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Atorvastatin (ATO) is of the statin class and is used as an orally administered lipid-lowering drug. ATO is a
reversible synthetic competitive inhibitor of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase
thus leading to a reduction in cholesterol synthesis. It has recently been demonstrated that ATO has dif-
ferent pharmacological actions, which are unrelated to its lipid-lowering effects and has the ability to
treat chronic airway diseases. This paper reviews the potential of ATO as an anti-inflammatory, antioxi-
dant, and anti-proliferative agent after oral or inhaled administration. This paper discusses the advan-
tages and disadvantages of using ATO under conditions associated with those found in the airways.
This treatment could potentially be used to support the formulating of ATO as an inhaler for the treat-
ment of chronic respiratory diseases.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

1.1 Chronic pulmonary diseases and statin

According to a World Health Organization (WHO) report,
chronic respiratory diseases including bronchiectasis, cystic fibro-
sis, chronic obstructive pulmonary disease (COPD), and asthma
are expected to be the third most common cause of mortality
(Barnes, 2008). Chronic pulmonary diseases have continued to
increase despite the available therapeutic advancements
(Athanazio, 2012) because of the increasing number of cigarette
smokers and the increasing amount of environmental pollution
(Barnes, 2008). Hyper-mucus secretion, breathlessness, airflow
limitation, coughing, wheezing, and bronchoconstriction are the
main symptoms of these diseases (Barker, 2002; Guerra et al.,
2009; James and Wenzel, 2007; Murray et al., 2007; Szilasi et al.,
2006). In addition, hyper-mucus production in the lungs has been
shown to be associated with airway infection and inflammation,
thus impacting disease development (Hovenberg et al., 1996;
Kim, 1997; Kirkham et al., 2002; Livraghi and Randell, 2007;
Lundgren and Shelhamer, 1990; Reid et al., 1997; Williams et al.,
2006). Convenient treatments including antibiotics, non-steroidal,
anti-inflammatory drugs, b-adrenergic agonists, and steroids focus
on symptom improvement (Marin et al., 2011; Yang et al., 2011), as
an alternative to therapeutic remedy. Additionally, prolonged
administration of convenient drugs in some patients causes a
drug-resistant refractory effect (Barnes et al., 2004). Therefore,
there is an immediate need for newer treatments that can replace
the conveniently available and highly effective treatment.

Statins are one such drug class that has potential as an alterna-
tive treatment for chronic lung diseases. They are anti-cholesterol
drugs and act as 3-hydroxymethyl-3-methylglutaryl coenzyme A
(HMG-CoA) reductase inhibitors (Tobert, 2003) by blocking the
conversion of HMG-CoA to mevalonate biosynthesis, a vital inter-
mediary in the metabolism of cholesterol (Endo, 2004; Endo
et al., 1976). Mevastatin was the first detected statin, which was
extracted from Penicillium Citrinium (Srinivasa Rao et al., 2011).
After that, atorvastatin, cerivastatin, pitavastatin, fluvastatin, and
rosuvastatin were synthesised chemically, whereas others, for
instance, pravastatin, simvastatin, and lovastatin were derived
from the fermentation of fungi (Hoffman et al., 1986; Lee et al.,
1991). Numerous studies have also underlined that statins have
many pleiotropic effects besides their well-known cholesterol-
lowering activity, such as muco-inhibitory (Marin et al., 2013;
Tulbah et al., 2015; Tulbah et al., 2015), anti-proliferative (Shang
et al., 2015; Yu et al., 2013), antithrombotic, and anti-antioxidant
activity (ALKharfy et al., 2000; Endo et al., 1977; Grommes et al.,
2012; Gullestad et al., 1999; Jialal et al., 2001; McAuley et al.,
2013; Rezaie-Majd et al., 2002; Vaughan et al., 1996). Statins also
have an anti-inflammatory effect that could potentially be used
as an alternative therapy for respiratory diseases in which inflam-
mation exists (Tulbah et al., 2016; Walsh, 2008).

1.2 Atorvastatin

Atorvastatin (ATO) is statin drugs that is common and afford-
able (Lea and McTavish, 1997). It was the preferred and most pre-
scribed anti-cholesterol drug worldwide from 2002 to 2009
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(Dinarello, 2010). It is also one of the most effective synthetic
reversible competitive inhibitors of the HMG-CoA reductase
enzyme (Dinarello, 2010; Endo, 2004; Endo et al., 1976; Lea and
McTavish, 1997). Lipitor is one of ATO’s trade names and is used
to reduce total cholesterol, and triglyceride levels in hypercholes-
terolemia patients (Lea and McTavish, 1997) and those with car-
diovascular risk (Collaboration, 2015; Poli, 2007). In addition,
ATO has been shown to be effective in decreasing transient ischae-
mic attack (Amarenco, 2007; Armitage, 2007), and reducing the
death rate from coronary artery disease (Merx and Weber, 2006;
Wilt et al., 2004). Some pharmacological actions of ATO, including
immune-modulatory effects (Emruzi et al., 2018; Zeiser, 2018),
improved endothelial cell function, and enhanced fibrinolysis were
also highlighted by different studies (Fogari et al., 2004; Sakabe
et al., 2008; Souza-Costa et al., 2007; Tehrani et al., 2010; Van
Linthout et al., 2007), and anti-hyperalgesia effects (Pathak et al.,
2013). ATO has been well-documented as an anti-oxidation and
anti-inflammatory agent in the literature (Ferreira et al., 2014;
Souza-Costa et al., 2007; Van Linthout et al., 2007). This suggests
that ATO could serve as an alternative treatment for chronic respi-
ratory diseases, including COPD and asthma (Bradbury et al., 2018;
Mroz et al., 2015; Walsh, 2008). Therefore, the aim of this review is
primarily to highlight the capability of ATO to treat chronic respi-
ratory diseases, with a focus on its effects associated with decreas-
ing mevalonate synthesis.

