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SUMMARY

Aging-associated defects in hematopoietic stem cells (HSCs) can manifest in their progeny, 

leading to aberrant activation of the NLRP3 inflammasome in macrophages and affecting distant 

tissues and organismal health span. Whether the NLRP3 inflammasome is aberrantly activated in 

HSCs during physiological aging is unknown. We show here that SIRT2, a cytosolic NAD+-

dependent deacetylase, is required for HSC maintenance and regenerative capacity at an old age 

by repressing the activation of the NLRP3 inflammasome in HSCs cell autonomously. With age, 

reduced SIRT2 expression and increased mitochondrial stress lead to aberrant activation of the 

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Correspondence: danicac@berkeley.edu.
AUTHOR CONTRIBUTIONS
D.C. conceived and supervised the project. H.L. performed the experiments and analyzed the data. W.-C.M. performed in vitro HSC 
response to treatments. R.K., T.-D.K., and W.-C.M. detected NLRP3 and caspase 1 expression in HSCs. H.-H.C. provided recipient 
mice. M.M. and J.J.S. assisted with transplants and data analyses. R.O. and J.J.S. provided SIRT7 KO mice. K.I. provided input on 
HSC biology. D.C. and H.L. wrote the manuscript with the assistance of all co-authors.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and one table and can be found with this article online at https://doi.org/10.1016/
j.celrep.2018.12.101.

DECLARATION OF INTERESTS
D.C. and H.L. are inventors of a patent on inhibiting stem cell aging.

HHS Public Access
Author manuscript
Cell Rep. Author manuscript; available in PMC 2019 February 12.

Published in final edited form as:
Cell Rep. 2019 January 22; 26(4): 945–954.e4. doi:10.1016/j.celrep.2018.12.101.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.celrep.2018.12.101
https://doi.org/10.1016/j.celrep.2018.12.101


NLRP3 inflammasome in HSCs. SIRT2 overexpression, NLRP3 inactivation, or caspase 1 

inactivation improves the maintenance and regenerative capacity of aged HSCs. These results 

suggest that mitochondrial stress-initiated aberrant activation of the NLRP3 inflammasome is a 

reversible driver of the functional decline of HSC aging and highlight the importance of 

inflammatory signaling in regulating HSC aging.

Graphical Abstract

In Brief

Luo et al. show that the NLRP3 inflammasome is activated in aged hematopoietic stem cells 

(HSCs) due to mitochondrial stress and SIRT2 inactivation, contributing to the functional decline 

of HSC aging. This study identifies methods for reversing HSC aging and highlights the 

importance of inflammatory signaling in regulating HSC aging.

INTRODUCTION

The degeneration and dysfunction of aging tissues are attributable to the deterioration of 

adult stem cells (López-Otín et al, 2013; Oh et al., 2014). Adult stem cells are maintained in 

a metabolically inactive quiescent state for prolonged periods of time as an evolved 

adaptation to ensure their survival (Cheung and Rando, 2013; Folmes et al., 2012). The 

transition from the quiescent state to proliferation is monitored by the restriction point that 

surveils mitochondrial health (Berger et al., 2016; Brown et al., 2013; Ito et al., 2016; 

Luchsinger et al., 2016; Mantel et al., 2015; Mohrin and Chen, 2016; Mohrin et al., 2015, 

2018). The mitochondrial metabolic checkpoint is dysregulated in stem cells during 

physiological aging, contributing to their functional deterioration (Brown et al., 2013; 

Mohrin et al., 2015). How mitochondrial stress results in the loss of stem cell maintenance 

and regenerative potential is unknown.
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Recent human studies have shown that aging is associated with the accumulation of somatic 

mutations in the hematopoietic system and expansion of the mutated blood cells, a 

phenomenon termed clonal hematopoiesis (Busque et al., 2012; Genovese et al., 2014; 

