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Abstract. Autophagy is a self-digestion process in cells that 
can maintain energy homeostasis under normal circum-
stances. However, misfolded proteins, damaged mitochondria 
and other unwanted components in cells can be decomposed 
and reused via autophagy in some specific cases (including 
hypoxic stress, low energy states or nutrient deprivation). 
Therefore, autophagy serves a positive role in cell survival and 
growth. However, excessive autophagy may lead to apoptosis. 
Furthermore, abnormal autophagy may lead to carcinogenesis 
and promote tumorigenesis in normal cells. In tumor cells, 
autophagy may provide the energy required for excessive 
proliferation, promote the growth of cancer cells, and evade 
apoptosis caused by certain treatments, including radiotherapy 
and chemotherapy, resulting in increased treatment resistance 
and drug resistance. On the other hand, autophagy leads to an 
insufficient nutrient supply in cancer cells and the destruction 
of energy homeostasis, thereby inducing cancer cell apoptosis. 
Therefore, understanding the mechanism of the double-edged 
sword of autophagy is crucial for the treatment of cancer. The 
present review summarizes the signaling pathways and key 
factors involved in autophagy and cancer to provide possible 
strategies for treating tumors.
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1. Introduction

In the 1960s, researchers first observed that cells degraded 
intracellular components by wrapping them in a membrane 
to form a cystic structure and transporting the contents to a 
small compartment (called the lysosomes) for recycling (1). 
Due to the difficulties in studying this phenomenon, little 
was known about it until the early 1990s, when the Japanese 
molecular cell biologist Ryoshi Ohsumi performed a series 
of experiments. In the experiments, baker’s yeast was used to 
identify key autophagy genes. The mechanism behind yeast 
autophagy was further explained and it was demonstrated 
that human cells use a similar mechanism, a tightly regulated 
cellular process in which damaged proteins or organelles 
are wrapped in autophagic vesicles with a bilayer membrane 
structure, which are transported to lysosomes (mammals) or 
vacuoles (yeast and plants) for degradation and recycling (2,3). 
By contrast, autophagy occurs under normal conditions in 
response to adverse stresses, including hypoxia and nutri-
tional deficiency to supply nutrients and energy and maintain 
cellular homeostasis. Autophagy can also act as a collec-
tive scavenger to degrade unwanted substances (including 
damaged organelles and misfolded proteins). However, when 
excessive, autophagy can also lead to autophagic programmed 
cell death, which leads to the occurrence of several diseases 
(including neurodegenerative diseases, pathogenic microbial 
infections and cancer) (4-6). Cancer is a disease with serious 
metabolic disorders, and autophagy serves dual roles in 
promoting and inhibiting the occurrence and development of 
cancer. In addition, numerous signaling pathways and factors 
are involved in cancer-related processes  (7). Beclin1 is a 
major factor in autophagy, but its expression is downregulated 
or absent in human ovarian cancer and non-small cell lung 
cancer, suggesting that Beclin1 is a tumor suppressor (8,9). 
Notably, Beclin1 is upregulated in colon cancer (10). In addi-
tion, numerous tumor suppressor factors (P53, PTEN, AMPK 
and LKB1) may negatively regulate the mTOR pathway and 
activate autophagy (11-14). By contrast, oncogenes, including 
Akt and ERK, can activate the mTOR signaling pathway to 
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inhibit autophagy (15,16). Therefore, these factors or their 
pathways are bridges between autophagy and cancer. However, 
it is unclear whether tumor suppressors promote or inhibit 
autophagy. It is necessary to determine the advantages and 
disadvantages of autophagy is cancer, as well as the roles 
served by autophagy-associated factors and pathways in cancer 
in order to improve cancer diagnosis, treatment and prognosis 
assessment. By reviewing the signaling pathways and factors 
related to autophagy and cancer, the present review aimed to 
further clarify the association between autophagy and cancer 
and its mechanism to provide strategies for the prevention and 
treatment of cancer.

2. Initiation and classification of autophagy

Autophagy is derived from the Greek prefix Auto and is 
an intracellular catabolic process. At present, it has been 
demonstrated that there are three types of autophagy, 
microautophagy, chaperone-mediated autophagy  (CMA) 
and macroautophagy (MAC) (17). Microautophagy is gener-
ally an invagination of lysosomal and nuclear membranes, 
which directly engulf cytoplasmic contents (Fig. 1). CMA 
selectively degrades proteins containing soluble KFERQ-like 
motifs. These motifs are recognized by 70-kD heat shock 
protein (Hsc70) and form complexes with Hsc70 and chaper-
ones proteins; these complexes are then delivered to lysosomes 
through interactions with lysosome-associated membrane 
protein (LAMP2A) receptors, resulting in degradation (Fig. 1). 
MAC, commonly known as autophagy (hereafter referred to 
as autophagy), occurs through a free bilayer membrane struc-
ture derived from the rough endoplasmic reticulum that wraps 
unwanted organelles/proteins or cytosol to form a structure 
called an autophagosome, which recognizes and isolates 
cellular contents that have been labeled by autophagy recep-
tors. Autophagic lysosomes are then fused with lysosomes 
(mammals) or vacuoles (fungi or plants). During this process, 
those engulfed organelles/proteins or other components are 
degraded into amino acids or other raw materials for cell 
survival or the maintenance of cell nutrition, thereby allowing 
cells to maintain normal functions under various adverse 
conditions (2,3) (Fig. 1).

