus accum-
bens shell weakened morphine CPP reconsolidation (Li et al.
2015), althoughBriggs et al. (2017) observed disruptionof amphet-
amine (but not cocaine or morphine) CPP reconsolidation with
inhibition of nonmuscle myosin II in the BLA. This latter result
is of interest, as targeting the nonmuscle myosin would be more
viable therapeutically than systemic blockade of actin polymeriza-
tion (which is required for normal muscle and heart function).

Similarly, local infusion of NSC23766—an inhibitor of the
small GTPase Rac, which modulates actin dynamics (Jaffe and
Hall 2005)—into the BLA blocked the reconsolidation of cocaine
CPP (Ding et al. 2013). Notably the initial consolidation of this
memory required Rac activity in BLA in addition to the CeN and
nucleus accumbens core, but not the nucleus accumbens shell.
While results of cytoskeleton manipulation on reconsolidation
have varied between different drugs, commonalities will likely
emerge with future research.

Extraneuronal targets
Neurons and synapses are encompassed by extracellularmatrices—
perineuronal nets (PNNs). These nets help stabilize neuronal con-
nections and regulate synaptic plasticity (Wang and Fawcett 2012),
and intact perineuronal nets in the mPFC are necessary for recon-
solidation of cocaine CPP (Slaker et al. 2015). Interestingly, remov-
al of PNNs took place 3 d prior to memory reactivation, thus the
loss of PNNs need not occur within the reconsolidation window
to disrupt later restabilization of memory.

Normal function of neurons is also supported by local astro-
cytes and preventing supply of astrocyte-derived lactate can prove
amnestic. Local inhibition of glycogen phosphorylase in the BLA
prior to memory retrieval disrupted cocaine CPP reconsolidation
(Boury-Jamot et al. 2016; Zhang et al. 2016); moreover this effect
involved ERK- and zif268-dependent mechanisms, but not BDNF
(Boury-Jamot et al. 2016). This intervention also prevented recon-
solidation of cued cocaine self-administration (Zhang et al. 2016).

Instrumental memory reconsolidation as a potential

therapeutic target

To datemost research and human trials have focused on Pavlovian
memory reconsolidation, owing to the extensive literature—partly
from studies of Pavlovian conditioned fear—yet instrumental asso-
ciations between actions and drug acquisition also play a critical
role in addiction (Milton and Everitt 2012). However, early demon-
strations suggested that instrumental memories did not reconsoli-

date (Mierzejewski et al. 2009; Hernandez and Kelley 2004). This
has now been challenged by recent demonstrations that expres-
sion of operant responses can be disrupted by targeting reconsoli-
dation. First demonstrated in operant sucrose memory using the
amnestic NMDAR antagonist MK-801 (Exton-McGuinness et al.
2014), this result has since been replicated for weakly trained
cocaine-reinforced memory (Exton-McGuinness and Lee 2015).

Instrumental behaviors are believed to be supported by two
memory associations: anAction–Outcome (A–O) associationmedi-
ating goal-directed responding, and a Stimulus–Response (S–R)
habit (see Balleine and O’Doherty 2010 for review). An influential
view of addiction asserts that the disorder is driven by formation of
a maladaptive habit, given the clear similarities between the theo-
retical definition of habits and the symptoms of substance use
disorders (Tiffany et al. 2004; Everitt and Robbins 2005; Ostlund
and Balleine 2008) and shifts in the reliance on different striatal
circuitry as drug-seeking experience becomes more extensive
(Vanderschuren et al. 2005; Belin et al. 2009; Murray et al. 2012).
However emerging evidence has demonstrated that drug-seeking
can be supported by goal-directed processes in both humans
(Hogarth and Chase 2011; Hogarth 2012) and rodent models
(Zapata et al. 2010; Singer et al. 2018). This has led to the rise of
an alternative theoretical account of addiction which emphasizes
incentive processing and behavioral flexibility (Robinson and
Berridge 2008). Fundamentally these two hypotheses place differ-
ing emphasis on the respective roles of cue-driven (S–R) and incen-
tive (A–O) behaviors to explain the compulsion to seek drugs,
however both are believed to influence drug-seeking behavior in
addicted humans (Hogarth and Chase 2011). Thus, both are viable
psychological targets for therapeutic intervention.

