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Pancreatic ductal adenocarcinoma (PDA) is a lethal disease. Overall survival is typically six 

months from diagnosis1. Numerous phase III trials of agents effective in other malignancies 

have failed to benefit unselected PDA populations, although patients do occasionally 

respond. Studies in other solid tumors have shown that heterogeneity in response is 

determined, in part, by molecular differences between tumors. Further, treatment outcomes 

are improved by targeting drugs to tumor subtypes in which they are selectively effective, 

with breast2 and lung3 cancers providing recent examples. Identification of PDA molecular 

subtypes has been frustrated by a paucity of tumor specimens available for study. We have 

overcome this problem by combined analysis of transcriptional profiles of primary PDA 

samples from several studies along with human and mouse PDA cell lines. We define three 

PDA subtypes: classical, quasi-mesenchymal, and exocrine-like, and present evidence for 

clinical outcome and therapeutic response differences between them. We further define gene 

signatures for these subtypes that may have utility in stratifying patients for treatment and 
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present preclinical model systems that may be used to identify new subtype specific 

therapies.

Global gene expression analysis has proved useful for subtype identification in many human 

tumor types4. We approached PDA subtype identification by first identifying intrinsically 

variable (standard deviation > 0.8) genes in two gene expression microarray datasets from 

resected PDA. We generated one dataset using microdissected PDA material (UCSF tumors, 

n=27) from clinical samples for which information on survival duration was available and 

the second was previously published (Badea, et al.)5. To increase power, we merged these 

two datasets using the distance weighted discrimination (DWD) method6,7 and included 

intrinsically variable genes common to both studies. We then performed nonnegative matrix 

factorization (NMF) analysis with consensus clustering8 to identify subtypes of the disease. 

This analysis supported up to three subtypes (cophenetic coefficient >0.99; Supplementary 

Figs. 1, 2a and Supplementary Tables 1–3). We then developed a gene signature by using 

subtypes defined in NMF analysis of the merged clinical datasets to supervise significance 

analysis of microarrays (SAM) analysis9 with false discovery rate (FDR) less than 0.001. 

This resulted in a 62 gene signature, designated PDAssigner. The three PDA subtypes in the 

merged clinical dataset and their expression of PDAssigner genes are shown in Fig. 1a. We 

designated these subtypes as classical, quasi-mesenchymal (QM-PDA) and exocrine-like, 

based on our interpretation of subtype specific gene expression. The classical subtype had 

high expression of adhesion-associated and epithelial genes, the QM-PDA subtype showed 

high expression of mesenchyme associated genes. The exocrine-like subtype showed 

relatively high expression of tumor cell derived digestive enzyme genes, with 

immunohistochemical staining supporting this observation (Supplementary Fig. 3). Analysis 

of PDAssigner gene expression in three additional published PDA expression datasets of 

unique origin, platform or processing10–12 also supported these three subtypes 

(Supplementary Fig. 4) demonstrating the robust nature of the subtype classification in early 

stage PDA.

Survival after PDA resection has been associated with many factors including stage (tumor 

size and nodal involvement) and grade (degree of differentiation)13, but no one factor has 

been consistently prognostic14,15. We found that stratification by PDA transcriptional 

subtype provided useful prognostic information in one PDA dataset (UCSF) for which 

clinical annotation was available. Specifically, patients with classical subtype tumors fared 

better than patients with QM-PDA subtype tumors after resection (p=0.038, log rank, Fig. 

1b). In this same data set, stage and grade were not significantly related (p>0.99), stage was 

not significantly associated with subtype (p=0.40), while grade was (p=0.041) (univariate 

analyses). In a multivariate Cox regression model including stage and subtype, subtype was 

an independent predictor of overall survival (p=0.024) indicating that PDA subtype 

independently contributed prognostic information to pathological staging in PDA. 

Associations of PDA subtype with other clinical variables are summarized in Supplementary 

Table 4. This analysis supports the use of subtypes (as defined using PDAssigner) as an 

independent prognostic indicator in resected PDA.

