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Viral gastroenteritis is one of the leading causes of diseases that kill ~2.2 million people
worldwide each year. IgA is one of the major immune effector products present in the gas-
trointestinal tract yet its importance in protection against gastrointestinal viral infections
has been difficult to prove. In part this has been due to a lack of small and large animal
models in which pathogenesis of and immunity to gastrointestinal viral infections is similar
to that in humans. Much of what we have learned about the role of IgA in the intestinal
immune response has been obtained from experimental animal models of rotavirus infec-
tion. Rotavirus-specific intestinal IgA appears to be one of the principle effectors of long
term protection against rotavirus infection.Thus, there has been a focus on understanding
the immunological pathways through which this virus-specific IgA is induced during infec-
tion. In addition, the experimental animal models of rotavirus infection provide excellent
systems in which new areas of research on viral-specific intestinal IgA including the long
term maintenance of viral-specific IgA.
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INTRODUCTION
Gastrointestinal infections kill about 2.2 million people each year
worldwide (1). In the United States, between 60 and 70 million are
affected annually with gastrointestinal diseases (2) and viral gas-
troenteritis ranks among the top 15 principal discharge diagnoses
from hospital admissions (3). Viral infections of the gastrointesti-
nal tract are divided into two broad categories based on whether
infection results in disease there (enteropathogenic) or elsewhere
(non-enteropathogenic). Classical enteropathogenic viruses actu-
ally infect cells that comprise the gastrointestinal system resulting
in gastrointestinal disease symptoms such as vomiting, diarrhea,
malabsorption, and pain. The majority of viral gastrointestinal
illnesses are caused by rotavirus, norovirus, adenovirus, and astro-
virus. By contrast, although non-enteropathogenic viruses enter
the body via the gastrointestinal tract, they cause mild to no
gastrointestinal disease because they are distributed systemically
and cause disease in other organ systems. Examples of impor-
tant human non-enteropathogenic viruses include polio virus,
coxsackievirus, echovirus, and hepatitis A virus. Although not a
perfect fit in either category, HIV can enter through the lower
gastrointestinal tract and can be associated with mild gastroin-
testinal disease. HIV infects cells of the immune system both
in the gastrointestinal tract and systemically and thus its most
severe effects are on the immune system. Both enteropatho-
genic and non-enteropathogenic gastrointestinal viruses induce
IgA that functions in protective immunity. This review will focus
on enteropathogenic gastrointestinal virus infections highlighting
rotavirus, since much has been learned from the experimental ani-
mal models. The role that gastrointestinal IgA plays in protective
immunity and the mechanisms through which intestinal IgA is
induced will be discussed. Emerging areas in IgA research during
viral gastrointestinal infections will be explored.

IgA AND IgA DEFICIENCY IN THE GASTROINTESTINAL TRACT
IgA is one of the main effector molecules produced by initiation
of immune responses in the gastrointestinal tract. IgA is predom-
inant in the intestinal lumen and it is synthesized in quantities
that far exceed any of the other antibodies (4). Despite high lev-
els of IgA in the gastrointestinal tract, its importance in intestinal
immunity to pathogens has been difficult to prove. IgA clearly
functions in binding to antigens, toxins, foreign proteins, and
microorganisms to inhibit penetration of the intestinal epithelium
(5–11). Intestinal IgA is also critical for regulation of commensal
bacterial populations (12) and in its absence these populations
expand, eventually escaping the gastrointestinal tract, resulting in
both local and systemic activation of the immune system (12–14).
By containing and controlling the microorganism population, IgA
prevents their access to the intestinal immune system and thus
functions to reduce local inflammation induced by endogenous
bacteria (15).