Published literature to date has demonstrated reconsolidation
of weakly trained, and therefore presumably goal-directed, instru-
mental cocaine memory (Exton-McGuinness and Lee 2015).
A further study also suggested disruption of an older instrumental
memory could prevent reinstatement of nicotine seeking (Tedesco
et al. 2014), however this impairment was observed as a failure to
reinstate; thus, it is unclear whether this truly represents a disrup-
tion of instrumental memory, or instead contextual drugmemory.
Regardless, together these results indicate that in principle operant
incentive-based associations can be disrupted—presenting a new
psychological target for reconsolidation therapies. Future human
experimental medicine trials may disrupt this new psychological
target as a means of promoting drug abstinence; however, this
will require modification (and optimization) of behavioral reacti-
vation parameters to maximize the probability of the target
memory being destabilized (see Das et al. 2015 for discussion).
Moreover, targeting both Pavlovian and instrumental associations
is likely to provide the most effective anti-relapse intervention.
Thus, the most potent treatments may require reconsolidation-
disruption targeting several individual memories.

It remains unclear whether reconsolidation of habit memo-
ries can be disrupted. While similar methods have been used to
disrupt well-learned instrumental cocaine seeking memory (Exton-
McGuinness MTJ, Drame ML, Kaila J, Walsh H, Flavell C, Lee
JLC, in prep.), the interpretation is complicated by the observation
that responding appears to be rendered functionally goal-directed
following successful destabilization of instrumental memory, even
in control groups; similar findings were observed for sucrose
memory (Exton-McGuinness et al. 2014). Importantly, amnesia
is not total in these interventions suggesting only one of A–O or
S–R memory is disrupted; however, it remains unclear which
association is impaired without further investigation. A further al-
ternative account is that the remaining responding in these exper-
iments is supported by a Pavlovian conditioned response—or
“incentive habit” (Belin et al. 2013). The precise associative struc-
ture driving the compulsion to seek drugs, and the boundaries
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between Pavlovian versus instrumental associations, is a highly in-
teresting topic, and expanding our understanding will be vital to
appropriately targeting future clinical interventions.

Identifying, and overcoming, boundary conditions

on reconsolidation

To make reconsolidation blockade maximally efficacious, further
work is needed to optimize the parameters of the reactivation
session. Following initial demonstrations in crabs (Pedreira and
Maldonado 2003), it is becoming increasingly acknowledged that
reconsolidation does not always occur following retrieval, instead
requiring prediction error to initiate the destabilization process
(Exton-McGuinness et al. 2015)—indeed this may explain several
negative findings with reconsolidation-based procedures in hu-
mans. Hon et al. (2016) recently demonstrated that prediction
error induced by omission, but not value change, affected later
verbal fluency for alcohol-associated memories in at-risk drinkers.
Several human trials have utilized script-based reactivation proce-
dures which may not be effective at triggering the appropriate pre-
diction error for reconsolidation to take place (Pachas et al. 2015).
Certainmethods of generating a suitable prediction error will likely
bemore effective than others in clinical practice, and optimization
will be required to produce the most favorable therapeutic out-
comes (Elsey and Kindt 2017).

How might reactivation be optimized? Conventional reacti-
vation procedures involve reexposure to the training scenario in
the absence of the reward, or unconditioned stimulus (US), i.e., ex-
tinction. While brief reexposure sessions do appear to trigger
reconsolidation, extendedCS exposure leads to extinction learning
(Reichelt and Lee 2012; Flavell and Lee 2013; Merlo et al. 2014;
Cassini et al. 2017) involving the formation of a new inhibitory
memory (Bouton 2004); and in this case reconsolidation appears
to be endogenously blocked by cellular machinery (Merlo et al.
2014). Interestingly, intermediate numbers of CS exposures trigger
neither reconsolidation nor extinction (Flavell and Lee 2013;
Merlo et al. 2014; Cassini et al. 2017), and at least for fear memory
this “limbo” is associated with the arrest of ERK signaling in the
amygdala (Merlo et al. 2018). Since reconsolidation does not
appear to occur following simple retrieval when a memory is well-
learned, it may be that the limbo state between reconsolidation-
mediated updating and behavioral extinction is biologically
adaptive—representing the default cellularmode ofmemory retriev-
al. Expandingour understanding of themolecular underpinnings of
this processmayhelp us to artificially stimulate destabilization out-
side of the conventional boundary conditions, which would in
turn enhance the efficacy of therapeutic interventions.

One method used to circumvent the boundary conditions
of nonreinforced reactivation procedures is reexposure to the
reinforcer—a “US-reactivation.” For example, Barak et al. (2013)
successfully disrupted alcohol memory in rats using rapamycin
by presentingUS sensory-specific cues (smell, taste); these cues suc-
cessfully reactivated memory even when presented outside the
training context. Similarly, US-reactivation has successfully been
used to destabilize nicotine (Xue et al. 2017) and cocaine
(Dunbar and Taylor 2017; Zhu et al. 2017) memories. Notably
these US-reactivations were able to simultaneously disrupt multi-
ple memory traces, either preventing reinstatement produced by
multiple cues (Dunbar and Taylor 2017), or in the case of Xue
et al. (2017) and Zhu et al. (2017) weakening bothCPP and operant
responding. Moreover, by tagging reactivated neural ensembles
Xue and colleagues were able to show overlapping circuitry be-
tween these memory traces.