Contradictory results from clinical trials involving the oral use
of ATO in asthma, COPD, bronchiectasis, and pneumonia patients
over the past decade are shown in Table 1. ATO treatments have
been shown to decrease sputum macrophage counts (leukotriene
B4) in asthmatic patients (Hothersall et al., 2008). In addition,
ATO treatment resulted in a downregulation of immune response,
inflammation, and leukocyte activation in COPD patients (Mroz
et al., 2015). However, a randomized and double-blind trial study
found that oral ATO (10 mg/day) did not improve pulmonary func-
tion in asthmatic patients (Fahimi et al., 2009). Consequently, the
lack of clinical therapeutics improvement could be due to ATO’s
chemical structure, lipophilic nature, and rapid systemic clearance,
as well as to the low bioavailability of oral ATO administration
(Gazzerro et al., 2012; Mroz et al., 2015).

The chemical structure of ATO and its metabolites is presented
in Fig. 1, which represents its lipophilicity, water solubility, and
pharmacokinetic profile (absorption, distribution, metabolism,
and excretion) (Castaño et al., 2003; Gee et al., 2002; Sparks
et al., 2005). ATO is metabolized into two active metabolites, lac-
tone form, 4- and 2-hydroxy-atorvastatin acids, and three corre-
sponding inactive lactone metabolites (Jacobsen et al., 2000) by
major action of P450 metabolic enzymes, CYP3A4/5 (Jacobsen
et al., 2000). The lactone form is transported via passive diffusion
as it is more lipophilic in nature, whereas the atorvastatin acids
are substrates for P-glycoprotein (P-gp) and organic anion trans-
porting polypeptide (OATP) cellular membrane transporters
(Lennernäs, 2003). The hydroxy acid form of the drug is presented
as a free acid species; it is about 15 times more soluble than the
lactone form because the carboxyl group of the hydroxyl acid is
ionized. This ionization has a significant effect on its solubility
(Khan and Dehghan, 2011). Log D values (octanol/water
coefficient) for the acid and lactone forms of the drug are 1.53
and 4.2 at pH 7.4, respectively (Ishigami et al., 2001).



Table 1
Clinical trials data on asthma, chronic obstructive pulmonary disease (COPD), pneumonia and bronchiectasis patients used oral Atorvastatin (ATO) treatment.

Statins Disease Administration Route Primary Outcomes Ref

Atorvastatin Asthma Oral dose of 40 mg of oral atorvastatin per day
and 400 lg inhaled beclomethasone for
4 weeks

Improved asthma quality of life. Airway responsiveness,
lung function and inflammation did not improve

(Braganza
et al., 2011)

Atorvastatin Atopic Asthma Inhaled corticosteroids combined with 40 mg of
oral atorvastatin for 24 weeks

Reduces sputum macrophage counts (leukotriene B4) in
mild to moderate asthma.

(Hothersall
et al., 2008)

Atorvastatin COPD atorvastatin 40 mg/day for 12 weeks Lowered sputum neutrophil count by 34%, and caused a
57% decrease in CD45+ cells biopsies from lung tissues
involved in inflammatory processes, immune response,
and leukocyte activation

(Mroz et al.,
2015)

Atorvastatin Asthma Oral atorvastatin 40 mg per day for 8 weeks No significant difference between the atorvastatin and
control groups in controlling asthma, FEV1%, FVC%, and
blood eosinophil count after treatment

(Moini
et al., 2012)

Atorvastatin Asthma Oral administration of atorvastatin and inhaled
corticosteroid (week)

FVC% did not change between ATO and control group. (Fahimi
et al., 2009)

Atorvastatin Asthma Oral atorvastatin combined with inhaled
corticosteroids/long acting agonist therapy

Lower % predicted FVC and had a high prevalence of
comorbid conditions

(Zeki et al.,
2013)

Atorvastatin Asthma Oral Reduced emergency department visit. (Tse et al.,
2014)

Atorvastatin COPD 40 mg per day for nine weeks of oral dose Improved quality of life in sulfur mustard-injured patients
with COPD.
No effect on serum hs-CRP and lung functions

(Ghobadi
et al., 2014)

Atorvastatin, bronchiectasis Oral 80 mg/day for 6 months Cough improved on patients with bronchiectasis. (Mandal
et al., 2014)

Atorvastatin COPD administration of atorvastatin Decreased inflammatory mediators. (Blamoun
et al., 2008)

Atorvastatin COPD administration of atorvastatin % COPD patients mortality decreased
if C reactive protein level > mg/L.

(Lahousse
et al., 2013)

Atorvastatin Smoker or former
smoker

administration of atorvastatin Slower decline in pulmonary function. (Keddissi
et al., 2007)

Atorvastatin Patients with advanced
non-small cell lung
cancer

400 mg/m2/day of chemotherapy starting on
day 4 and atorvastatin starting at least 5 days
before chemotherapy

Drug–drug interactions between the lipid-lowering and
chemotherapeutic agent (bexarotene).

(Wakelee
et al., 2012)

Atorvastatin Patients with aspiration
pneumonia complicated
with cerebral infarction

Oral medication, 20 mg/day for 2 months levels of TNF-a, IL-6 and IL-8 were decreased in ATO group
more than the control group (P < 0.01)

(Wei and
Liu, 2018)

Atorvastatin Smokers, patients with
asthma

Oral atorvastatin (40 mg/day) used for four
weeks versus placebo, followed by inhaled
beclometasone (400 lg/day) for a more four
weeks.