IgA deficiency is the most common primary immunodefi-
ciency although incidence depends on genetic background (16).
IgA deficiency ranges from 1:223 to 1:1000 in community stud-
ies and from 1:400 to 1:3000 in healthy blood donors (17–19).
Selective IgA deficiency is defined by serum levels of IgA below
0.05 g/L (19, 20). Low levels of IgA have been associated with a
range of clinical manifestations including increased incidence of
gastrointestinal diseases such as giardiasis, malabsorption, lactose
intolerance, celiac disease, ulcerative colitis, lymphoid hyperplasia,
and malignant proliferation (21–24). Patients with IgA deficiency
suffer from an increased incidence of gastrointestinal infections
and multiple bouts of diarrhea compared to IgA normal individ-
uals (25–27). Despite these general statements, there are no well
controlled studies that address the question of whether or not IgA
deficiency predisposes individuals to increased susceptibility to
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and recurrence of gastrointestinal viral infections. In fact, it is esti-
mated that 85–90% of IgA-deficient individuals are asymptomatic
(25). One explanation might be that individuals with low lev-
els of serum IgA may actually have sufficient secretory IgA at their
mucosal surfaces to remain asymptomatic (28, 29). Another might
be that other antibody isotypes, in particular IgM, via transport to
the mucosal surface, compensates for the loss of IgA (30–32).

IgA AND PROTECTIVE IMMUNITY AGAINST
GASTROINTESTINAL VIRAL INFECTIONS
Since IgA is produced in large quantities at mucosal surfaces
including the gastrointestinal tract, it has long been presumed
that IgA is a critical factor in protection of these surfaces against
viral infections. Many studies in humans correlate increases in
viral-specific IgA levels at the mucosal surface with either the ces-
sation of virus excretion or protection against infection and disease
(33–37). With the lack of an overt clinical profile in IgA-deficient
humans, it has been difficult to discern the importance of IgA in
the immune response to gastrointestinal viruses. Adding to this
difficulty are the relatively few animal models of enteropathogenic
or non-enteropathogenic gastrointestinal virus infections in which
the pathogenesis and immune response, including IgA induction
to the virus, faithfully models infection in humans. There are
several reasons for the lack of robust animal models. Several of
the common enteropathogenic and non-enteropathogenic viruses
only replicate in humans or primates, limiting studies that can be
performed to determine IgA importance (38). Other viruses infect
non-primate animals but the pathogenesis is dramatically different
from infection and disease in humans (38), leading to questions
regarding the relevance of conclusions drawn from these models
to human health.

Non-enteropathogenic viruses invade the body by either
breeching or crossing the epithelium of the gastrointestinal tract
(39–43). Although present in the gastrointestinal tract, in most
cases these viruses do not infect a significant number of cells but
once they have crossed the gastrointestinal tract barrier, dissemi-
nate systemically to access secondary target sites of viral replication
(42). Because these viruses are able to spread systemically, IgG
usually plays a significant role in protective immunity (44–50).
However, there is evidence linking mucosal IgA to protective
immunity for some of these viruses (Table 1).

Poliovirus, a good example of a non-enteropathogenic gas-
trointestinal virus, induces a secretory IgA response that appears
to neutralize the virus and is associated with decreases in virus
shedding in stool (51–55). Mucosal IgA correlates with protec-
tion against polio infection (56). An intestinal IgA response is also
induced with the live replicating oral polio vaccine (OPV) and
it is surmised that OPV prevents infection through IgA-mediated
viral neutralization in the intestine. Live poliovirus vaccine appears
to induce long-lived memory immune responses as elderly peo-
ple who received this vaccine and still had detectable serum and
salivary IgA were resistant to reinfection (56). In addition, IPV vac-
cination of individuals that were 20–44 years of age and had pre-
viously been vaccinated with OPV induced IgA+ α4β7+ antibody
secreting cell by 7 days post vaccine but not in individuals of similar
age previously vaccinated with IPV, which does not induce intesti-
nal IgA responses. These data are consistent with the induction

Table 1 | Role of IgA in protective from non-enteropathogenic and

pathogenic intestinal viral infections.

Virus IgA

Induced by

infection

(natural/exp)

Correlate of

protection

Required for

protection

Humans Animals

NON-ENTEROPATHOGENIC

Poliovirus Y Y ? ?

Coxsackievirus Y ? ? ?

Echovirus Y ? ? ?

Hepatitis A Y ? ? ?

Reovirus Y ? Y Y

HIV Y Y/N Y/N ?