Jaiswal et al., 2014; McKerrell et al., 2015; Xie et al., 2014). Individuals with clonal 

hematopoiesis are at higher risk for not only blood diseases but also myocardial infarctions, 

strokes, vascular complications of type 2 diabetes, and earlier mortality (Bonnefond et al., 

2013; Goodell and Rando, 2015; Jaiswal et al., 2014). Deficiency in the TET2 gene, which 

is frequently mutated in blood cells of the individuals with clonal hematopoiesis, results in 

clonal expansion and accelerates atherosclerosis development by inducing the inappropriate 

activation of the NLRP3 inflammasome in macrophages in mice (Fuster et al., 2017). In 

addition to atherosclerosis, aberrant activation of the NLRP3 inflammasome drives 

pathological inflammation in sterile inflammatory diseases associated with aging, such as 

Alzheimer’s disease, Parkinson’s disease, obesity, diabetes, multiple sclerosis, and cancer 

(Duewell et al., 2010; Guo et al., 2015; Heneka et al., 2013; Inoue et al., 2012; Jourdan et 

al., 2013; Yan et al., 2015). These observations support the notion that because the blood 

system supports all tissues, aging-associated defects in hematopoietic stem cells (HSCs) can 

be propagated in their progeny, including inappropriate activation of the NLRP3 

inflammasome in macrophages, thereby having detrimental effects on distant tissues and 

organismal health span (Goodell and Rando, 2015). What remains unanswered is whether 

the NLRP3 inflammasome is aberrantly activated in HSCs during physiological aging and 

underlies aging-associated functional defects in HSCs.

Sirtuins are a family of protein deacylases that regulate diverse cellular pathways that 

control metabolism, stress resistance, and genome maintenance (Finkel et al., 2009; Giblin 

et al., 2014; Shin et al., 2013). SIRT2 is a mammalian sirtuin that resides in the cytosol and 

possesses deacetylase activity (North et al., 2003). We report that SIRT2 regulates the 

functional deterioration of HSCs at an old age by repressing the NLRP3 inflammasome 

activation. We show that the NLRP3 inflammasome is aberrantly activated in aged HSCs 

due to heightened mitochondrial stress and reduced SIRT2 activity. We demonstrate that 

functional deterioration of aged HSCs can be reversed by targeting the SIRT2-NLRP3-

caspase 1 axis.

RESULTS

SIRT2 Is Required for HSC Maintenance in an Age-Dependent Manner

HSC aging is characterized by increased susceptibility to cell death upon stress, reduced per-

cell repopulating capacity, and myeloid-biased differentiation (Janzen et al., 2006; 

Maryanovich et al., 2018; Rossi et al., 2008). At the molecular level, the epigenetic erosion 

with age leads to dysregulated control of gene expression, contributing to the decline of stem 

cell and tissue function (Goodell and Rando, 2015). Transcriptional profiling of young and 

old HSCs revealed that SIRT2 is among the most significantly repressed genes in old HSCs 

(Chambers et al., 2007). We validated this finding by assessing SIRT2 mRNA levels in 

highly enriched HSCs (immunophenotypically defined as Lin−c-Kit+Sca1+CD150+CD48−) 

isolated from bone marrow of young (3 months old) and old (24 months old) wild-type 

(WT) mice by quantitative real-time PCR. SIRT2 mRNA levels were reduced by 3-fold in 
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HSCs isolated from old mice compared to those from young mice (Figures 1A and 1B). This 

observation prompted us to investigate the functional role of SIRT2 in HSCs.

We compared the quantity and quality of HSCs in WT and SIRT2 knockout (KO) mice. 