Short-term treatment with atorvastatin alone or in
combination with inhaled beclometasone reduces several
sputum cytokine, chemokine, and growth factor levels
unresponsive to inhaled corticosteroids alone in smokers
with asthma

(Thomson
et al., 2015)

Fig. 1. Atorvastatin (ATO) and its metabolites, chemical structure.
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2. Atorvastatin challenges

Drug bioavailability, dissolution, stability, and solubility are
among the rate-limiting steps in the development of any new drug
formulation and also arise during the manufacturing, storage, and
shipping stages. In addition to chemical hydrolysis or oxidation,
these parameters can be influenced by different factors, including
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temperature, light, moisture, solvents, excipients, and pH
(Guideline, 2003; Kommanaboyina and Rhodes, 1999).

2.1. Chemical and physical challenges of atorvastatin

ATO must be studied under various chemical conditions if ther-
apeutic activities for its stability are to be maintained. ATO, in the
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open ring hydroxy acid form, is an unstable drug. Its form of
hydroxy acid is converted into a form of lactone under specific con-
ditions of changing pH, oxidative stress, moisture, heat, and light.

One of the major factors that could affect on the chemical sta-
bility of ATO is pH (basic and acidic conditions). Oliveira et al.,
studied ATO degradation and its effects on basic and acidic condi-
tions. Their findings revealed that ATO was not as stable under
acidic conditions as basic conditions with the development of
two degradation products under basic conditions. They also dis-
covered that, under acidic conditions, ATO degradation employed
first-order kinetic degradation compared to the zero-order kinetic
degradation obtainable in the basic environments (Oliveira et al.,
2013). A study by Shah et al., investigated the impact of oxidative
stress on the aliquots of stock solutions of ATO in 3% hydrogen per-
oxide (Shah et al., 2008). Similar results have been found in which
ATO was degraded, mostly with 1% hydrogen peroxide solution at
25 ± 2 �C of room temperature for 24 h (Vukkum et al., 2012) and in
3% v/v hydrogen peroxide solution at room temperature for seven
days (Sherikar and Mehta, 2012). In addition, ATO sensitivity to
ultraviolet light (UV) and temperature has been studied. Zaheer
et al., discovered that 0.03% of ATO degraded when the drug was
heated in a boiling water bath for 30 mins (Zaheer et al., 2008).
With regards to light stress, a study discovered that ATO degraded
when exposed to 1.2 million lux hours of visible light and 200 W
hour/per square meter of UV light for 11 days (Vukkum et al.,
2012). ATO can be very permeable and soluble except where there
is an aqueous solution and its pH values are less than 4 (Nováková
et al., 2008). Such findings underline the interrelation of the vari-
ous factors that could influence ATO’s stability, solubility, and
bioavailability and, thus, subsequent therapeutic effectiveness.

The crystalline or amorphous solid state of most drugs has a
huge effect on their stability. The amorphous state might have a
reputation for not being as thermodynamically stable as its crystal
counterpart (Tong and Zografi, 2004), but its solubility characteris-
tics are generally higher than those of the crystalline form. Find-
ings like this are important for crystalline ATO forms and low
water solubility (0.1 mg/mL) for better bioavailability (Lau et al.,
2006).

The physico-chemical properties of amorphous ATO formulated
by lyophilization utilizing skimmed milk were characterised in a
study by Choudhary et al. They discovered that the amorphous
state had better solubility and in vitro drug release compared to
the pure drug in its crystalline form (Choudhary et al., 2012).
Another study by Aggarwal et al., formulated amorphous ATO with
magnesium stearate, talc, lactose, and avicel pH 10.2 to develop its
solubility, stability, and dissolution rate. The physical stability of
the formulation was assessed at 40 �C (75 ± 5% relative humidity)
for up to one month. It was observed that the formulation of amor-
phous ATO was significantly more stable with a better dissolution
rate, dissolution efficiency, and solubility under this condition
(Aggarwal et al., 2012). In a study done in 2016, amorphous ATO
was formulated using polyethylene glycol 4000 (PEG) to improve
its bioavailability and dissolution profile. The study revealed that
a drug/PEG 4000 with a ratio of 1:3 significantly increased the drug
dissolution rate and bioavailability because of the drug’s change
from a crystalline state to an amorphous state (Shamsuddin
et al., 2016).

Drug surface area is another factor that will possibly affect ATO
solubility and dissolution. A study prepared amorphous ATO Hemi-
calcium using supercritical antisolvent (SAS) and spray-drying
after which the physicochemical properties and bioavailability
were evaluated. The study revealed that amorphous ATO with par-
ticle sizes of 95.7 ± 12.2 nm, 79.78 ± 0.93 m2/g and 68.7 ± 15.8 nm,
120.35 ± 1.40 m2/g appeared to have better solubilities and disso-
lution performances compared to unprocessed crystalline ATO.
According to the findings of this study, physical modifications like
1356
the reduction of particle size and the use of spray-dying and the
SAS process to generate an amorphous state can be used to
improve crystalline ATO bioavailability and physiochemical prop-
erties (Kim et al., 2008). Therefore, a different approach is needed
to improve the development of ATO stability, solubility, and
bioavailability.
2.2. In vivo challenges