ENTEROPATHOGENIC

Rotavirus Y Y Y Y

Calicivirus Y Y/N ? ?

Adenovirus Y ? ? ?

Astrovirus Y ? ? ?

Y, yes; N, no; ?, unknown.

of memory IgA responses in the intestine. Therefore, whether IgA
memory in the intestine to enteric viral pathogens undergoes the
continuous adaptation observed with a commensal organism (57)
is still an open question. For other non-enteropathogenic viruses,
such as hepatitis A, coxsackievirus, and echovirus, much less is
known about the relative importance of mucosal IgA in protective
immunity (Table 1).

Reovirus, although not causing significant disease, is often used
as a model system of non-enteropathogenic infection in mice. In
reovirus infection, following binding and transport across M cells
in the Peyer’s patches, the virus is distributed systemically where it
can cause disease (58). It also infects the adjacent intestinal epithe-
lium at the basolateral membrane (59) but is not an important
cause of gastrointestinal disease in humans Reovirus infection
induces intestinal IgA production and IgA protects against infec-
tion when administered orally at the same time as the virus or
when secreted from subcutaneous tumors (9, 60). Mice lacking
expression of IgA are susceptible to reinfection with reovirus
(11) indicating that IgA is an essential component of immune
protection. Whether the reovirus model faithfully predicts the
role of IgA in immunity to other non-enteropathogenic viruses
awaits definitive proof. Protective immunity against most non-
enteropathogenic infections has focused on systemic immune
responses or the immune response at the site of disease rather
than on the mucosal IgA response. The lack of adequate animal
models has severely limited insights into the relative importance
of mucosal IgA in protective immunity to these viruses.

Enteropathogenic gastrointestinal viral infections are the major
cause of diarrhea and vomiting disease in humans worldwide
and most induce IgA within the first week after viral exposure.
Astroviruses and adenovirus are important causes of acute gas-
troenteritis primarily in infants and young children as well as
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in the elderly and immunocompromised patients (61–68). There
is limited evidence that protection from both adenovirus and
astrovirus infections correlates with mucosal virus-specific IgA
in humans (34, 69, 70). These viruses lack small animal models,
in which pathogenesis and immunity is similar to that observed
in humans. The number of cases and disease severity of gastroen-
teritis caused by these two viruses is far less than that caused by
calicivirus (71–74).

Two genera of caliciviruses, norovirus and sapovirus cause
infectious gastroenteritis (75). Sapoviruses cause gastroenteritis
in young children and in long term health care settings but the
number of cases is far less than noroviruses (75). Norovirus is
becoming the predominant cause of viral diarrhea in all age groups
worldwide (76) and is the causative agent of >96% of all outbreaks
of non-bacterial gastroenteritis (77). Epidemiological data gath-
ered from human studies suggests a link between mucosal IgA
induced either by infection or by non-replicating vaccines and
short term protective immunity from norovirus infection (78–
80). Elucidation of the role of the gastrointestinal IgA response
to norovirus has been limited by the absence of animal models
in which human noroviruses replicate or that mimic the course
of gastrointestinal infection and disease in humans. Several non-
human primate models have been developed with limited success
in advancing knowledge of clinical infection and illness arising
from norovirus infection (81–84). More has been gleaned from
the gnotobiotic pig and calf models which exhibit diarrhea, virus
shedding in feces, seroconversion, and immunocytopathic changes
in the intestine (85–87). In norovirus infected gnotobiotic pigs,
anti-norovirus IgA is detected as early as 6 days following virus
exposure and diarrhea and severity moderately correlated with
convalescent phase intestinal antibody IgA titers (87). Similarly,
both norovirus-specific IgA and IgA secreting cells were present
28 days following norovirus exposure in gnotobiotic calves (86).
Unlike norovirus infection in gnotobiotic piglet and calf, murine
norovirus infection differs substantially from human norovirus
pathogenesis, clinical manifestations, host receptors, and infected
cell types (88) but a requirement for B cells and antibody in timely
virus clearance and vaccine-induced protection is implicated in
the mouse (89, 90). The limitations of these animal model sys-
tems, such as the lack of intestinal microbiota and differences in
pathogenesis, have precluded elucidation of whether mucosal IgA
is likley protective in human infection and disease.