Further validation of PDA subtypes and preclinical identification of subtype specific 

therapeutic agents would be facilitated by the availability of laboratory models of the 
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subtypes. Therefore, we asked if the PDA subtypes were represented in a collection of 19 

human and 15 mouse PDA cell lines. The 19 human PDA cell lines were selected from 

publicly available PDA lines while the 15 mouse lines were derived by us from genetically 

engineered Tp53−/− and INK4A−/−16 models of PDA. The analyses of the human and mouse 

PDA cell lines using the 62 PDAssigner genes are shown in Fig. 1c,d, as well as in 

Supplementary Figs. 2b–e. Supplementary Tables 5 and 6. These cell line collections 

contain representatives of the classical and QM-PDA subtypes, but not the exocrine-like 

subtype. The absence of the exocrine-like subtype in the cell line collection raises the 

possibility that this subtype is an artifact of contaminating normal pancreas tissue adjacent to 

tumor. However, the UCSF samples were prepared by microdissection to enrich for PDA 

cancer cells thereby minimizing contaminating tumor-associated stroma and/or adjacent 

normal exocrine pancreas. This dataset includes the exocrine-like subtype, which argues that 

it is a bona fide PDA subtype. Thus, we conclude that the cell line collections model two of 

the PDA subtypes thereby enabling exploration of biological differences between these two 

PDA subtypes and may facilitate screening for classical and QM-PDA subtype-specific 

therapeutic agents and biological properties.

Two genes associated with PDA subtypes, GATA binding protein 6 (GATA6) and v-ki-ras2 

kirsten rat sarcoma viral oncogene homolog (KRAS), two variable genes in our UCSF PDA 

dataset, Supplementary Table 1a), have been implicated in both aspects of normal 

development and cancer pathophysiology in published studies. GATA-family transcription 

factors are associated with tissue specific differentiation and have been demonstrated to be 

subtype specific markers in other cancers. For example, GATA binding protein 3 (GATA3) 

is required for luminal differentiation in the breast17, and high GATA3 characterizes luminal 

subtype breast cancers18. Likewise, GATA6 is essential for pancreatic development19 and 

has been implicated in PDA20,21. GATA6 is highly expressed in most classical subtype 

tumors and cell lines, and comparatively low in the QM-PDA cell lines and tumors. 

Additionally, a previously published gene signature associated with GATA6 

overexpression20 is enriched in the classical subtype (Supplementary Fig. 5). Seeking to 

establish a possible functional role underlying the observed differences in GATA6 

expression, we assessed the impact of GATA6-directed RNAi knockdown on colony 

formation in soft agar in the classical and QM-PDA cell lines. GATA6 depletion impaired 

anchorage-independent growth in classical PDA cell lines, but not in QM-PDA cell lines 

(Fig. 2), consistent with a functional, subtype-specific role for this transcription factor in the 

classical PDA subtype.

Recent work in the mouse demonstrates that PDA can arise from a variety of precursor cells 

by activating KRAS in distinct cellular compartments of the pancreas22. Others have found 

that cancer cell lines harboring mutant KRAS differ in their dependence on KRAS23. These 

findings imply plasticity in either reliance on KRAS signaling or a cell-type specific role for 

mutant KRAS in different cells of origin/lineages in PDA, or both. They further suggested to 

us that despite KRAS mutation in most PDAs, KRAS dependence might differ by PDA 

subtype. We found KRAS mRNA levels elevated in classical subtype PDAs relative to the 

other subtypes (Supplementary Fig. 6, p<0.05 in UCSF samples). We explored the 

relationship between KRAS dependence and subtype by using RNAi to probe KRAS-mutant 
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human PDA cell lines for dependence on KRAS. Classical PDA lines proved to be relatively 

more dependent on KRAS than QM-PDA lines (Fig. 3). Further, a previously reported 

signature of KRAS-addiction23 is enriched in the classical subtype (Supplementary Fig. 7). 

These results suggest that KRAS-directed therapy, while not yet a clinical reality, might be 

best deployed in classical PDA. Mouse models capable of sequentially activating and then 

deleting mutant KRAS would further these observations to genetically define the respective 

roles mutant KRAS plays in both the initiation and ongoing maintenance of PDA.