Autophagy includes five stages: autophagy induction, 
nucleation, autophagosome extension, autophagosome matura-
tion and autophagosome lysis (Fig. 2) (18).

Induction stage: The ULK1-Atg13-FIP200-Atg101 
complex is involved in the induction of autophagy (19). Under 
conditions of sufficient nutrition, mammalian rapamycin target 
protein complex 1 has a certain activity and can phosphorylate 
unc-51 like kinase 1 (ULK1) and Atg13 to prevent ULK1 
binding to Atg13, FIP200 (FAK-family interacting protein 
200 kDa) and Atg101, thereby inhibiting autophagy. During 
nutritional deficiency, the activity of mTORC1 on the surface 
of the lysosome is inhibited, and ULK1 and Atg13 are dephos-
phorylated, which leads to the activation of ULK1 kinase, and 
the ULK complex localizes to phagosomes to form the ULK1-
Atg13-FIP200-Atg101 complex, which induces autophagy. 
When mTORC1 activity is inhibited, Atg13-Atg1-Atg17 forms 
and initiates autophagy. 

Nucleation stage: The Beclin1 (Atg6)-Atg14L-
VPS15-VPS34 (PI3K) complex mediates the formation of 

pre-autophagosomes (PASs) and the initiation of autophagy, 
and may also recruit associated autophagy proteins (including 
Atg12-Atg5, Atg6 and LC3). Atg6 and LC3 may promote the 
expansion and extension of phagosomes (20).

Autophagosome extension: This step is mainly mediated 
by two ubiquitin-like systems, the Atg5-Atg12 system and the 
LC3 system (21). Atg7 acts as an E1-like ubiquitin-activating 
enzyme to activate Atg12; the E2 ubiquitin-transferase Atg10 
transfers Atg12 to Atg5 to form an Atg12-Atg5 complex, 
which then binds with Atg16L to form an E3-like ligase-like 
Atg12-Atg5-Atg16L complex, which is located on the outer 
membrane of autophagosomes and participates in membrane 
expansion  (22). At the same time, Atg4 can cleave the 
C-terminal glycine of proAtg8 (pro-LC3) to form cytoplasmic 
LC3-I and covalently bind to phosphatidylethanolamine (PE) 
in response to Atg7 and Atg3 to form an Atg8-PE (LC3-II) 
fat-soluble complex (22). In addition, the Atg12-Atg5-Atg16L 
complex can activate the Atg3 enzyme, promote the transfer 
of Atg8 (LC3) from Atg3 to PE, and promote the formation 
of the Atg8-PE (LC3-II) complex. These two systems comple-
ment each other to promote the expansion and extension of the 
autophagic membrane (23).

Autophagosome maturation: Soluble N-ethylmaleimide-
sensitive factor attachment protein receptor (SNARE) serves 
an important role in cell material transport and specific 
membrane fusion  (24). The PI3K complex (Vps34-Vps15-
Beclin1) binds to the anti-ultraviolet gene (ultraviolet radiation 
resistance-associated gene, UVRAG) to form a Vps34-Vps15-
Beclin1-UVRAG complex (class III phosphatidylinositol 
kinase complex, PI3KC3), which participates in autophagic 
maturation and transport. Cheng et al (25) reported that Pacer 
(protein associated with UVRAG as an autophagy enhancer) 
is a vertebrate-specific autophagy regulatory molecule. Pacer 
may directly interact with UVRAG, one of the mammalian 
PIK3C3 subunits, thereby alleviating Rubicon (complex 
subunit, autophagy negative regulatory factor)-mediated 
inhibition of Vps34 kinase. By contrast, Pacer may recruit 
PI3KC3 and HOPS complex subunits to autophagic vesicles 
and promote the fusion of autophagosomes and lysosomes. In 
addition, autophagic lysosome fusion requires the participa-
tion of lysosome-associated membrane protein 1 (LAMP1) 
and lysosome-associated membrane protein 2 (LAMP2) (26). 

Autophagolysis: Acid hydrolase in autophagic lysosomes 
degrades the contents of the vesicles.

3. Signaling pathways in autophagy and tumors

Basal autophagy serves an important role in cellular homeo-
stasis by eliminating old or damaged organelles and aggregated 
intracellular proteins. In the cancer microenvironment, 
when cancer cells are subjected to stress (glucose/cytokine 
deficiency, hypoxia, oxidative stress, radiation or anticancer 
drug therapy), the level of autophagy increases, which leads 
to the enhancement of cancer cell adaptability (cytoprotective 
response) and contributes toward the development, prolifera-
tion and migration of cancer cells (27). In addition, it has been 
reported that the level of autophagy was decreased in a variety 
of cancer types, indicating that autophagy also has a certain 
anticancer effect (28). Therefore, autophagy serves dual roles 
in the promotion and inhibition of cancer. The occurrence and 
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Figure 1. Classification and initiation of autophagy. Autophagy is classified as macroautophagy, chaperone-mediated autophagy and microautophagy. The 
engulfed organelles/proteins or other components are degraded into amino acids or other raw materials that can be used for cell survival or to maintain the 
nutritional state of the cell, allowing the cell to survive under various adverse conditions.