SIRT2 KO mice are born at the Mendelian ratio and are phenotypically normal (Bobrowska 

et al., 2012; Lo Sasso et al., 2014). Under homeostatic conditions, no difference in the 

number of immunophenotypically defined highly enriched HSCs was observed in the bone 

marrow of young WT and SIRT2 KO mice (Figure 1C). To determine whether SIRT2 

deficiency affects HSC function, we performed a competitive bone marrow transplantation 

assay. CD45.2 HSCs isolated from donor mice were transplanted with CD45.1 competitor 

bone marrow cells to reconstitute the hematopoietic compartment of lethally irradiated 

recipient mice, and peripheral blood of the recipient mice was analyzed. HSCs isolated from 

young WT and SIRT2 KO mice were comparable in reconstituting the blood system of 

lethally irradiated recipient mice in competitive transplantation assays (Figures 1D and S1). 

To determine whether SIRT2 regulates lineage differentiation, we assayed mature 

hematopoietic subpopulations in the peripheral blood of WT and SIRT2 KO mice. No 

significant difference was observed in the percentage of lymphoid cells (B220+ and CD3+) 

and myeloid cells (Mac-1+Gr1+) in the peripheral blood of WT and SIRT2 KO mice (Figure 

1E). Bone marrow cellularity was comparable between the two genotypes (Figure 1F).

However, at an old age, the number of HSCs in the bone marrow of SIRT2 KO mice was 

reduced compared to their WT littermates under homeostatic conditions (Figure 2A). The 

ability of HSCs isolated from aged SIRT2 KO mice to reconstitute the blood system of 

lethally irradiated recipient mice decreased by 2-fold compared to their WT counterparts 

(Figures 2B and S2A). In the peripheral blood of aged SIRT2 KO mice, the percentage of 

lymphoid cells was reduced and the percentage of myeloid cells was increased (Figure 2C). 

There was a mild reduction in the bone marrow cellularity in aged SIRT2 KO mice (Figure 

2D). Together, these data suggest that SIRT2 has an age-dependent effect on HSC 

maintenance and hematopoiesis.

SIRT2 Prevents HSC Death upon Activation of the NLRP3 Inflammasome

Sirtuins are increasingly recognized as stress resistance genes (Brown et al., 2013; Mohrin et 

al., 2015; Qiu et al., 2010; Shin et al., 2013; Tao et al., 2010). We sought to determine 

whether the absence of SIRT2 affects cell survival to account for the age-associated changes 

in HSC number and repopulating capacity. In flow cytometry analyses of bone marrow cells 

derived from aged WT and SIRT2 KO mice using 7-aminoactino-mycin D (7AAD) to assess 

cell viability, we observed an increased percentage of cell death in the HSC population of 

SIRT2 KO mice compared to the WT controls (Figure 2E). However, WT and SIRT2 KO 

HSCs showed comparable staining for activated caspase 3 (Figure 2F), indicating that SIRT2 

deficiency results in increased death of HSCs independent of caspase 3 activation.

In macrophages, pharmacological inhibition of SIRT2 enhances caspase 1 activation in 

response to the induction of the NLRP3 inflammasome by affecting the microtubule network 

(Misawa et al., 2013). In the innate immune system, inflammasomes are assembled upon 

cellular infection and stress that trigger the activation of the proteolytic enzyme caspase 1 to 

initiate innate immune responses (Lamkanfi and Dixit, 2014; Schroder and Tschopp, 2010). 
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The activation of caspase 1 induces pyroptosis, a form of programmed cell death that is 

caspase 1 dependent by definition and is independent of apoptotic caspases (Bergsbaken et 

al., 2009). We hypothesized that SIRT2 may prevent HSC death by repressing the NLRP3 

inflammasome activation. NLRP3 has been extensively studied in macrophages. However, 

its expression in HSCs is readily detectable in a number of transcriptional profiling studies 

(Cabezas-Wallscheid et al., 2014; Månsson et al., 2007; Norddahl et al., 2011; Rossi et al., 

2005; Sun et al., 2014). We further validated that NLRP3 expression in HSCs was about 

15% of its expression in macrophages at the mRNA level and the protein level (Figures 3A 

and 3B). Consistently, based on BIOGPS, the expression level of NLRP3 in HSCs is about 

20% of that in macrophages (http://biogps.org/#goto=genereport&id=216799).