Inside the body, when ATO is administered orally for active
hydroxyl acid rather than the lactone prodrug (Lennernäs, 2003),
the two active ATO form are in a state of equilibrium with the inac-
tive lactone forms. Both active forms were metabolized mostly by
CYP3A4 and CYP3A5. ATO acid had a significantly lower affinity to
CYP3A4 than the lactone (Km: para-hydroxy atorvastatin lactone,
1.4 ± 0.2 lM; para-hydroxy atorvastatin, 25.6 ± 5.0 lM; ortho-
hydroxy atorvastatin, 29.7 ± 9.4 lM; and ortho-hydroxy atorvas-
tatin lactone, 3.9 ± 0.2 lM). Compared with atorvastatin acid,
CYP-dependent metabolism of atorvastatin lactone to its ortho-
hydroxy metabolite was 20-fold higher and to its para-hydroxy
metabolite was 83-fold higher (Jacobsen et al., 2000). Acylglu-
curonide intermediates mostly require that the active ATO form
be converted to inactive, which is majorly catalysed by the UDP
glucuronosyltransferase (Hoffart et al., 2012). Over 98 percent of
ATO is bound to plasma proteins. A small amount is excreted in
the urine, while most is excreted through bile in faecal matter.
Very small concentrations of the active ATOmetabolites are related
to about 70% of the total plasma HMG-CoA activity. In biological
fluid, only five percent of the statin dose reaches systemic circula-
tion due to its low solubility in the plasma. The atorvastatin active
metabolites are found as pg/ml in plasma levels from 0.1 to 20 ng/
ml concentration. It absorbs completely when administered orally
but undergoes broad first-pass metabolism while in the liver and
intestine through cytochrome P450, which can lead to a low 12%
(Lennernäs, 2003; Rodde et al., 2014).

However, the ATO a hepatic first-pass effect, poor solubility, low
bioavailability, and drug instability that are not totally understood
(Lennernäs, 2003). This effect might be due to extensive gut wall
extraction and/or incomplete intestinal absorption. The upper gas-
trointestinal tract is not able to absorb the un-solubilised form of
ATO, which is the possible absorption site of the drug (Khan and
Dehghan, 2011). Consequently, the lung, which is the target site,
cannot experience any therapeutic effect if ATO is taken in large
oral doses, which could eventually lead to more systemic side
effects. The systemic effects of ATO have been reported in a few
cases when it was taken orally, which includes progression to
rhabdomyolysis and myopathy (Kommanaboyina and Rhodes,
1999). The conflicting results from the clinical trial studies analys-
ing oral ATO’s level of effectiveness as an anti-inflammatory
chronic lung disease agent could be a consequence of the issues
mentioned above. At the target site (pulmonary), large oral doses
of ATO are essential for obtaining therapeutic effects. Conse-
quently, systemic side effects will be increased. A few case studies
have reported on the systemic side of ATO when administered
orally, such as rhabdomyolysis and myopathy (Bernini et al.,
2001; Hermann et al., 2006; Manoj et al., 2017). Therefore, many
clinical trial studies have demonstrated conflicting results in
assessing the effectiveness of oral ATO as an anti-inflammatory
and antioxidant agent for chronic pulmonary diseases.
3. Potential for inhalation of atorvastatin

To avoid challenges related to ATO oral administration, an alter-
native is the administration of ATO inhaled directly into the lungs,
which will provide high local pulmonary concentration, and sys-
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temic effects, decrease systemic side effects, avoid first-pass meta-
bolism compared to oral statins and simultaneously improve the
bioavailability of ATO (Irngartinger et al., 2004; Pilcer and
Amighi, 2010). Hence, the soluble/stable inhaled ATO formulation
would be most suitable to achieve maximum pulmonary therapeu-
tic effects for chronic lung disease treatment (Pinho-Ribeiro et al.,
2017).

An animal study after elastase-induced emphysema found that
10 min of inhaled administration of ATO (1, 5, and 20 mg) signifi-
cantly decreased the leukocytes levels in BALF in all atorvastatin-
treated groups, macrophages in only the A20 mg group, and tissue
neutrophils in the A5 mg and A20 mg groups (Melo et al., 2018). A
similar study showed that ATO administered via inhalation
(15 min with 1 mg/mL once a day) was able to improve lung repair
after cigarette-smoke-induced emphysema in mice (Pinho-Ribeiro
et al., 2017).

At present, there are only two studies with an inhalable ATO
formulation. According to Melo et al. (2018) and Pinho-Ribeiro
et al. (2017), pulmonary emphysema was induced by CS through
oxidative stress, MMP activation, and inflammation. The objective
of this study was to analyse the effect of simvastatin and ATO after
emphysema was induced in a mouse lung by CS. The researchers
divided male mice (C57BL/6, n = 45) into groups including 1) con-
trol (exposure to sham); 2) CSr (the mice were exposed to 12 cigar-
ettes per day for a total of 60 days, after which another 60 day cycle
was commenced using the vehicle); 3) CSr + A (the mice were
made to undergo ATO for a total of 60 days); and 4) CSr + S (sim-
vastatin was used to treat the mice for a total of 60 days). ATO
and Simvastatin treatment was administered by inhalation once
a day. After the mice were sacrificed physiological, morphological,
and biochemical analyses were performed. The result was a
decrease in cytokine and leukocyte levels. There was also a decline
in the level of stress markers in the statin-treated mice and
improvements in lung morphology. Lastly, lung function was ame-
liorated by statins. This study proved that lung repair following CS-
induced emphysema in mice was improved by inhaled simvastatin
and ATO (Pinho-Ribeiro et al., 2017). It also found that aerosol for-
mulation with 1 mg/ml of ATO could improve pulmonary function
and morphology. This could be attributed to the extracellular
matrix restoration that reduced inflammatory cell influx and the
subsequent reduction in inflammatory mediator release as well
as oxidative stress (Pinho-Ribeiro et al., 2017). A similar study
found that a reduction in MMP-12 and Nrf2 emphysematous mice
due to the intranasal ATO formulation (5 and 20 mg) (Melo et al.,
2018).

3.1. Atorvastatin activation in the lungs

Because ATO needs to be delivered via inhalation, ATO is admin-
istered as the active -open ring hydroxy acid within the lungs. This
will facilitate its intracellular uptake mechanisms into epithelial
cells and macrophages of the lungs (Bradbury et al., 2018). ATO
is converted and metabolised into its active form via the CYP3A4
enzyme.