Figure 2. The initiation and occurrence of autophagy. Autophagy includes the following stages: autophagy induction, nucleation, autophagosome extension, 
autophagosome maturation and autophagosome lysis. (1) The ULK1-Atg13-FIP200-Atg101 complex is involved in the induction of autophagy. (2) Formation 
of the Beclin1 (Atg6)-Atg14L-VPS15-VPS34 (PI3K) complex and the recruitment of Atgs. (3) Modification of the Atg5-Atg12 and LC3 systems. (4) SNARE 
and the Vps34-Vps15-Beclin1-UVRAG complex participate in the maturation of autophagosomes. (5) Acid hydrolases in autophagic lysosomes degrade the 
contents of vesicles.
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development of tumors involves numerous signaling pathways 
and associated factors. Therefore, a more comprehensive 
review of autophagy and tumor-related signaling pathways 
is required to understand the pathogenesis and treatment of 
cancer.

The mTOR/PI3K/AKT signaling pathway in autophagy and 
cancer. mTOR, a highly evolutionarily conserved kinase, 
is important for cell proliferation, growth and metabo-
lism (29). Early studies have demonstrated that rapamycin, 
an mTOR inhibitor, may induce autophagy (30). A previous 
study reported that the mTOR signal transduction pathway 
is associated with autophagy regulation (31). There are two 
types of mTOR complexes, rapamycin-sensitive mTORC1 
and rapamycin-insensitive mTORC2  (32,33). Rapamycin-
sensitive mTORC1 is composed of mTOR, mLST8, Raptor, 
PRAS40, DEPTOR, RadA-D and Rheb-GP and mTORC2 
is composed of mTOR, mLST8, Rictor and related proteins 
(Sin1 and Protor, DEPTOR; Fig. 3)  (34). mTOR regulates 
autophagy through two mechanisms. mTORC1 acts on 
4E-BP1 (eIF-4E-binding protein 1) and S6K1 through the 
signal transduction pathway and may initiate transcription and 

translation of associated genes and regulate autophagy (35). 
mTOR kinase may also directly act on Atg and regulate 
autophagy (36). 4E-BP1 is a negative regulator of translation 
and may be phosphorylated and inactivated by mTORC1. 
The inactivated 4E-BP1 dissociates from eIF-4E, thereby 
activating eIF-4E. EIF-4E binds with eIF-4A and eIF-4G to 
form an eIF-4F complex. The EIF-4F complex binds to the 
cap structure at the 5' end of target mRNA, which promotes 
the initiation of translation. EIF-4E may regulate the transla-
tion of numerous proteins, including cyclin D-MYC and RAS, 
which are closely associated with cancer cell growth, prolif-
eration and cell cycle regulation, thereby affecting cancer 
progression (37,38). S6K1 is a serine/threonine kinase with 
multiple phosphorylation sites that is directly or indirectly 
regulated by mTORC1 and participates in the regulation of 
autophagy (30). S6K1 may phosphorylate and activate 40S 
ribosomal protein S6. Activated S6 may improve the transla-
tion efficiency of 5' terminal oligopyrimidine bundle (TOPS) 
RNA. 5'Top mRNA accounts for 15-20% of total intracellular 
RNA and encodes numerous components required for protein 
translation, including ribosomal proteins, elongation factors 
and polyA-binding proteins. A previous study demonstrated 

Figure 3. The mTOR/PI3K/Akt signaling pathway in autophagy and cancer. mTOR generally forms two complexes: mTORC1 consists of central proteins 
(mTOR, mLST8 and Raptor) and associated proteins (PRAS40, DEPTOR, RadA-D and Rheb-GP), and mTORC2 consists of central proteins (mTOR, mLST8 
and Rictor) and related proteins (Sin1 and Protor and DEPTOR). mTOR regulates autophagy through two mechanisms. mTORC1 acts on and S6K1 through 
signal transduction pathways and initiates the transcription and translation of related genes, thereby regulating autophagy. mTOR kinase may also directly 
affect Atg to regulate autophagy. 4E-BP1, eIF-4E-binding protein 1.



EXPERIMENTAL AND THERAPEUTIC MEDICINE  22:  710,  2021 5

that abnormal synthesis of these proteins is associated with 
cancer  (39). Members of the AGC protein kinase family, 
including Akt, SGK1 and PKC, are known substrates of 
mTORC2 and serve important roles in regulating cytoskeletal 
remodeling and autophagy (40). The expression of the tumor 
suppressor FOXO3a is usually downregulated in cancer (41). 
Activated FOXO3 may induce autophagy by enhancing the 
transcription of autophagy-related genes LC3 and BNIP3, 
while mTORC2 blocks the activation of FOXO3 by activating 
Akt (42). Therefore, FOXO3a is a key molecule connecting 
autophagy and cancer, and its expression may be regulated by 
regulating autophagy-related signaling pathways, suggesting 
that FOXO3a may be a target for the treatment of cancer.