We determined whether SIRT2 prevents HSC death upon the activation of the NLRP3 

inflammasome. We isolated HSCs from WT and SIRT2 KO mice, which were primed with 

lipopolysaccharide (LPS) and were stimulated with ATP, a NLRP3 inflammasome inducer. 

Compared to WT HSCs, the treatment with LPS and ATP resulted in a reduction in the 

number of SIRT2 KO HSCs (Figure 3C) and an increase in the percentage of 7-AAD-

positive SIRT2 KO HSCs (Figure 3D). The treatment with LPS and ATP did not have much 

effect on the frequency of differentiated hematopoietic cells (Figure 3E). Together, these 

data suggest that the activation of the NLRP3 inflammasome leads to cell death of HSCs in a 

cell-autonomous manner, which can be repressed by SIRT2. Consistent with a role of SIRT2 

in repressing the NLRP3 inflammasome activation in HSCs in vitro, there was an increase in 

the activation of caspase 1 in HSCs derived from aged SIRT2 KO mice compared to those 

from WT control mice (Figures S2B and S2C), determined using a fluorescently labeled 

inhibitor of caspases (FLICA) probe that targets activated caspase 1 (Bruchard et al., 2015; 

Doitsh et al., 2014; Sheedy et al., 2013; Sokolovska et al., 2013), and increased caspase 1 

activation in SIRT2 KO HSCs was blunted by NLRP3 inactivation (Figures S2D and S2E). 

The expression of NLRP3 and caspase 1 in WT and SIRT2 KO HSCs was comparable 

(Figures S2F and S2G), suggesting that SIRT2 likely regulates the NLRP3 activity at the 

post-transcriptional level.

The NLRP3 Inflammasome Regulates the Functional Decline of HSC Aging

Reduced SIRT2 expression in aged HSCs suggests that the NLRP3 inflammasome might be 

aberrantly regulated in HSCs during physiological aging. We assessed the activity of the 

NLRP3 inflammasome in HSCs of young and old WT mice. We isolated HSCs from young 

and old mice, which were primed with LPS and then stimulated with ATP. The activation of 

the NLRP3 inflammasome was assayed by western analyses of cleaved caspase 1. Treatment 

of old HSCs resulted in an increase in caspase 1 cleavage compared to young HSCs (Figure 

4A). We further validated the activation of caspase 1 using FLICA probes. Under 

homeostatic conditions, no difference in the activation of caspase 3 was observed in young 

and old HSCs (Figure 4B), consistent with a previous report (Warr et al., 2013). However, 

aged HSCs exhibited increased activation of caspase 1 compared to young HSCs (Figure 

4C). Thus, the NLRP3 inflammasome becomes aberrantly regulated in HSCs during aging.

To determine whether activation of the NLRP3 inflammasome is causal to the functional 

deterioration of aged HSCs, we knocked down NLRP3 or caspase 1 using short hairpin RNA 
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(shRNA) in old WT HSCs via lentiviral transduction. The functional capacity of the 

transduced HSCs was determined using a competitive transplantation assay. NLRP3 

inactivation in aged HSCs increased the reconstitution capacity (Figures 4D, 4E, and S4A) 

and improved the differentiation into the lymphoid lineage (Figure 4F). Caspase 1 

inactivation in aged HSCs also increased HSC engraftment and reconstitution capacity 

(Figures 5A–5C and S4B). Furthermore, HSCs from aged caspase 1 KO mice showed 

increased HSC engraftment, improved reconstitution capacity, and ameliorated myeloid-

biased differentiation compared to WT controls (Figures 5D–5F). Together, these data 

suggest that activation of the NLRP3 inflammasome regulates the functional decline of aged 

HSCs.