Like norovirus, rotavirus is a major cause of gastroenteri-
tis especially in pediatric populations where the disease is most
severe. Rotavirus accounted for nearly half a million deaths in
children younger than 5 years old worldwide each year prior to
introduction of vaccines (91). However, unlike norovirus, mucosal
rotavirus-specific IgA strongly correlates with less severe disease
and prevention of rotavirus infection in humans (37, 92–95). The
differences in pathogenesis between these two viruses and the lack
of good reagents and model systems in which to advance our
limited understanding of the pathogenesis and immune response
to norovirus infection potentially explain these correlative dif-
ferences. Rotavirus-specific IgA has been shown to neutralize the
virus as well as mediate heterotypic protection (96). Vaccine devel-
opment strategies primarily focused on utilizing live attenuated
strains that replicate in the intestine and have been successful

likely because of the induction of mucosal IgA responses. Unlike
norovirus, there are excellent animal models of rotavirus infection
and disease that range from horses to rodents that mimic human
disease. From these models (discussed in more detail in the com-
ing sections below), virus induced IgA has been shown to play
an important role in clearance of infection and protection from
reinfection.

MECHANISMS OF IgA INDUCTION
Protective IgA responses to gastrointestinal viruses are thought to
be comprised of high affinity antibodies that recognize and neu-
tralize the viruses. High affinity IgA producing cells arise from
the actions of helper T cells, within the context of the germinal
center environment in the gastrointestinal inductive sites, Peyer’s
patches, isolated lymphoid follicles, and mesenteric lymph nodes
(97). These helper T cells signal B cells using such molecules
as TGFβ and CD40, to induce class switch recombination and
somatic hypermutation resulting in the production of high affin-
ity IgA (98) that is thought to function to neutralize the intestinal
virus. Once signaled to become a high affinity IgA+ B cell, the
cell leaves the inductive site germinal center and circulates back
to the intestinal lamina propria based on cell surface expression
of markers, such as α4β7 (97, 99–101). This process takes at least
7–10 days following initial virus infection in the gastrointestinal
tract.

In contrast to the production of high affinity IgA that results
from interactions between T and B cells in the germinal center
environment, unmutated low affinity IgA can be synthesized very
rapidly in the gastrointestinal tract in a T cell independent fash-
ion (102, 103). This low affinity antibody primarily functions to
limit penetration of commensal microbes through epithelial cells
(104) and most believe that it does not play an important role
in limiting pathogens, including gastrointestinal viruses. However,
virus-specific intestinal IgA, that is presumably high affinity, devel-
ops rapidly and many acute viral infections are resolved prior to
the time frame required for generation of germinal center high
affinity IgA antibody. Mice that have defects in germinal cen-
ter formation develop specific intestinal IgA responses, including
to viruses (105–107), providing further evidence that germinal
center reaction might not be necessary for clearance of infection
and production of virus-specific antibody. Therefore, an alternate
possibility is that IgA generated through T cell independent path-
ways develops sufficient affinity to limit viral replication. Rapid
T cell-independent virus-specific antibody responses are gener-
ated during many acute virus infections, including VSV, influenza,
and polio (108–116). These antibodies mediate virus clearance
and limit replication and dissemination prior to generation of T
cell-dependent IgA (117). Virus-specific IgA can be induced in
the absence of CD4+ T cells (110, 118, 119). Mice lacking expres-
sion of MHC II (120), CD40 (121), or CD40L (122) can exhibit
antibody class-switching and it is thought that molecules such
as BAFF and APRIL produced by dendritic and epithelial cells
drive class switch recombination and somatic hypermutation in
B cells independently of germinal centers (123–127). Emerging
evidence implicates a greater role for T cell independent non-
germinal center generated IgA in pathogen-specific responses in
the intestine.
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ROTAVIRUS: A MODEL SYSTEM TO STUDY INTESTINAL IgA
INDUCTION
Rotavirus is a highly infectious double-stranded RNA virus that
replicates in epithelial cells of the small intestine (128–131). Virus
is excreted in the stool and is transmitted from infected individ-
uals by the fecal oral route. Infection, measured by excretion of
the virus in stool, lasts on average 3–8 days and is manifested by
fever, emesis, and diarrhea. Disease is most severe in the young, the
elderly, and the immunocompromised. Rotavirus-specific intesti-
nal IgA is one of the principle effectors of long term immunity
based on correlative studies (37, 92–95). Rotavirus is one of the
few gastrointestinal viral infections in which the pathogenesis and
immune response in experimental animal models closely mimics
that of humans. Virtually all naïve individuals and animals are sus-
ceptible to rotavirus infection but rotaviruses exhibit some species
specificity. All of the animal models of rotavirus infection and dis-
ease (horse, cow, sheep, gnotobiotic piglet, rat, and mouse) exhibit
the same primary tropism of virus to the small intestinal epithelial
cells, excretion of the virus in the stool, kinetics of infection, most
severe disease in the young, and induction of rotavirus-specific
intestinal IgA that correlates with clearance of infection and pro-
tective immunity (129–149). Both humans and animals exhibit
widespread systemic distribution of the virus (141, 150). The sim-
ilarity of pathogenic features of disease and immunity between
rotavirus infection in humans and across all animal models is
nearly unique among gastrointestinal viral and bacterial infec-
tions making the rotavirus experimental animal models excellent
systems for understanding human pathogenesis and immunity.