When a growth factor or a Toll-like ligand binds to a growth 
factor receptor or a Toll-like receptor, p85 is activated, and 
p110 is recruited, thereby activating PI3K and then catalyzing 
PIP2 phosphorylation on the plasma membrane to produce the 
second messenger PIP3, recruiting Akt (43). PTEN is a phos-
phatase that inhibits the transition of PIP2 to PIP3, thereby 
preventing PIP3 from recruiting Akt to the membrane, inhib-
iting Akt activation by preventing phosphorylation (44). PDK1 
is a kinase. When Akt is recruited to the membrane, PDK1 
phosphorylates Akt at threonine 308 (T308), and mTORC2 and 
other kinases phosphorylate Akt at serine 473 (S473). When 
these two sites are phosphorylated, Akt is fully activated, and 
PRAS40 is phosphorylated, thereby alleviating PRAS40-
mediated inhibition of mTORC1 (45). Following mTORC1 
activation, some of the aforementioned regulatory responses 
take place. In addition, the TSC2 and TSC1 complexes, 
which are encoded by the Tsc1 and Tsc2 genes, respectively, 
may inactivate Rheb, inhibiting the activity of mTORC1, 
and thereby promoting autophagy (46). Activated Akt may 
phosphorylate TSC2 and prevent the formation of the TSC 
complex, which further leads to the activation of mTORC1, 
thereby inhibiting autophagy (47). It has been demonstrated 
that the mTOR/PI3K/Akt signaling pathway is triggered in 
tumor cells and is considered to be a key therapeutic target 
for the treatment of various cancer types (48). Han et al (49) 
demonstrated that β-rapazone may block the mTOR/PI3K/Akt 
signaling pathway, induce autophagy, and ultimately inhibit 
the migration and invasion of nasopharyngeal carcinoma cells. 
In addition, angiogenesis may provide nutrition and oxygen to 
tissues, which are essential for tumor growth and metastasis. 
It has been demonstrated that dihydroartemisinin (DHA) may 
induce autophagy in human umbilical vein endothelial cells 
by inhibiting the Akt/mTOR signaling pathway (50). It has 
been reported that angiogenesis is a major cause of cancer, and 
DHA is an effective antiangiogenic agent (51). Recent studies 
have demonstrated that angiogenesis is closely associated with 
autophagy (52). Antitumor therapy by inhibiting angiogenesis is 
also a promising strategy. In numerous cancer types, protective 
autophagy induces chemical resistance to various chemothera-
peutic agents. Therefore, the efficacy of chemotherapeutic 
agents in numerous cancer types is limited by spontaneous 
protective autophagic induction, and chemical resistance may 
be overcome by studying autophagy pathways and properly 
regulating autophagy levels. Liu et al (53) reported that the 
combination of 9za with autophagy inhibitors (including chlo-
roquine or 3-methyladenine) exhibited higher cytotoxicity and 
apoptosis than 9za alone and reported that the Akt/mTOR axis 

was associated with 9za-induced autophagy (53). In addition, 
PDK1 overexpression leads to increased phosphorylation of 
PDK1 and Akt, and blockade of 9za-mediated autophagy (53). 
The regulation of autophagy contributes toward the expression 
of tumor suppressor proteins or oncogenes. Tumor suppressors 
are negatively regulated by mTOR, leading to autophagy induc-
tion and cancer initiation inhibition. By contrast, oncogenes 
may be activated by mTOR, class I PI3K and Akt, leading 
to autophagy inhibition and cancer development. The induc-
tion of autophagy has a positive regulatory effect on cancer 
chemotherapy resistance; therefore, reducing chemotherapy 
resistance by inhibiting autophagy is one of the strategies that 
may be considered in cancer treatment. Furthermore, studies 
have reported that abnormal PI3K/Akt/mTOR signaling is 
associated with cancer cell growth, survival, movement and 
resistance to targeted therapy (54-56). It was demonstrated 
that in head and neck squamous cell carcinoma, the mutation 
rate of the mTOR genome reached 80-90% (57). In addition, 
previous studies have reported that in gastric cancer, breast 
cancer, prostate cancer, endometrial cancer, cholangiocar-
cinoma and bladder cancer, inhibiting the mTOR signaling 
pathway may inhibit cancer progression or has a synergistic 
effect with current conventional treatments (including radio-
therapy and chemotherapy), enhancing sensitization and 
efficacy (58-63). mTOR is a key factor in this pathway. A 
previous study has demonstrated that there is inevitable resis-
tance to first- and second-generation mTOR inhibitors, which 
may be associated with drug-resistant mutants and the induc-
tion of autophagy (64). However, the third-generation mTOR 
inhibitor, Rapalink, (which inhibits both sites of mTOR at the 
same time) may enter cancer cells, inactivate mTOR signaling, 
and decrease resistance to first- or second-generation mTOR 
inhibitors  (64). Akt inhibitor VIII (AKTi-1/2) may revers-
ibly inhibit Akt, and when combined with other inhibitors, it 
synergistically enhances the anticancer effect (65). Therefore, 
the majority of studies have focused on PI3K/Akt/mTOR 
signaling pathway inhibitors. Unfortunately, the majority of 
mTOR signaling pathway inhibitors are in clinical trials, and 
numerous challenges need to be overcome if these treatments 
are to be used clinically. A previous study reported that, in 
patients with HER2-positive cancer, inhibiting the mTOR 
pathway alone may activate autophagy, causing cancer cells 
to escape and develop drug resistance (66). Therefore, it is 
necessary to investigate the inhibition of other signal trans-
duction pathways, dual pathway inhibition or multiple pathway 
inhibition to achieve the inhibition of cancer progression. To 
date, no typical biomarkers have been identified to predict 
the PI3K/Akt/mTOR signaling pathway inhibitory responses 
or drug resistance. Therefore, targeting the PI3K/Akt/mTOR 
signaling pathway in cancer treatment requires comprehensive 
investigation.