We tested the possibility that PDA subtypes with different biological characteristics might 

have subtype-specific drug responses by measuring responses to gemcitabine and erlotinib 

(the backbone of current treatment regimens24) in human PDA cell lines of known subtype. 

QM-PDA subtype lines were, on average, more sensitive to gemcitabine than the classical 

subtype (Fig. 4). Conversely, erlotinib was more effective in classical subtype cell lines. 

This suggests that KRAS mutation status is an imperfect predictor of sensitivity to EGFR-

targeted therapy in PDA, an observation consistent with findings in nonsmall cell lung25 and 

colorectal cancers26, and implies that cancer cells dependent on mutant KRAS still employ 

the EGFR to some extent. These results further establish phenotypic differences between the 

classical and QM-PDA subtypes, and suggest that these and perhaps additional drugs will 

show subtype specificity in PDA, a distinction that could be exploited in clinical trial 

sensitivity enrichment schemes. More immediately, these results indicate that gemcitabine 

and erlotinib are preferentially active in different PDA subtypes, so that the current practice 

of combining them may increase toxicity without increasing efficacy for many patients. 

Combining agents with similar subtype specificity might be considered instead.

In summary, our data support the existence of three intrinsic subtypes of PDA that progress 

at different rates clinically and may respond differently to selected therapies. The validity of 

these subtypes is supported by analysis of multiple primary clinical datasets as well as of 

PDA cell lines both from human tumors and from mouse models engineered with the 

hallmark genetic lesions of human PDA. Knowledge of these subtypes may motivate 

investigation of associations between clinico-pathologic variables and these subtypes by 

collaborative consortia examining the molecular diversity of PDA27. The markers that 

define these subtypes may have prognostic utility in risk-adapted surgical approaches28 or 

predictive utility in sensitivity enrichment schemes. The use of subtyped human and mouse 

PDA preclinical models promises to accelerate identification of subtype specific functional 

and regulatory processes that can be exploited to therapeutic benefit. In turn, such assay 

systems could be used to screen therapeutic approaches, empirically or based on mechanism, 

to identify those that are potent against PDA, either in a specific subtype that would then be 

used to personalize treatment29, or spanning the subtypes with possible therapeutic 

generality.

Methods

Clinical Samples

After institutional review board approval, we selected archival material from pancreatic 

ductal adenocarcinoma resections performed at the University of California, San Francisco 
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between 1993 and 2006. G.E.K. reviewed all cases prior to inclusion in the study. Tissue 

processing is described in Supplementary Methods.

Merging of Microarray Datasets

After processing of microarrays (as described in Supplementary Information), we screened 

the UCSF and Badea et al.,5 PDA datasets separately by selecting probes with standard 

deviation (SD) > 0.8. We then merged SD-selected datasets using DWD7 as described6. We 

column (samples) normalized to N(0,1) and row (probe or gene) normalized each dataset by 

median centering. We merged the processed datasets using DWD and finally, we median 

centered the rows.

NMF and SAM Analysis

We analyzed the merged datasets by consensus clustering-based NMF8 to identify stable 

subtypes using R code from GenePattern30. See supplement for details regarding the 

interpretation of subtypes derived from consensus-based NMF clustering. We identified 

PDAssigner genes using three-class SAM analysis based on classes identified from NMF 

analysis using the Bioconductor31 package, Siggenes, and generated heatmaps of samples by 

PDAssigner genes using Cluster software32. For cell line classification, we merged the cell 

line datasets with core PDA clinical datasets after selection of the 62 PDAssigner genes 

from each dataset followed by DWD based merging. We visualized datasets using the 

Hierarchical Clustering Viewer (HCV) from GenePattern30.

Clinical Outcome Analysis

We calculated overall survival in days from the time of PDA resection until date of death as 

defined by the State of California Death Registry and clinical records. We employed the log-

rank test for univariate associations with survival or the Cox proportional hazards model for 

multivariate modeling of survival. We applied Fisher’s exact test to investigate the 

relationships among subtype, stage and grade. We used the R language for all analyses. We 

drew the survival curve using web-based GenePattern30.