ANIMAL MODELS
The gnotobiotic piglet and the mouse model are the principle
models of experimental rotavirus infection. Gnotobiotic piglets
exhibit diarrheal disease after infection with multiple porcine and
at least one human rotavirus strains and disease severity dimin-
ishes with age (136). Protection against human rotavirus infection
correlates with both serum and intestinal rotavirus-specific IgA
levels and antibody secreting cells in this model (136). Mice of all
ages, irrespective of genetic background, are susceptible to murine
rotavirus infection (e.g., ECwt, EDIM, and McN) but have limited
susceptibility to non-murine strains of rotavirus (132, 151–153).
Rotavirus-associated diarrheal disease in mice is age restricted and
is observed only up to 2 weeks of age (151). Following inoculation
of adult mice with murine strains, rotavirus is detectable in stool by
24–48 h and systemically in the blood between 48 and 72 h (154).
Mice resolve infection between 5 and 7 days after viral inocula-
tion concurrent with the detection of stool IgA (151). Rotavirus-
specific IgA is the predominant immunoglobulin response in the
intestine and IgA titers persist long term. Mice are completely
protected from reinfection for the lifetime of the mouse (155).

PASSIVE PROTECTION
Passive protection from rotavirus has been demonstrated in many
animal model systems and early studies indicated that it is primar-
ily mediated by presence of antibody in the intestine not in the
circulation (156–158). In mice, IgA was shown to be more potent
than IgG in protecting pups from rotavirus disease but protec-
tion was observed with both isotypes (156). Passive protection is

mediated by neutralizing antibody to two rotavirus neutralization
antigens VP4 and VP7 (159) but an IgA monoclonal antibody
to VP6 administered by backpack also protects through intra-
cellular neutralization (160–162). Passive protection of infants
and toddlers from nosocomial infection or during an outbreak
in an orphanage has been assessed in several small studies in
which children were administered either human gammaglobu-
lin or bovine colostrum from hyperimmunized cows (163–166).
Significant protection was observed in some but not all studies.
Whether protection was mediated by rotavirus-specific IgA or IgG
is not known. A role for IgA in passive protection of children
from rotavirus has been suggested based on breast feeding studies
but not all studies have supported the protective effects of breast
feeding against rotavirus (167–171).