SIRT2 Overexpression Reverses the Functional Decline of HSC Aging

Because SIRT2 expression reduces with age in HSCs (Figure 1B) (Chambers et al., 2007) 

and SIRT2 is required for the maintenance of aged but not young HSCs (Figures 1 and 2), 

we tested whether SIRT2 upregulation is sufficient to reverse the functional decline of aged 

HSCs. We overexpressed SIRT2 in young and aged WT HSCs via lentiviral transduction and 

examined their functional capacity using a competitive transplantation assay. Lentiviral 

transduction resulted in an 8-fold increase in SIRT2 expression in aged HSCs (Figure 6A) 

and a 2.7-fold increase in young HSCs (Figure S6A). Because SIRT2 expression is reduced 

by 3-fold in aged HSCs compared to young HSCs (Figure 1B), these data suggest that 

lentiviral transduction results in the comparable SIRT2 expression in aged and young HSCs. 

Compared to aged WT HSCs transduced with control lentivirus, reintroduction of SIRT2 in 

aged WT HSCs resulted in increased HSC engraftment and reconstitution capacity, and 

reversed myeloid-biased differentiation (Figures 6B–6E and S5). In contrast, SIRT2 

overexpression did not significantly affect young HSCs (Figure S6).

Mitochondrial Stress Triggers Caspase 1 Activation in Aged HSCs

What are the stimuli of the NLRP3 inflammasome activation in aged HSCs? The NLRP3 

inflammasome is unique among innate immune sensors, because it can be activated by 

endogenous damage signals in the absence of overt infection (Martinon et al., 2009; Strowig 

et al., 2012). Prominently, in macrophages, the mitochondria play an essential role in 

NLRP3 inflammasome activation by providing a platform for assembling the NLRP3 

inflammasome complex and housing the effector molecules that directly activate the NLRP3 

inflammasome (Wen et al., 2013). Because mitochondrial stress increases with age in HSCs 

and mitochondrial integrity is essential for HSC maintenance (Brown et al., 2013; Ito et al., 

2016; Luchsinger et al., 2016; Mohrin et al., 2015, 2018), we assessed whether 

mitochondrial stress is a trigger of the NLRP3 inflammasome activation in HSCs during 

physiological aging. SIRT3, a mitochondrial deacetylase, promotes HSC maintenance by 

deacetylating critical lysine residues on the mitochondrial antioxidant superoxide dismutase 

2 (SOD2), promoting the enzymatic activity of SOD2, and reducing mitochondrial oxidative 

stress (Brown et al., 2013; Qiu et al., 2010), while SIRT7, a histone deacetylase, enhances 

HSC maintenance by repressing the activity of the mitochondrial regulator nuclear 

respiratory factor 1 (NRF1) and suppressing mitochondrial protein folding stress (Mohrin et 

al., 2015). Therefore, SIRT3, SOD2 deacetylation, SIRT7, and NRF1 provide genetic tools 

to investigate the signaling events that mediate mitochondrial stress in HSCs. We examined 
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the effects of repressing mitochondrial stress on caspase 1 activation in aged HSCs ex vivo. 

Overexpression of SIRT3 or a constitutively active SOD2 mutant (SOD2 K53/89R) in aged 

HSCs via lentiviral transduction reduced the reactive oxygen species (ROS) level (Brown et 

al., 2013) and caspase 1 activation (Figure 7A). SIRT7 overexpression or NRF1 knockdown 

in aged HSCs reduced mitochondrial protein folding stress (Mohrin et al., 2015) and caspase 

1 activation (Figures 7A and 7B).

In addition to the ex vivo examination, we further assessed the effects of mitochondrial 

stress on caspase activation in HSCs in vivo. SIRT7 KO mice show premature HSC aging 

phenotype (Mohrin et al., 2015). We therefore compared SIRT7 KO mice and their WT 

controls for caspase activation in HSCs. Caspase 1 activation was increased in HSCs of 

SIRT7 KO mice (Figure 7C), but the level of caspase 3 activation was unchanged (Figure 

7D). Thus, mitochondrial stress initiates the aberrant activation of caspase 1 in aged HSCs. 