To understand this activation pathway, PARK et al., discovered
that cytochrome P450 (CYP), the 3A5 enzyme is responsible for
the metabolism of ATO into two metabolites: (1) ortho and (2) para
hydroxy ATO (Park et al., 2008). Cytochrome (CY) P3A5 is present
in ciliated bronchi, capillary endothelium, alveolar macrophages,
and goblet cells of the bronchial glands, bronchial wall, terminal
cuboidal epithelium, bronchiolar columnar epithelium and alveo-
lar epithelium (types I and II) (Anttila et al., 1997). Subsequently,
it has been assumed that ATO can be metabolized by CYP enzymes
and actively move transporters into the lung cells. The lactone
form of ATO is transported via passive diffusion as it is more lipo-
philic in nature, while the atorvastatin hydroxyl acids are sub-
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strates for cellular membrane transporters of P-gp and the OAT
family and the OATP family (Bosquillon, 2010; Bradbury et al.,
2018; Lennernäs, 2003).
4. Atorvastatin pharmacological actions in the lungs

Generally, ATO is able to reduce the mevalonic acid (MVA) syn-
thesis by inhibiting the reductase enzyme of HMG-CoA. Further-
more, MVA has been known to cause isoprenoid intermediates,
like geranylgeranylpyrophosphate (GGPP) and farnesylpyrophos-
phate (FPP), both precursors of cholesterol (Corsini et al., 1999;
Hothersall et al., 2006; Hothersall, 2008; Pryor et al., 1983;
Yeganeh et al., 2014). GGPP and FPP are essential lipid anchors
for carrying out post-translational modification of GTP-binding
proteins (Hothersall et al., 2006; Hothersall, 2008; Marin et al.,
2011), including Rho, Ras, and Rac, (Fig. 2). The GTPase can be
likened to the molecular switches used for controlling the multiple
signalling pathways for both the lungs and the cell functions
responsible for mediating immune functions, the proliferation of
smooth muscle cells, inflammation, cell apoptosis, extracellular
matrix deposition, and lung inflammatory cell cytokine production
(T-cells, mast cells, dendritic cells, neutrophils, eosinophils, and
macrophages) (Hothersall, 2008; Yeganeh et al., 2014).

FPP or GGPP is then employed to prenylate the proteins using
geranylgeranyltransferase and farnesyltransferase (FTase)
(GGTase, and FTase) to facilitate the attachment of the protein to
cell membranes. Rho proteins can now assume two different con-
formational statuses: 1) active GTP-bound and 2) inactive GDP-
bound. Guanine nucleotide exchange factors (GEF) can facilitate
GTPase activation while GTPase-activating proteins (GAP) are
responsible for GTPase activity inactivation. When activated, Rho
activates several kinases, which can trigger the activation of IKK
complex. IKK helps facilitate nuclear factor (NF)-jB translocation
into the nucleus, which automatically leads to the inflammatory
production of protein (Hothersall, 2008). There is proof that Rac
and Rho inactivation can reduce the migration of NF-jB into the
nucleus as well as the subsequent gene transcription and DNA
binding that causes inflammatory mediators. This explains the
ATO’s ability to facilitate a decrease in isoprenoid intermediates
while inhibiting the MVA pathway. Therefore, ATO is able to
down-regulator by inhibiting the mevalonate pathway, leading to
reduced oxidation and inflammation (Hothersall, 2008; Li et al.,
2010; Marin et al., 2011).
4.1. Anti-inflammatory activity of atorvastatin in lung diseases

External environmental pollutants like dust combustibles, die-
sel particles, and cigarette smoke, are a constant source of irritation
for the respiratory system. The result of long-term exposure to any
of those environmental pollutants is lung inflammation (Pryor
et al., 1983). Exposure to any of these irritants, which may not
affect healthy people, can lead to direct activation of the macro-
phages and epithelial cells. These irritants can also activate certain
inflammatory cells like neutrophils, monocytes, lymphocytes, and
eosinophils (MacNee, 2001), which protect the body from certain
infections and tumour necrosis factor-a (TNF-a) (Brennan et al.,
1995; Drost et al., 1992; Rahman and MacNee, 2000) and cancer-
related pro-inflammatory cytokines (interleukins (IL)-1, -6, -8,
and -1ß). The cytokine further releases inflammatory cytokines
by activating NF-KB responses and producing protein-1 (AP-1)
(Hemmeti et al., 2016; Luqing Wei, Liu, Zhenhua, and Guo, 2009)
and matrix-metalloprotease (MMPs) to create an amplifying loop.
This can trigger a torrent of uncontrolled inflammation which fur-
ther establishes the pathogenesis that causes lung diseases like



Fig. 2. Mechanism of action ‘‘Atorvastatin (ATO)” in lung epithelial cells. ATO inhibit the HMG-CoA reductase thus affecting a reduction of isoprenoid intermediate molecules
like geranylgeranylpyrophosphate (GGPP). Consequently, ATO facilitate NF-jB translocation into the nucleus and regulate Rho-signal pathways that is related to
inflammation and oxidation production. HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A; GGPP, geranylgeranylpyrophosphate; FPP, farnesylpyrophosphate; CR, cellular
receptor; GTP, guanosine triphosphate; GDP, guanosine disphosphate; GEF, GAP, GTPase activating proteins; IL, interleukin; guanine nucleotide exchange; TNF-a, tumour
necrosis factor-a; IPP, Rho, Ras-homologous; isopentenyl-5-pyrophosphate; NF-jB, nuclear factor (NF)-jB.
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asthma, lung cancer, COPD and cystic fibrosis (Chung and Adcock,
2008; Milara and Cortijo, 2012).