PROTECTION INDUCED BY VACCINES
During the development of both non-replicating and replicating
rotavirus vaccine candidates, IgA has been explored as major cor-
relate of protective immunity induced by rotavirus vaccines (139,
153, 172–185). However, demonstration of a conclusive role for
vaccine-induced IgA in protective immunity against infection and
disease in children has remained elusive (186, 187). In the last
7 years, Rotarix (GSK Biologicals) and RotaTeq (Merck), two live
oral rotavirus vaccines were licensed for use and have been show
to prevent severe disease and death in children (188–192). Lower
levels of vaccine-induced serum IgA titers correlate with higher
child mortality (193). In addition, vaccine efficacy and duration
of protection could be predicted by serum IgA titers. What is lack-
ing in these analyses is whether the levels of serum IgA induced
by the rotavirus vaccines can accurately predict protection from
infection. One caveat to determining the role of vaccine-induced
IgA in protective immunity may be that in humans, there are dif-
ferences between serum IgA and IgA present in the intestine, the
most significant being that serum IgA is a different isoform than
the IgA present at mucosal surfaces. Further studies are necessary
to identify whether vaccine-induced serum or mucosal IgA are
true effectors of rotavirus protective immunity.

IgA AND ROTAVIRUS
The conclusion that gastrointestinal IgA is critical for resolution
of rotavirus infection and in protection from reinfection is drawn
mainly from studies in gene knockout mice. Mice lacking B cells
exhibit significant delays in clearance of a rotavirus infection (194)
and fail to establish protective immunity against a second infec-
tion (140). These deficits contrast to the limited to no defects in
clearance or protection in mice lacking T cells (118, 195). High
levels of protection against rotavirus infection are induced in mice
lacking T cells, T cell knockout animals produce ~60% of wild type
rotavirus-specific IgA (118). T cell independent antibody plays a
role in resolution of infection (196). Mice without IgA exhibit sim-
ilar delays in viral clearance and in the development of protective
immunity (197), leading to the conclusion that IgA is critical. Fur-
ther conclusions about the importance of mucosal IgA to rotavirus
immunity come from studies in mice lacking the ability to trans-
port IgA and IgM from the intestinal lamina propria to the lumen
due to the absence of J-chain expression, a protein required for
transport. J-chain knockout mice exhibit an almost identical delay
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in clearance and absence of protective immunity to that reported
in both B cell and IgA knockout mice (179). Together these studies
indicate that IgA in the intestinal lumen is a key component in the
immune response to rotavirus.

Emerging work has focused on the type and origin of B cells that
are required for the IgA response to rotavirus. Adoptive transfer
studies where α4β7− and α4β7+ B cells were transferred into mice
chronically infected with rotavirus demonstrate that α4β7 expres-
sion, which is expressed on B cells that circulate to the intestinal
lamina propria, plays an important role in clearance of an ongo-
ing rotavirus infection (198). In addition to α4β7, recruitment of
B cells to the intestine also depends on expression of CCR9 and
CCR10, receptors for ligands CCL25 and CCL28 which are exclu-
sively expressed in the gastrointestinal tract (199). Circulating B
cells that ultimately reach the intestine can originate from sev-
eral sources including the peritoneal cavity (B1 cells), the Peyer’s
patches (naïve B cells), and the bone marrow (memory B cells).
Data in the gnotobiotic piglet model suggests that bone marrow
B cells do not play a significant role in rotavirus immunity (200).
Although B1 cells are a major source of intestinal antibody, B1 cells
are not critical to the IgA response to rotavirus (201). B cells in the
Peyer’s patches are currently being studied and hold great potential
for understanding fundamentals of induction of the IgA response
to rotavirus. Peyer’s patches are inductive sites for mucosal IgA
responses in the small intestine (202). Rotavirus induces specific
IgA antibody in the PP and this precedes appearance of IgA in
the lamina propria (101), suggestive that rotavirus-specific anti-
bodies originate in the PP and not the lamina propria. This is
supported by studies in mice that lack expression of the TNF
family member LTα that do not develop Peyer’s patches (203)
and these mice are unable to clear rotavirus infection or produce
stool rotavirus-specific IgA following virus exposure (204). This
is similar to the response seen in B cell, IgA, and J-chain knock-
out animals (140, 179, 194, 197). Therefore, Peyer’s patch B cells
appear to be critical for intestinal rotavirus-specific IgA. Analy-
sis of the Peyer’s patches of mice within 24–48 h after infection
indicates there are large increases in activated B cells (205), which
may be driven by type I interferons secreted by dendritic cells
(206). This activation is followed by an increase in local produc-
tion of rotavirus-specific antibody (205). Similar levels of Peyer’s
patch B cell activation and early antibody production occur in the
absence of T cells (205), indicating that the early Peyer’s patch B
cell response to rotavirus is T cell-independent with minimal T
cell activation and inflammatory response induced during infec-
tion (205, 207). Since T cells are a mainstay of the germinal center
environment, T cell independence suggests the lack of germinal
center involvement in the rotavirus induced B cell activation and
IgA induction. Mice lacking the classical germinal center mol-
ecules CD40 and CD40L produce wild type levels of intestinal
rotavirus-specific IgA (107). Indeed, the first rotavirus-specific B
cells detected in the Peyer’s patch early after infection are extra-
follicular B cells (101). Therefore, rotavirus activates Peyer’s patch
B cells and induces IgA through non-classical T cell independent
extra-follicular pathways (Figure 1).