The AMPK signaling pathway in autophagy and cancer. As 
a cellular energy receptor, AMPK serves a key role, not only 
in the regulation of cellular energy homeostasis, but also in 
carcinogenesis and anticancer drug resistance (67). AMPK 
may form a heterotrimeric complex containing a catalytic 
α-subunit and regulatory β-and γ-subunits. Following binding 
to the γ-subunit, AMP allosterically activates the complex, 
resulting in substrate phosphorylation at threonine 172 and 
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further phosphorylation by upstream LKB1 in the activation 
ring of the α-subunit (Fig. 4) (68). When cells are stimulated, 
extracellular signaling molecules first bind to the receptor to 
form a complex and then activate the Gs protein on the cell 
membrane. The activated Gs protein reactivates adenylate 
cyclase (AC) on the cell membrane to catalyze the removal of 
pyrophosphate from ATP to produce cAMP. The decreased 
cellular energy state enhances the phosphorylation and acti-
vation of AMPK by LKB1, and following activation, AMPK 
catalyzes the phosphorylation of ULK1, which induces 
autophagy (69). Induced autophagy removes the accumulated 
unwanted components that cause inflammation, stimulate 
ROS, trigger cell death and induce genomic instability, all of 
which contribute toward cancer. Therefore, AMPK-induced 
autophagy may prevent the occurrence and development of 
tumors. In addition, induced autophagy may also provide 
nutrients for tumor cells and aid tumors in adapting to adverse 
environments. It has been demonstrated that in breast cancer 
cells, parthenolide activates the apoptosis pathway and 
AMPK-autophagy survival pathway through the production 
of ROS. Inhibition of AMPK or autophagy may potentially 
enhance the anticancer effect of parthenolide on breast cancer 
cells (70). In addition, AMPK can also act on the downstream 
factors TSC2, p53 and p27kip1 (71). LKB1 is the upstream 
tumor suppressor of AMPK, and TSC2, p53 and p27kip1 are 
downstream tumor suppressor genes, indicating that AMPK 
has a certain role in tumor inhibition.

Notably, AMPK is a key factor in the response to metabolic 
stress and the maintenance of energy homeostasis. As AMPK 
is able to support the proliferation of cancer cells by regulating 
energy metabolism, the AMPK pathway has attracted much 
attention in the treatment of cancer. In thyroid cancer, the 
AMPK pathway is highly activated (72). It was demonstrated 
that inhibiting the AMPK pathway may inhibit cancer. JQ1 may 
induce autophagy by activating the LKB1/AMPK pathway, 
thereby inhibiting cancer cell proliferation (73). In addition, 
NPC-26 kills human colorectal cancer cells by activating 
AMPK signaling (74). Therefore, AMPK and its pathways are 
expected to serve as therapeutic targets for the treatment of a 
variety of cancer types. In summary, the role of the AMPK 
pathway in autophagy and cancer is complicated, but AMPK 
pathway inhibition is more conducive to cancer suppression 
than activation.

The MAPK signaling pathway in autophagy and cancer. 
MAPK is a serine/threonine protein kinase that primarily 
includes three subgroups: ERK, JNK/SAPKII and p38-MAPK 
(Fig. 5). MAPK may regulate the expression of downstream 
genes by regulating B lymphocyte tumor-2 gene  (Bcl-2) 
family proteins. Bcl-2 family proteins are key regulators in 
the disposal of abnormal cells and participate in almost all 
cell pathological and physiological processes, including cell 
cycle regulation, cell survival and death, gene expression, 
and cell movement (75). JNK regulates autophagy through 

Figure 4. AMPK signaling pathway in autophagy and cancer. AMPK may form a heterotrimeric complex that contains a catalytic α-subunit and regulatory 
β- and γ-subunits. Following AMP binding to the γ-subunit, the allosteric activation complex is phosphorylated at threonine 172 and is phosphorylated by 
upstream LKB1 at the activation loop of the alpha subunit, which induces autophagy. AMPK can also act on the downstream factors, TSC2, p53 and p27kip1, 
and mediate cancer formation and development.
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Beclin-dependent and -independent signaling (76). ER stress 
upregulates p62 expression through the PERK-mediated 
eIF2 α-ATF4 pathway and activates the ER transmembrane 
sensor. Inositol requires enzyme 1  (IRE1) to activate Jun 
N-terminal kinase (JNK), and JNK activation may inhibit/
phosphorylate the antiapoptotic protein Bcl2, which leads to 
the dissociation of Bcl2 from Beclin-1, resulting in autophagic 
flux. Pan et al  (77) found that Prodigiosin-induced endo-
plasmic reticulum stress could lead to breast cancer cell 
death through the PERK-mediated eIF2 α-ATF4 pathway, in 
which IRE1-JNK mediates Bcl2-induced cell death. However, 
JNK mediates the increase in Bcl2 and protective autophagy, 
resulting in increased autophagic flux and the induction 
of therapeutic resistance. Therefore, the therapeutic agent 
Prodigiosin, could be used in combination with autophagy 
inhibitors to inhibit associated autophagic flux, which may 
improve treatment efficacy. P62 is a ubiquitin-binding protein 
that is closely associated with the ubiquitination of proteins. 
P62 is involved in the regulation of a variety of cellular signal 
transduction pathways and autophagy (78). In autophagy, p62 
binds to ubiquitin, forms a complex with LC3-II located on 
the autophagic membrane, and is degraded in the autophagic 
lysosome. Therefore, when autophagy occurs, p62 protein is 
continuously degraded in the cytoplasm; when autophagic 
activity is weakened and autophagy is deficient, p62 protein 