In 2013, Ching-Feng Huang et al., studied the anti-inflammatory
potential of ATO for the treatment of allergic asthma (AA). For the
study, intragastric gavage was used to administer ATO to mice,
after which ovalbumin was used for aerosol inhalation to analyse
its effects on the bronchoalveolar lavage fluid (BALF) inflammatory
cell (Huang et al., 2013). Thompson et al., evaluated the effects of
placebo versus ATO when combined with inhaled beclomethasone
by smokers with asthma. The study revealed a reduction in the
inflammatory mediator’s sputum concentration along with chemo-
kine ligand 7 (CCL7), MMP-8 while transforming growth factor-
alpha (TGF) (Thomson et al., 2015). Apart from its ability to inhibit
TH1 inflammatory responses, oral ATO administration had some
therapeutic effects on TH2 allergic responses and airway hyperre-
sponsiveness. These data indicate that ATO drugs can be used as
non-immunosuppressives for treating asthma and other allergic
diseases (Huang et al., 2013). Furthermore, Blanquiceth et al.,
investigated the effects of the intraperitoneal administration of
ATO on murine acute allergic asthma. The investigation revealed
a reduction in peri-bronchial inflammation, which had a negative
correlation with the Regulatory T cells found in the lymph nodes
as well as the IL-10 concentration in the lungs with the administra-
tion of ATO intraperitoneally. Remarkably, the most obvious
impact of ATO was on regulatory T cells, which had reduced after
ATO treatment. Regulatory T cells play an essential role in control-
ling the level of inflammation in allergic patients (Blanquiceth
et al., 2016). The murine model of the chronic asthma study
investigated the effects of intraperitoneally injected ATO versus
1358
dexametazon. The researchers discovered that ATO had beneficial
effects on lung histological changes in the model, as compared to
dexametazon. Additionally, IL-5 and -4 levels in lung tissues were
significantly lower in the ATO group as compared to the placebo.
These data confirm the beneficial impact of ATO on changes to
the histology of the lung in a chronic murine model of asthma.
Similar findings have been discovered by Fırıncı et al., which indi-
cates the capability of ATO to inhibit IL-4 and -5 levels in the lung
tissue of the murine model of chronic asthma (Fırıncı et al., 2014).

In addition, lung injury research has indicated the ability of ATO
in the treatment. Siempos et al., found that oral ATO was capable of
improving alveolar-capillary permeability and haemodynamic
parameters in a rabbit induced lung injury model by reducing
the ultrafiltration coefficient marker, lowering the protein concen-
tration in BALF, and lowering the increase in mean pulmonary
artery pressure (Siempos et al., 2010). Similarly, in another study
using a male mice model with inflammatory acute lung injury,
ATO was found to modulate inflammation via a reduction in
TNF-a, redox markers (superoxide dismutase and catalase), and
lipid peroxidation agents (malondialdehyde and hydroperoxides)
that play a key role in acute lung injury development (Melo
et al., 2013). Furthermore, Ferreira et al., examined the impacts
of ATO treatment after CS was simulated (12 cigarettes/day) in
mice for five days. It was discovered that lung inflammation can
be improved through the prevention of the recruitment of lung
leukocytes (mononuclear [MN]), resembling lung histoarchitecture
into the lung after ATO treatment. Moreover, ATO can increase
monocyte chemoattractant protein-1, resulting in MN reduction.
This occurrence may be due to a systemic action by ATO in
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reducing not only C-C chemokine receptor type 2 expression but
also expressions of adhesion molecules, such as vascular cell adhe-
sion molecule-1 and intercellular adhesion molecule-1, thereby
preventing migration of the monocyte to the inflammation site
(Ferreira et al., 2014). Similar findings were discovered after a
group of mice was treated with ATO in conjunction with imipenem
after sepsis was stimulated by puncture and caecal ligation. The
data indicate that ATO causes a decrease in pro-inflammatory cyto-
kine (TNFa and IL-1b) levels and lung bacterial load in BALF in lung
injury (Choudhury et al., 2015).

The ability of ATO as a potential therapy for COPD and pul-
monary emphysema was also investigated. Patients with COPD
were studied by Mroz et al., following the administration of
40 mg/day of oral ATO. They discovered that oral ATO was able
to reduce serum hs-hs-C-reactive protein (CRP) and the influx of
inflammatory cells (leukocytes, CD45+ cells, sputum neutrophils).
The ATO treatment also led to the downregulation of some of the
key genes responsible for leukocyte activation, immune responses,
and inflammatory processes. This data has demonstrated the
pulmonary-connected anti-inflammatory power of ATO in patients
suffering from COPD, with the potential for additional clinical
effects (Mroz et al., 2015). ATO effectiveness for pulmonary
emphysema was demonstrated not only in animals but also in
in vitro experiments.

4.2. Antioxidant activity of atorvastatin in lung diseases

Nitric oxide synthase (NOS) is the enzyme family responsible
for the production of nitric oxide (NO). NOS employs arginine
and oxygen to stimulate the reaction which forms nitric oxide.
NOS comes in three forms: 1) endothelial NOS; 2) neuronal NOS;
and 3) inducible NOS (iNOS). Some of the physiological functions
of nitric oxide include muscle relaxation, immune modulation,
and neuronal activity (Grisham et al., 1999; Liu et al., 2002). As a
free radical, nitric oxide can lead to reactive nitrogen species
(RNS) and reactive oxygen species (ROS), like superoxide anion
and hydroxyl radicals, which can cause oxidative stress to the
lungs. When lungs airways are exposed to oxidants and which
can be generated either exogenously or endogenously. Further-
more, NOS antioxidant properties include its ability to eliminate
oxygen free radicals to prevent reactive oxidant radicals from
affecting the cells. However, the overproduction of these RNS and
ROS could lead to RNA, DNA, and lipid oxidation as well as protein
damage, which can cause lung injury and tissue damage (MacNee,
2001). There is evidence that ATO decreases low- and high-density
lipoproteins including very-low-density lipoprotein (VLDL) oxida-
tion through metal ion chelation capacities and free radical scav-
enging (Aviram et al., 1998), which might be connected to the
MVA pathway inhibition, small GTP-binding protein Rac1, and
nicotinamide adenine dinucleotide phosphate (NADPH) inactiva-
tion (Chen et al., 2012b; Takemoto et al., 2001).