Although experimental models of rotavirus infection have been
used to characterize the B cell and IgA response to rotavirus, there
is still more to learn from these models about the role of IgA in

gastrointestinal virus infections. Little is known about signals that
direct PP B cells toward extra-follicular growth instead of germinal
center formation during rotavirus infection in the mouse. Classi-
cally, TGFβ and signaling through CD40 modulate the switch to
IgA in the germinal center with the help of cytokines such as IL-10,
L-6, IL-4, and IL-2 produced by T cells (103). Consistent with the
hypothesis that germinal centers are not playing a large role, IL-6 is
not required for rotavirus-specific IgA production or virus immu-
nity (208). It remains to be discerned whether any of the other
cytokines linked to IgA induction are critical to or affect mucosal
IgA levels to rotavirus. The evidence that rotavirus induces extra-
follicular B cells that do not rely on T cell help raises the possibility
that other factors are necessary to direct the B cell response. BAFF
and APRIL are candidates as well as yet unidentified factors (125,
209). Rotavirus infection in mice lacking BAFF and APRIL expres-
sion should determine whether these molecules are critical for the
intestinal IgA response to rotavirus. Interestingly, absence of CCR6
results in a 70–80% decrease in rotavirus-specific IgA levels com-
pared to wild type mice (210). CCR6 is critical for localization
of dendritic cells to the subepithelial dome of the Peyer’s patch
(210) raising the question as whether Peyer’s patch dendritic cells
regulate induction of B cell activation and IgA responses during
rotavirus infection. Rotavirus infection activates dendritic cells in
the Peyer’s patches prior to and concurrent with the activation of
the B cells (211) and activation of B cells is dependent on dendritic
cells (206). The Peyer’s patch activated dendritic cells produced IL-
10, IL-12/23, and TNFα and upregulate expression of INFα and
INFβ but B cell activation appears to be dependent on type I IFN
(206, 211). The dendritic cell derived signaling contributed to the
IgA response to rotavirus (206).

USE OF THE ROTAVIRUS ANIMAL MODELS TO OPEN NEW
AREAS OF RESEARCH INTO VIRAL-SPECIFIC IgA
Because rotavirus induces a profound intestinal IgA response, the
rotavirus model systems are valuable tools in which the plasticity
of the IgA repertoire can be explored. Almost nothing is known
about how the diversity and specificity of IgA in the gastroin-
testinal tract is shaped or altered during viral infections. There
has been some indication, using methods that involve expan-
sion of single rotavirus-specific circulating B cells, that there is
low number of somatic hypermutation in circulating rotavirus-
specific IgA+ B cells isolated from infants and adults that have
previously experienced a rotavirus infection and that VH1–46 is
the immunodominant gene segment, except in CD5+ B cells in
young children (212–214). The availability of more rapid and
broad sequencing approaches provides a new methodology to
probe and understand the diversity and composition of the intesti-
nal IgA repertoire. Using high throughput sequencing, the IgA
producing plasma cell pool in the small intestine was recently
demonstrated to contain two subfractions: frequent oligoclonal
plasma cells that have low diversity and are present in high num-
bers and polyclonal plasma cells that have high diversity but are
present in low amounts (215). Analysis of over one million Vh
sequences extracted from plasma cells in the proximal, middle,
and distal portions of the small intestine revealed that there are
both highly expanded IgA secreting plasma cells (clonally related)
as well as low frequency clones (clonally unrelated). The authors
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FIGURE 1 | Novel pathway of IgA induction and longevity in the intestine.