Notably, our findings that SIRT2 prevents the functional decline of aged HSCs and 

modulates the signaling of mitochondrial stress in HSCs are consistent with the recent 

observations that mitochondrial stress in HSCs leads to myeloid-biased differentiation and 

reduced repopulating capacity (Luchsinger et al., 2016; Mohrin et al., 2015).

DISCUSSION

Collectively, our results establish mitochondrial stress-initiated aberrant activation of the 

NLRP3 inflammasome as a trigger of the functional decline of HSC aging and highlight the 

importance of inflammatory signaling in regulating HSC aging (Figure 7E). In the absence 

of damage-associated molecular patterns, nuclear factor-κB (NF-κB) signaling primarily 

results in differentiation of HSCs (Figure S3) (Chen et al., 2018). However, in the presence 

of damage-associated molecular patterns, NF-κB activation leads to HSC death (Figure 3). 

These changes in HSC cell fate contribute to reduced HSC self-renewal potential of aged 

HSCs.

The HSC aging phenotype includes reduced repopulation capacity per cell, myeloid-biased 

differentiation, increased death upon stress, and paradoxically, increased HSC number based 

on cell surface markers (Janzen et al., 2006; Rossi et al., 2008), indicating that diverging 

mechanisms of HSC regulation shape the HSC aging phenotype. Several HSC aging 

mechanisms uncovered thus far, such as mitochondrial stress (Brown et al., 2013; Mohrin et 

al., 2015) and DNA damage (Rossi et al., 2007), result in cell death, reduced HSC number, 

and reduced HSC functionality. Increased HSC number with age is possibly attributable to 

TET2 mutation (Goodell and Rando, 2015). The SIRT2-NLRP3-caspase 1 axis transduces 

the signals from mitochondrial stress and contributes to the functional decline of aged HSCs 

(Figure 7E).

The NLRP3 inflammasome is activated in the periphery and the brain of aged animals 

(Youm et al., 2012, 2013). Inactivation of NLRP3 ameliorates systemic age-related 

inflammation and a wide array of aging-associated conditions (Youm et al., 2012, 2013). 

Our findings raise the possibility that, during physiological aging, aberrant activation of the 

NLRP3 inflammasome originated from HSCs may contribute to the NLRP3 inflammasome 
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activation in macrophages and influence systemic inflammation and the degeneration of 

distant tissues.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Danica Chen (danicac@berkeley.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—SIRT2 knockout mice (C57BL/6) (Bobrowska et al., 2012), SIRT7 knockout mice 

(129) (Mohrin et al., 2015), and caspase 1 knockout mice (C57BL/6) (Kuida et al., 1995) 

have been described previously. All mice were housed on a 12:12 hr light:dark cycle at 25°C 

and received water and chow ad libitum. Young (3-5 month old) and aged (20-24 months 

old) littermates of the same sex were used. Both male and female mice were used. Animal 

procedures were performed in accordance with the University of California Berkeley animal 

care committee.

METHOD DETAILS

Flow Cytometry and Cell Sorting—Bone marrow cells were obtained by crushing the 

long bones with staining media (sterile PBS without calcium and magnesium supplemented 

with 2% FBS). Bone marrow cells were resuspended in staining media. The antibody 

mixture was added to bone marrow cells at 1:100 dilution. After staining for 20 minutes at 

4°C, cells were washed with 3ml staining media. Lineage staining contained a cocktail of 

biotinylated anti-mouse antibodies to Mac-1 (CD11b), Gr-1 (Ly-6G/C), Ter119 (Ly-76), 

CD3, CD4, CD8a (Ly-2), and B220 (CD45R) (BioLegend). For detection or sorting of 

highly enriched HSCs, we used streptavidin, c-Kit, Sca-1, CD48, and CD150 antibodies 