In vitro and in vivo studies have revealed that ATO can improve
the expression of vascular endothelial cell growth factor (VEGF) in
non-small cell lung cancer (NCSCL). These events are mediated by
ATO’s antioxidant effects via MVA pathway inducement; then iso-
prenoid synthases and the NADPH oxidase system deactivate at a
cellular level. These processes caused a significant upregulation
in CAT activity and GPx, leading to VEGF expression inhibition
and a decrease in the generation of ROS (Chen et al., 2012b;
Takemoto et al., 2001). It was discovered in rat pulmonary artery
endothelial cells that eNOS expression was restored after ATO
treatment. This study revealed the potential effects of ATO treat-
ment on monocrotaline-stimulated pulmonary hypertension
(Rakotoniaina et al., 2006). Another study found that ATO caused
a decrease in bleomycin-induced pulmonary fibrosis in rats by
reducing oxidative stress markers and suppressing the inflamma-
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tory marker (Ali et al., 2018; Hemmeti et al., 2016; Wei et al.,
2011, 2009). In a similar study, ATO had a preventive effect on
paraquat-induced pulmonary fibrosis in rats (Khodayar et al.,
2014).
4.3. Anti-proliferative activity of atorvastatin in lung diseases

Because of its antiproliferative effects, ATO, as an agent for the
treatment of lung cancer has been investigated in various studies
(Chen et al., 2013, 2012a, 2012b; Lu et al., 2008). Using A549 cell
line, Fan et al., studied the effects of ATO on the treatment of
human lung cancer by suppressing cell migration, the epithelial-
to-mesenchymal transition process, and actin filament remod-
elling, and protein sphingosine kinase 1 (SphK1) induced by
TGF-b1 (Fan et al., 2016).

In vivo and in vitro studies revealed that when carboplatin is
combined with ATO, the expression of RAS protein and EGFR
decreases. These two events resulted in proliferation inhibition
and an increase in apoptosis (Chen et al., 2012a). In a dose-
dependent manner, ATO exerted a significant chemo-preventive
effect against lung cancer in COPD patients (Liu et al., 2016). Many
studies by Chen et al., have demonstrated that ATO combined with
carboplatin or ATO alone is an effective strategy against NSCLCs
(Chen et al., 2013, 2012a, 2012b). In a lung study using a mouse
model, ATO in combination with polyphenon E caused a decrease
in tumour multiplicity and tumour burden lung destruction. It also
caused a reduction in tumourigenesis and the growth of lung can-
cer in H1299 and H460 cells (Lu et al., 2008).

Moreover, it was discovered that ATO can influence tumours,
apoptosis, and cell proliferation by inhibiting expressions of the
inflammatory marker in smooth muscle cell proliferation of rats
(Wang et al., 2016) and human turbinates (Folli et al., 2008), ATO
was able to regulate inflammatory gene expression (Folli et al.,
2008) by inactivating the RhoA/Rho kinase pathways (Chen et al.,
2012a), suppressing protein kinase B (AKT) activity and upregulat-
ing the matrix metalloprotein inhibitor, TIMP-1 (Folli et al., 2008).
These outcomes were supported by Ghavami et al., after the prolif-
eration of fibroblasts reduced upon treatment with ATO (1 mM);
fibroblasts were obtained from healthy turbinates in cultured cells
in vitro. The anti-proliferation activity of ATO might help in the
treatment of chronic inflammatory respiratory disease (Grisham
et al., 1999; Liu et al., 2002).

ATO has also been found to be effective on tuberous sclerosis
(TSC). A study by Atochina-Vasserman et al., revealed that cell
growth in mouse TSC 2-null was inhibited after ATO treatment
(5–10 lM). Additionally, after 10 lM of ATO, a few cellular mor-
phological changes, including TSC2-null cell rounding, were
observed. In addition, when rapamycin was combined with ATO,
ATP produced an additive growth-inhibitory effect on TSC2-null
cells. This finding confirmed the effectiveness of ATO with respect
to TSC2-null cell survival in TS (Atochina-Vasserman et al., 2013). A
study by Yildirim et al., evaluated the anti-fibrotic effects of ATO in
lung fibroblasts and myofibroblasts. The intraperitoneal adminis-
tration of ATO (20 mg/kg) was evaluated in mice with pulmonary
fibrosis for 10 days. The administration of ATO decreased the fibro-
tic foci, a-smooth muscle actin, lysyl oxidase homolog 2 precursor,
and p-sarcoma inducing kinase proteins in the lung. This study
revealed that ATO’s anti-fibrotic effect is indicative of fibroblast
activation through the inhibition of the differentiation of fibrob-
lasts into myofibroblasts (Yildirim et al., 2018). A similar study
revealed that ATO has anti-tumoural properties in NSCLC utilizing
cell culture systems and in vivo models. They revealed that the
ATO-induced inhibition of oncogenic Cav1 in GLUT3-mediated glu-
cose uptake highlights the potential effects of statins to avoid
NSCLC with EGFR-TKI resistance (Ali et al., 2019).
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5. Effectiveness of inhaled atorvastatin formulation