While it is intuitively appealing to believe that US-reactiva-
tions destabilize multiple memory traces, these results should be

interpreted with caution. It has long been known that incentive
memories for the value of reinforcers themselves undergo reconso-
lidation following reexposure to the reward/US (Wang et al. 2005).
Encoding the incentive value of a reinforcer is vital to the function-
ing of any outcome-based memory association, and disrupting
it will reduce expression of all outcome-associated behaviors in
a goal-directed fashion (see Dickinson and Balleine 1994 for
discussion). The value of an outcome is likely commonly encoded
between associations, explaining the overlapping of circuitry;
however, this also means that following reward revaluation (e.g.,
drug reexposure) responding could be rapidly restored. This possi-
bility has not been explicitly tested following a US-reactivation
procedure, however it would be consistent with the interpretation
that reconsolidation impairments are highly content limited
(Debiec et al. 2006). Thus, it remains unclear whether this method
of memory destabilization and disruption is sufficient to provide
an effective anti-relapse intervention.

Others have sought to deliberately target the incentive value
of predictive cues by counterconditioning within the reconsolida-
tion window. In a CPP study in mice, Goltseker et al. (2017) paired
a previously cocaine-paired compartment with lithium chloride
malaise following brief context reexposure. Critically for future
therapeutic application, this immediately suppressed preference
for the previously cocaine-paired compartment and moreover
this effectwas resistant to cocaine-induced relapse. In ahumanvar-
iation of this procedure, pairing alcohol cues with disgust during
the reconsolidation window later reduced cue-induced craving
and weakened attentional bias toward the cues (Das et al. 2018).

Conclusions and future directions

Several new pharmacological, readily translatable, treatment tar-
gets have been identified for Pavlovian drug memory reconsolida-
tion, including garcinol and cannabidiol. Evidently, treatments
targeting receptor systems (e.g., dopamine receptors or glucocorti-
coid receptors) present currently more feasible therapeutic targets
than intracellular systems (e.g., treatments targeting the cytoskele-
ton, or immediate early gene expression) but future research may
reveal methods for indirectly targeting these, such as the reduction
of Zif268 expression produced by NMDAR antagonism following
the reactivation of cocaine-associated memories (Milton et al.
2008a). The demonstration that instrumental memories also un-
dergo reconsolidation opens exciting new avenues in preventing
relapse. However, it remains unclear whether stimulus-based or
incentive-based processes are disrupted by these interventions,
and it is likely that both will need to be targeted for the most effec-
tive anti-relapse treatment.

Future clinical work should build onwhat is currently known,
while basic research should continue to characterize the mecha-
nisms that underlie reconsolidation and probe its potential limits
(or not) in more translationally relevant procedures. Clinical stud-
ies should continue to refine reactivation parameters, with one
possibility currently showing promise being US-based reactivation
procedures. However, this should be approached with some cau-
tion, as it is unclear whether these interventions will prove resis-
tant to subsequent revaluation of the US; there are also ethical
issues regarding administering drugs to individuals who are trying
to remain abstinent. It is currently unclear whether peripherally
acting drugs in the same class could be used as an alternative (or
drugs with differing kinetics e.g., methadone versus heroin) to
reactivate memory. Furthermore, it remains to be investigated
whether these alternatives could be used to create a viable
reconsolidation-based counterconditioning procedure that could
be applied to human clinical populations.
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Finally, despite a growing literature, no reconsolidation stud-
ies haveyet looked at compulsivedruguse.While suchexperiments
are technically and conceptually highly challenging, this research
is very important for successful translation of reconsolidation-
based therapies frombench to bedside.Whether compulsive habits
are susceptible to reconsolidation blockade is a key question with
high translational relevance.

Thus, reconsolidation blockade offers a highly innovative
approach for the treatment of drug addiction and, despite some
mixed results, there are studies proving its relevance and potential
therapeutic use in humans. We would suggest that the field now
needs to move beyond these initial proof-of-principle studies to
optimization of the procedure, taking a multipronged approach
of: (i) identifying the most readily translatable (combination of)
pharmacological targets through a better understanding of the ba-
sic neurochemical and molecular mechanisms of reconsolidation,
(ii) determining the optimal procedure for memory reactivation
(including how to identify when destabilization has successfully
occurred), and (iii) determining the effects of targeting Pavlovian
memories, instrumental associations (both goal-directed and ha-
bitual), or both on subsequent drug-seeking and drug-taking
behavior. Despite the challenges to translation, reconsolidation
blockade presents a real opportunity to revolutionize the treatment
of addiction.
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