concluded that there is more diversity in the IgA repertoire than
has previously been demonstrated. It remains to be determined
how a highly pathogenic viral infection that induces a substantial
IgA response alters the plasma cell composition. In both animals
and humans, rotavirus-specific IgA, once induced, can persist for
long periods of time (136, 155, 216–220). This persistence sug-
gests that rotavirus infection makes a permanent alteration to the
IgA repertoire. Next-generation sequencing is a powerful new tool
which has the potential to reveal pivotal insights as to how viral
pathogens shape the IgA composition within the gastrointestinal
tract.

The persistence of rotavirus-specific IgA in humans and exper-
imental animal models is intriguing and provides the perfect
backdrop in which to study the maintenance of viral-specific IgA
antibody secreting cells. Plasma cells develop following reactiva-
tion of quiescent memory B cells. Antibody secreting cells were
thought to be short lived (~2–3 weeks) (221) but this is still being
debated. Recently, populations of long-lived plasma cells that pro-
duce antibodies for several to many years have been shown to
reside in “niches” in the spleen, lymph nodes, and bone marrow
(222). The repertoire of these plasma cell niches could be rapidly
recalled after temporary depletion indicating the likelihood that
these plasma cell niches have a memory component (215). Several
characteristics of rotavirus infection in mice indicate that long-
lived IgA+ plasma cells are generated following rotavirus infection
and mediate protective immunity. First, infection of naïve mice
results in intestinal and fecal rotavirus-specific IgA that stabilizes

around 3 weeks after infection and stays constant over the lifetime
of the mouse (132, 151). Second, murine rotavirus infection in
mice induces lifetime protection against reinfection (132, 151).
Upon re-exposure to rotavirus, viral proteins are not detected
in the intestinal tract or in the feces (132, 151) and there is no
increase in the titers of rotavirus-specific IgA in the feces (132,
151). The lack of discernible induction of antibody titers fol-
lowing re-exposure suggest: (i) that there is no reactivation of
rotavirus-specific memory B cells or generation of new antibody
secreting cells and (ii) that the antibody produced by the long-
lived plasma cells is sufficient to neutralize the viral challenge. In
addition, there is no indication that rotavirus replicates or that
antigens are maintained chronically in the mouse past the time
when it is detectable in stool (220, 223). This suggests that the
plasma cells that produce rotavirus-specific antibody do so in the
absence of virus. Work in the gnotobiotic piglet indicates that the
bone marrow does not house the IgA response to rotavirus but
rather the plasma cells are located in the intestinal lamina propria
(200). It remains to be determined whether the specific environ-
ment of the intestinal lamina propria facilitates the development
and maintenance of long-lived IgA secreting plasma cells that have
a memory component (Figure 1).

SUMMARY
Although IgA is produced in large quantities in the gastrointestinal
tract, its importance in the immune response to gastrointestinal
viral infections is unclear. In part, this is due to the lack of good
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animal models in which the pathogenesis, disease, and immune
response induced during gastrointestinal viral infection reflects
that which occurs in humans. The animal models of rotavirus
infection closely mimic many parameters of infection in humans
including a profound induction of rotavirus-specific intestinal IgA
that correlates with clearance of infection and protection from
reinfection. These animal models a currently being used to inves-
tigate and characterize the molecular pathways through which the
virus induces the intestinal IgA response and will contribute sig-
nificantly to our understanding of the important role IgA plays
in the defense against intestinal virus infections. The models,
combined with new technologies, are positioned to reveal new
and exciting information as to the location, diversity, and main-
tenance of long-lived IgA+ plasma secreting cells. Furthermore,
these studies will facilitate the design and development of future
oral vaccines by providing new and more efficient targets to induce
protective IgA.
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