From the foregoing, it is obvious that ATO has the potential to
treat lung diseases. Therefore, the problems associated with intra-
venous or oral delivery can be addressed through inhaled adminis-
tration of ATO to the airways. The evidence of ATO inhaled
formulation efficacy is detailed below. The ability of inhaled (in-
tranasal) ATO and curcumin treatment using a MicroSprayer�

Aerosolizer attached to a high-pressure syringe model FMJ-250
was assessed at three concentration levels (QC1, 2, and 3) in mice
lung tissues. ATO intranasal formulation was prepared as ultra-
small lipid nanoparticles by high-shear homogenization and ultra-
sonication, containing 5% (w/w) of ATO and 2.5% (w/w) of CUR.
Both compounds were dissolved in the lipid molten phase, added
to 30 mL of a hot aqueous surfactant solution of 5% (w/v) Tween�

80 and emulsified for 1 min at 24 000 rpm. This information pro-
vides a useful tool for supporting the nonclinical biodistribution
studies of ATO and curcumin in mice (Silva et al., 2019).

Furthermore, Ribeiro et al., investigated the effects of inhaled
ATO (15 min with 1 mg/mL) when administered once a day in a
mice model of CS-induced pulmonary emphysema. Interestingly,
the most noticeable effect of inhaled ATO was a reduction in ROS
formation via a reduction in NADPH oxidase activity that led to a
decrease in hydrogen peroxide activity even though superoxide
dismutase activity was not transformed. Subsequently, there was
also a decrease in catalase enzyme activity (Pinho-Ribeiro et al.,
2017). Melo et al., investigated the effect of inhaled administration
of ATO on the development of elastase-induced pulmonary emphy-
sema in mice by using porcine pancreatic elastase intranasally.
Data suggested that inhaled administration of ATO inhibited the
improvement of elastase-induced pulmonary emphysema in mice
by recovery the collagen, elastic fibres, and morphology of the pul-
monary cells. This inhaled therapeutic effect of ATO was due to
reduced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and
MMP-12 (Melo et al., 2018). The efficacy of 1, 5, and 20 mg inhaled
and ATO intranasal treatment in mice was also assessed after stim-
ulation with porcine pancreatic elastase (PPE) for up to 64 days.
Lung histology and total airway inflammation markers were
assessed in BALF. It was discovered that leukocytes in BALF were
reduced after ATO treatment (1, 5, and 20 mg) as compared to
the PPE group. The number of tissue macrophages in BALF
decreased only after 20 mg of ATO. Additionally, the decrease of
tissue neutrophil numbers in BALF fell in the A5 mg and A20 mg
groups of ATO as compared to the porcine pancreatic elastase
group. Finally, the administration of 5 and 20 mg of ATO produced
a reduction in Nrf2 and MMP-12 as compared to the PPE group.
These data confirm that the intranasal administration of ATO could
induce lung tissue repair in emphysematous mice (Melo et al.,
2018). These studies did not explore the mechanisms involved,
but they did provide some insight into what distinguishes the dif-
ferent types of ATO that could guide therapy in the treatment of
chronic lung diseases. The lack of information on the inhaled
ATO formulation is a major limitation in these studies.
6. Conclusions

The risk of chronic lung diseases continues to increase with
every passing year despite all the therapeutic advancements that
have been made in the pharmaceutical industry. There are too
many shortcomings in the treatment methods currently available,
which is why there is a need for alternative or new treatment
methods with better efficacies to combat these diseases.

Atorvastatin (ATO) is one of the drugs from the statin class that
can be used as an oral anti-cholesterol drug. A recent discovery
points to the fact that ATO is made up of other protective
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pharmacological properties that have no connections whatsoever
to its anti-cholesterol properties, which could serve as a treatment
for chronic airway diseases. This explains why the manipulation of
ATO molecules that suit different indications, formulation proper-
ties, and routes of administration is a realistic solution. There are
several benefits to be derived from this manipulation which is con-
sidered a better alternative to a brand-new drug molecule. These
benefits include: 1) it lowers the cost of manufacturing; 2) it low-
ers systematic drug concentration after ATO inhalation compared
to what is obtainable in oral ATO doses; and 3) it offers a well-
established commercial scale of manufacturing, including quality
control of active pharmaceutical ingredients. (Apart from the
knowledge about systematic metabolism, distribution, safety and
pharmacokinetics that it provides, ATO can significantly reduce
product development costs, risks, and timelines for investigating
drug interactions and systemic toxicity, using new chemical enti-
ties.); and 4) the pharmaceutical ingredient properties are active
and well-documented.

This review highlights the capabilities that make ATO an effec-
tive therapy for treating chronic lung diseases. Research has shown
that statins possess more pleiotropic effects than lipid-lowering
activities through the modulation of the different signalling path-
ways governing inflammatory, proliferation, and oxidative stress.
Though the protective role of ATO in the treatment of these chronic
lung diseases is quite clear, there is still a long way to go when it
comes to research on how to use oral statins for clinical trials.
The discrepancies can be attributed to the particular ATO delivery
routes employed in the trial process, such as inhaled versus oral,
which has been considered the limiting factor in the direct assess-
ment of ATO’s beneficial effects as a potential agent for anti-
inflammatory treatment. At present, no clinical studies detail the
effects of using inhaled ATO. In addition, most of the studies on
the reformulation of ATO as a form of inhaled therapy are in their
infancy, which means there is a need for further investigations to
understand the efficacy, mechanism, and toxicity of ATO actions
for the airways. However, there has been an array of in vivo and
in vitro studies on ATO’s protective effects and how ATO affects
the treatment procedure for chronic inflammatory lung diseases,
which is a great start.
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