will accumulate in the cytoplasm. P62 is one of the marker 
proteins that reflects autophagic activity. The P62 level indi-
rectly reflects the level of autophagosome clearance. A large 
number of studies have demonstrated that high expression of 
p62 is associated with poor prognosis in colon cancer, non-
small cell lung cancer and breast cancer (79-81). Therefore, 
p62 may be an important target for the treatment of these 
cancer types. By contrast, JNK may upregulate the expres-
sion of Atg and promote autophagy. Chen et al demonstrated 
that tumor necrosis factor-related apoptosis-inducing ligand 
(TRAIL) promoted autophagy in A549 cells by regulating the 
expression of ATG through the JNK pathway (82). Autophagy 
inhibition may inhibit proliferation and enhance apoptosis in 
A549 cells induced by TRAIL (82). A previous study have 
demonstrated that JNK has a significant oncolytic effect, and 
autophagy inducers acting on the JNK/Beclin-1 axis may 
enhance this oncolytic effect (83). Notably, JNK is a potential 
molecular target for tumor therapy. When cells are stimulated 
by growth factors, mitogens and environmental stimuli, they 
activate the ERK pathway through the Ras-Raf-MEK1/2-ERK 
cascade and act on nuclear transcription factors, including 
AP-1 and NF-κB to regulate gene expression (84). In addition, 
the activation of ERK may promote the expression of LC3 and 
p62, promote autophagy, and downregulate the expression of 
LAMP1 and LAMP2, thereby inhibiting the binding of lyso-

Figure 5. MAPK signaling pathway in autophagy and cancer. The MAPK signaling pathway mainly includes three subfamilies: ERK, JNK/SAPKII and 
p38-MAPK. JNK may regulate autophagy through Beclin-dependent and -independent signaling. When cells are stimulated by signals from growth factors, 
mitogens and stimuli, the ERK pathway is activated by the Ras-Raf-MEK1/2-ERK cascade. Extracellular stimulation (including inflammatory factors, endo-
toxin, osmotic pressure, chemotherapy and ultraviolet) or intracellular stimulation (including oxidative stress and heavy metals) activates MAPK p38 through 
the TAK1-MKK6-p38 and ASKK1-MKK3-p38 cascades, respectively.
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somes to autophagosomes and inhibiting the degradation of 
autophagosomes (85). Mou et al (86) reported that Berbamine 
exhibited anticancer effects on human HT-29 colon cancer 
cells by inhibiting the MEK/ERK pathway and cell migration, 
and inducing autophagy and apoptosis. Therefore, MEK/ERK 
is expected to be a therapeutic target for colon cancer.

Oxidative stress is one of the causes of autophagy. In vivo 
ROS accumulation not only activates autophagy, but also the 
Keap1-Nrf2 oxidative stress signaling pathway (87). P62 not 
only functions as one of the key factors in autophagy, but also 
regulates Nrf2 and NF-κB, which induce p62 gene transcrip-
tion, and endoplasmic reticulum stress may induce p62 mRNA 
expression. The accumulation of p62 may lead to the activation 
of NF-κB, and NF-κB may induce the expression of VEGF 
and promote angiogenesis, thereby promoting the occurrence 
of cancer (88). In addition, NF-κB may promote tumor growth 
by regulating the expression of COX2 and other genes (89). 
When autophagy is disturbed, p62 competitively binds with 
Keap1 to block the Keap1-Nrf2 pathway and increase Nrf2 
signal transduction. P62 is the transcriptional target of Nrf2. 
Under oxidative stress conditions, Nrf2 induces increased 
p62 to reactivate Nrf2. At the same time, the increase in p62 
promotes autophagy (87). ABRUS lectin (AGG) is a hetero-
tetramer type II ribosome-inactivating protein isolated from 
Abrus precatorius seeds. AGG induces autophagy in the 
human tongue phosphorous cancer CAL33 cell line through 
ROS and regulates NRF2 through p62 (90). Therefore, AGG 
induces NRF2 degradation via autophagy and leads to ROS 
accumulation-dependent apoptosis, which may be used in the 
treatment of oral cancer. The binding of Keap1 and Nrf2 causes 
abnormal activation of Nrf2 in cancer cells. Unregulated Nrf2 
may make cancer cells highly tolerant to anticancer drugs 
and ROS and stimulate metabolic reprogramming in cancer 
cells. Metabolic reprogramming is one of the main signs of 
cancer. Autophagy and oxidative stress disorders may lead to 
the accumulation of unfavorable oxidation products in cells, 
which may lead to cancer. Therefore, ensuring the balance 
between autophagy and oxidative stress is one of the strategies 
for the prevention and treatment of cancer. Tyrosine 180 and 
threonine 182 of p38 MAPK are located in the Ⅷ domain. 
The activation of MAPK p38 requires dual phosphorylation 
of tyrosine and threonine. External stimulation (including 
inflammatory cytokines, endotoxin, osmotic pressure, chemo-
therapy and ultraviolet radiation) or intracellular stimulation 
(including oxidative stress and heavy metals) activate MAPK 
p38 through the TAK1-MKK6-p38 and ASKK1-MKK3-p38 
cascades, respectively. Phosphorylation of Atg5 inhibits 
autophagic membrane extension and the transformation of 
LCI to LCII, thereby inhibiting the occurrence of autophagy 
(91,92). By contrast, Atg5 phosphorylation regulates down-
stream MSK and RSK protein kinases, thereby regulating 
transcription and translation (93). In addition, certain tumor-
related proteins/factors, including p53 Magi, Myc and CHOP, 
are downstream of MAPK p38 (91,94). Therefore, MAPK p38 
is a candidate tumor treatment target.