(BioLegend). For congenic strain discrimination, anti-CD45.1 and anti-CD45.2 antibodies 

(BioLegend) were used. To determine cell death, 7AAD staining (Biolegend) was performed 

based on the manufacturer’s instructions. To determine intracellular activation of specific 

caspases, fluorescent labeled inhibitors of caspases (FLICA) probe assays 

(ImmunoChemistry Technologies) and active caspase 3 detection kits (BD PharMingen) 

were used based on the manufacturer’s instructions. For all the cell death and caspase 

activation analysis, bone marrow cells were stained for highly enriched HSC populations as 

described above followed by 7AAD or active caspase staining. For 7AAD staining, 5ul of 

7AAD viability staining solution were added to 100ul of resuspended bone marrow cells and 

incubated for 15 minutes at 4°C. Samples were washed with staining media before flow 

cytometry analysis. For FLICA assays, 10ul of diluted FLICA reagents (1:5 dilution of stock 

in DMSO) were added to 290ul of bone marrow cells. After incubation for 1 hour at 37°C, 

samples were washed three times with 1ml 1X apoptosis buffer before flow cytometry 

analysis. For active caspase 3 staining, bone marrow cells were washed with ice cold PBS 

and then resuspended in BD cytofix/cytoperm solution. After incubation of 20 minutes at 

4°C, cells were washed with BD 1X perm/wash buffer. 20ul of caspase 3 antibody were 

added to 100ul of resuspended bone marrow cells. Samples were then incubated for 30 

minutes at room temperature. Cells were washed with 1X perm/wash buffer before flow 
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analysis. All data were collected on a Fortessa or LSRII (Becton Dickinson) and data 

analysis was performed with FlowJo (TreeStar). For cell sorting, c-kit enrichment was 

performed according to the manufacturer’s instructions (Miltenyi Biotec). c-kit+ cells were 

used for isolating enriched HSCs using markers (Lin−Ckit+Sca1+) or highly enriched HSCs 

using markers (Lin−Ckit+Sca1+CD150+CD48−). c-Kit− cells were used for Mac1(CD11b) 

antibody staining to isolate Mac1+ macrophage cells from mouse bone marrow. Cells were 

sorted using a Cytopeia INFLUX or Aria Fusion Sorters (Becton Dickinson). (Complete list 

of antibodies can be found in Key Resources Table)

Cell Culture—To prepare HSC media, StemSpan SFEM (StemCell Technologies) is 

supplemented with 10% ES-Cult FBS (StemCell Technologies), 1% Penicillin/Streptomycin 

(Invitrogen), IL3 (20ng/ml), IL6 (20ng/ml), TPO (50ng/ml), Flt3L (50ng/ml), and SCF 

(100ng/ml) (Peprotech). For in vitro inflammasome stimulation, freshly sorted HSCs were 

primed with 100ng/ml LPS for 20 hours and then stimulated with 3mM ATP for 30mins. For 

in vitro NF-kB signaling activation, freshly sorted HSCs were treated with or without 

200ng/ml LPS and 1ug/ml Pam3CSK4 for 3 days. Cells were then stained for HSCs, 

differentiated blood cells, or 7AAD as described above. Proteins from culture media were 

trichloroacetic acid (TCA) precipitated for Western analyses of p20 caspase 1. Proteins from 

cell lysates were analyzed for pro-caspase 1. HEK293T cells were acquired from the ATCC. 

Cells were cultured in DMEM (Invitrogen) supplemented with 1% penicillin-streptomycin 

(Invitrogen) and 10% FBS (Invitrogen). All cells were maintained under standard growth 

conditions at 37°C and 5% CO2 in a humidified atmosphere.