Drug Sensitivity

We plated 2.5x103 cells per well on day 0, treated with erlotinib or gemcitabine in nine, 

five-fold serial dilutions on day 1 and estimated cell number using Cell Titre Glow assay 

(CTG, Promega) on day 4. IC50 was calculated using the Calcusyn program (Biosoft).

RNAi

We obtained validated pLKO-based shRNA vectors shKRAS#533 from Dr. B.R. Stockwell 

(NYU) and shGATA6#5, and shLuc34 from Dr. R Adam, (Boston Children’s Hospital). We 

packaged lentiviruses, transduced cells and then selected in puromycin for 48 hours. For 

shKRAS proliferation experiments, we plated 2.5 x103 transduced cells per well on day 0 in 

96 well plates, then counted one plate on day one and the other plate on day four. We 

confirmed protein knockdown by western blotting using the Odyssey system, with 10ug per 

lane of total protein and the c19 KRas antibody (Santa Cruz), normalized to total actin (I-19, 

Santa Cruz) and compared to pLKOshLuc -KRas levels. For GATA6 knockdown 
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experiments, after puromycin selection cells we trypsinized and plated transduced cells in 

soft agar as described35. We assessed GATA6 transcript levels on the day of plating in soft 

agar as described34.

See Supplementary Information for detailed methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Subtypes of PDA in tumors and cell lines and their prognostic significance
A. Heatmap (HM) showing three subtypes of PDA in a DWD-merged UCSF and Badea et 

al.5 PDA microarray datasets using the PDAssigner geneset. B. Kaplan-Meier Survival 

curve comparing survival of classical (red), QM-PDA (blue) and exocrine-like (green) 

subtype patients. Survival time is in days (d). p-value is by Log-rank test. C. HM showing 

three subtypes of PDA in a DWD-merged core clinical and human PDA cell line microarray 

datasets using the PDAssigner geneset. D. HM showing three subtypes of PDA in a DWD-

merged core clinical PDA and mouse PDA cell line microarray datasets using PDAssigner 

geneset. In the top bar, magenta marks classical subtype PDA, yellow marks QM-PDA and 

light blue marks exocrine-like (by NMF). The second from top bar denotes sample set of 

origin, with brown samples originating from UCSF, orange samples originating from Badea 

Collisson et al. Page 9

Nat Med. Author manuscript; available in PMC 2013 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



et al.5 PDA datasets and gray samples originating from either human (C) or mouse (D) PDA 

cell lines. The bars on the side denote PDAssigner genes upregulated in classical (violet), 

QM-PDA (gray) and exocrine-like (green).
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Figure 2. Classical PDA subtype and the GATA6 transcription factor
A. Relative log expression of GATA6 in PDA cell lines, transduced with shRNA against 

GATA6 or control, was determined by qRT-PCR. Black columns are classical lines, gray 

columns are QM-PDA lines, note log scale. B. Colonies per Low Powered Field (LPF) in 

PDA cell lines transduced with shRNA against GATA6 or control.
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Figure 3. Classical subtype cells depend on KRas
A. PDA lines (all with GTPase inactivating KRAS mutations), were transduced with 

lentiviruses encoding either control (shLUC) or KRAS (shKRAS) directed RNAi. Relative 

proliferation is plotted. Black columns are classical lines and gray columns are QM-PDA 

lines. B. Box plot of relative proliferation of classical and QM-PDA human PDA cell lines. 

p-values by the Kruskal-Wallis test.
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Figure 4. Drug Responses Differ by Subtype
IC50 in negative log10 of drug concentration is plotted for each cell line tested with A. 

gemcitabine and C. erlotinib. Black columns are classical lines and gray columns are QM-

PDA lines. Box Plot of IC50 of classical and QM-PDA human PDA cell lines for B. 

gemcitabine and D. erlotinib, p-values represent statistics using Kruskal-Wallis test.
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