Autophagy exhibits dual effects on cells, not only 
protecting cells, but also leading to cell death. The production 
of tumor-associated ROS may be stimulated by endog-
enous and exogenous factors. Endogenous factors generally 
include mitochondrial products and nutrient deficiency, and 

exogenous factors include chemotherapy and radiotherapy. 
ROS have been suggested to induce or mediate the activa-
tion of MAPK family members and serve important roles 
in autophagy and apoptosis (95). It is known that there is a 
series of complex signal transduction pathways and interac-
tions between ROS and autophagy that regulate autophagy. 
In response to cellular stress, there are checks and balances 
between the two responses; ROS may participate in the 
induction of autophagy, and conversely, autophagy may 
control the level of ROS (96). In addition, ROS-mediated 
autophagy activation mainly serves a cytoprotective role 
in starvation conditions. However, in certain cases, ROS 
may induce cell damage and participate in certain signal 
transduction pathways, leading to autophagic death. JNK 
activation is involved in the apoptosis- and autophagy-
mediated responses to various stress signals (97). JNK may 
mediate the phosphorylation of the antiapoptotic protein, 
Bcl-2/Bcl-xL, to change the MMP. In this respect, the mito-
chondrial dysfunction induced by lutein VI may be associated 
with the JNK-mediated apoptotic response. JNK activation 
also contributes toward autophagy induction. Lutein  VI 
induces G2/M arrest, apoptosis and autophagy in human 
osteosarcoma cells by activating the ROS/JNK pathway (98). 
Chitooligosaccharide  (COS) exerts significant antitumor 
activity on human cervical cancer C33A cells by activating 
oxidative stress and mitochondrial apoptosis and autophagy 
signal transduction. Ubenimex may inhibit the prolifera-
tion of pituitary adenoma GH3 and MMQ cells, and induce 
apoptosis and autophagy, which may be associated with the 
activation of the ROS/ERK1/2 pathway (99). These findings 
provide novel perspectives for the possible application of 
Ubenimex in the chemotherapeutic treatment of pituitary 
adenomas. In addition, autophagy is associated with cancer 
treatment resistance. It has been reported that breast cancer 
MCF-7 cells are resistant to tamoxifen through autophagy 
induced by p38/c-JNK (100). A previous study reported that 
ECZ induces apoptosis in mouse colon cancer CT-26 cells 
through a caspase-dependent pathway and triggers autophagy 
by increasing the formation of autophagosomes, and the 
production of ROS serves a key role in this process (101). 
Inhibition of autophagy enhances ECZ-induced apoptosis, 
which is due to increased ROS production, suggesting that 
autophagy may serve a cytoprotective role by resisting apop-
tosis (101). Therefore, ECZ may be used in combination with 
autophagy inhibitors for the chemoprevention of cancer or as 
a chemotherapeutic agent. By examining ROS production, 
apoptosis and autophagy, it has been demonstrated that regu-
lating the apoptosis-autophagy balance in cells treated with 
ultralong silver nanowires may protect A549 cells from ROS 
accumulation and nutrient deficiency ultralong nanowire 
stimulation (102). Therefore, autophagy serves a role in cyto-
protection, which is also a factor leading to the therapeutic 
resistance of cancer cells. In general, ROS serves important 
roles in apoptosis and autophagy signal transduction, and 
the production of ROS selectively induces cancer cell death. 
Autophagic cell death leads to a significant decrease in the 
number of cancer cells, but as autophagic cell death generally 
occurs in normal cells rather than cancer cells, the inactiva-
tion of autophagic cell death remains an important cause of 
tumor formation.
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4. Autophagy-associated antineoplastic agents

The basal level of autophagy suppresses tumorigenesis 
by decreasing damaged organelles and proteins and other 
unwanted components to maintain cellular homeostasis. 
However, autophagy disorders positively regulate the occur-
rence and development of tumors. Due to the association 
between autophagy and tumor occurrence and development, 
a series of autophagy regulators have been developed to treat 
tumors (Table I).

A number of autophagy regulators, including everolimus 
tablets, venezuela, AT-101, rapamycin, 3-MA, LY294002, 
bafilomycin A1, autophinib, ROC-325, IITZ-01, daurisoline, 
3BDO, 9f, chloroquine (CQ), hydroxychloroquine (HCQ) and 
spautin-1, are used to treat cancer (103-117). CQ and HCQ 
are lysosome inhibitors that inhibit autophagy and induce 
the accumulation of autophagosomes by altering lysosomal 
pH (110,117). Preclinical studies have demonstrated that CQ 
or HCQ may inhibit the growth of cancer cells by inhibiting 
autophagy in bladder cancer, pancreatic cancer, lung cancer 
and glioma (110,116,118). In addition, a number of studies 
have reported that these reagents enhance the therapeutic 

effects of radiotherapy and chemotherapy by inhibiting 
autophagy-mediated anticancer therapy (53,111,112). 
Therefore, the development of autophagy-specific inhibitors 
is a novel therapeutic strategy for anticancer therapy.

Under cellular stress conditions, including nutrient defi-
ciency or starvation, hypoxia, oxidative stress, pathogen 
infection, radiation or anticancer drug therapy, the level of 
autophagy increases, which enhances cell adaptability and 
viability and serves a role in cell protection. For solid tumors 
with low blood supply, autophagy provides energy for cancer 
cells, but this is not always the case. Autophagy also serves 
a different role in different types of cancer. AT-101 induces 
autophagy via Beclin1-dependent or Beclin1-independent 
pathways; induces survival-mediating protective autophagy 
in Burkitt lymphoma, breast cancer, cervical cancer and 
non-small cell lung cancer; and induced autophagic death in 
prostate cancer cells, malignant peripheral schwannomas and 
gliomas (105,106). In addition, different types of tumors have 
different autophagic activities. In ovarian cancer, lung cancer, 
brain glioma and esophageal cancer, the protein expression 
of Beclin1 and autophagic activity are decreased (119,120). 
However, in nasopharyngeal carcinoma, the prognosis of the 

Table I. Autophagy-associated antineoplastic agents.

			   Autophagy activator
Agent	 Tumor (cell) type	 Action target	 (+)/inhibitor (-)	 Ref.

Everolimus tablets	 Human breast cancer cells	 Inhibit mTOR	 +	 (103)
	 (MCF-10DCIS)
Venetoclax (ABT199)	 Mammary cancer cells	 Inhibit Bcl-2; induce autophagy by	 +	 (104)
AT-101, obatoclax	 MCF7 cells, human acute	 interfering with the interaction	 +	 (105,106)
	 T lymphoblastic leukemia	 between Beclin1 and Bcl-2
	 cells
Rapamycin	 Liver cancer HepG2 cells	 Inhibit mTOR 	 +	 (107)
(AY 22989; sirolimus)
3-MA	 Small cell lung cancer	 Inhibit the PI3K/Akt signaling	 -	 (108)
		  pathway
LY294002	 Human glioblastoma cells	 Inhibit the PI3K/Akt signaling	 -	 (109)
		  pathway
Bafilomycin A1	 Glioma cell lines	 Selectively inhibit H+-ATPase	 -	 (110)
Autophinib	 MCF7-LC3 cells	 VPS34	 -	 (111)
ROC-325	 Renal cell carcinoma	 LC3B and p62	 -	 (112)
IITZ-01	 Lung, colon and breast	 Enhance autophagosome formation	 -	 (113)
	 cancer cells	 as indicated by increased
		  expression of LC3-II 
Daurisoline	 HeLa and MEF cells	 Destroy lysosomes	 -	 (114)
3BDO	 Lung cancer A549 cells	 Activate mTOR kinase 	 -	 (115)
9f	 Breast cancer	 BRD4	 -	 (94)
CQ, HCQ 	 Human lung cancer cells, 	 Inhibit the fusion of 
	 human glioblastoma cells	 autophagosomes and lysosomes	 -	 (110,116)
Spautin-1	 HepG2 cells	 Inhibit the deubiquitination activity	 -	 (117)
		  of USP10 and USP13

3-MA, 3-methyladenine; CQ, chloroquinine; HCQ, hydroxychloroquine.
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group with high Beclin1 expression combined with radiotherapy 
was worse than that of the group with low Beclin1 expression. 
This effect may be due to the decrease in microvessel density in 
tumor tissue following radiotherapy, resulting in tissue hypoxia, 
thereby inducing autophagy and promoting tumor survival in a 
hypoxic environment. Therefore, the sensitivity of cancer cells 
to radiotherapy is decreased (121). Autophagy function was 
decreased and cell necrosis was increased, promoting tumor 
progression. Beclin1 deletion decreases autophagy, thereby 
promoting the occurrence and development of tumors. Tumor 
cells degrade unwanted substances through autophagy to 
generate nutrients and decrease energy consumption, which 
is conducive to tumor survival; high autophagic activity may 
confer a survival advantage in harsh environments but may 
weaken the effect of radiotherapy. Therefore, when developing 
tumor-associated autophagy inhibitors/activators, comprehen-
sive consideration should be given to different types of tissues 
and different types of tumors. In numerous cancer types, protec-
tive autophagy induces resistance to various chemotherapeutic 
agents. Therefore, the efficacy of chemotherapeutic agents in 
numerous cancer types is limited by spontaneous protective 
autophagy induction, and chemoresistance may be overcome 
by studying autophagic pathways and effectively regulating 
autophagy levels.

5. Conclusions

In conclusion, the signaling pathways and factors associated 
with autophagy and cancer are intertwined. Tumor suppres-
sors may serve a dual role in autophagy. The occurrence of 
autophagy may promote cancer and inhibiting autophagy may 
inhibit cancer. The occurrence of autophagy may also inhibit 
cancer progression. Activation of autophagy may inhibit 
cancer, but at the same time, autophagy is a key factor in the 
development of drug resistance. Therefore, it is also neces-
sary to prevent the development of drug resistance, including 
through the inhibition of multiple signal transduction pathways, 
to increase the inhibition of cancer and inhibit drug resistance. 
The mTOR/PI3K/Akt, AMPK and MAPK signaling pathways 
and their upstream and downstream factors all serve important 
roles in cancer and autophagy, and no reliable evidence has been 
collected for the reversal of these pathways. Therefore, reason-
able analysis, evaluation and identification of cancer types, 
staging and the tumor microenvironment contribute toward the 
selection of therapeutic targets and prognostic markers.
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