Immunoblotting—Proteins were separated on 10% SDS-PAGE and transferred to 

nitrocellulose membrane. Membranes were blocked using 5% milk in PBST solution (PBS/

0.1% Tween) for 30 minutes and incubated with primary antibodies for 1 hour at room 

temperature or 16 hours at 4°C. After washing with PBST three times (10 minutes each 

wash), membranes were incubated with secondary antibodies for 1 hour at room 

temperature. After washing with PBST three times (10 minutes each wash), membranes 

were developed using ECL (GE healthcare) following the manufacturer’s instructions and 

imaged using ImageQuant™ LAS 4000 (GE healthcare). Antibody details are provided in 

Key Resources Table.

Lentiviral Transduction of HSCs—As previously described (Zhao et al., 2009), sorted 

HSCs were prestimulated for 5-10 hr in a 96 well U bottom dish in HSC media. Lentivirus 

was produced as described (Qiu et al., 2010). Briefly, 293T cells were transfected with 

lentiviral packaging plasmids together with pFUGw or pFUGw-H1 vectors using 

lipofectamine (Invitrogen) following the manufacturer’s protocol. The oligonucleotide 

sequences used to clone Caspase1 or NLRP3 shRNA into pFUGw-H1 vectors were provided 

in Table S1. 24 hours after transfection, cells were changed to fresh media. 48 hours after 

transfection, virus was collected, filtered through a 45uM syringe filter. Lentivirus was then 

concentrated by centrifugation at 17,900 g for 90 min, and resuspended with 200ul HSC 

media. The lentiviral media were added to HSCs in a 96 well plate, spinoculated for 90 min 

at 270G in the presence of 8ug/ml polybrene. This process was repeated 24 hr later with a 

fresh batch of lentiviral media.
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Transplantation Assays—250 freshly sorted HSCs from CD45.2 donor mice were 

mixed with 5×105 CD45.1 B6.SJL competitor bone marrow cells and injected into lethally 

irradiated B6.SJL recipient mice. To assess multilineage reconstitution of transplanted mice, 

peripheral blood was collected every month for 4 months. Red blood cells were lysed using 

500ul 1X BD FACS lysing solution (BD Biosciences) for 5 minutes at room temperature, 

washed with 3ml PBS, and stained with antibody mixture consisting CD45.2, CD45.1, 

Mac1, Gr1, B220, and CD3 (Biolegend) for 20 minutes at 4°C. Cells were washed with 3ml 

PBS before flow analysis. Bone marrow cells were analyzed 4 months posttranplantation 

using CD45.2, CD45.1, Lineage cocktail, c-Kit, Sca-1, and CD150 antibodies. Antibody 

details are provided in Key Resources Table.

mRNA Analysis—RNA was isolated from cells using Trizol reagent (Invitrogen) 

following the manufacturer’s instructions. cDNA was generated using the qScript cDNA 

SuperMix (Quanta Biosciences) following the manufacturer’s instructions. Gene expression 

was determined by real time PCR using Eva qPCR SuperMix kit (BioChain Institute) on an 

ABI StepOnePlus system. All data were normalized to β-Actin expression. PCR primer 

details are provided in Table S1.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mice were randomized to groups and analysis of mice and tissue samples was performed by 

investigators blinded to the treatment or the genetic background of the animals. Statistical 

analysis was performed with Student’s t test (Excel). Data are presented as means and error 

bars represent standard errors. In all corresponding figures, * represents p < 0.05. ** 

represents p < 0.01. *** represents p < 0.001. ns represents p > 0.05. Replicate information 

is indicated in the figures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• SIRT2 is required for HSC maintenance at an old but not young age

• SIRT2 represses the activation of the NLRP3 inflammasome in HSCs

• NLRP3 inflammasome is activated in aged HSCs due to increased 

mitochondrial stress

• SIRT2 activation, NLRP3 inactivation, or caspase 1 inactivation reverses HSC 

aging
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Figure 1. 
SIRT2 Is Not Required for HSC Maintenance at a Young Age

(A) Gating strategy for HSCs of young mice. Enriched HSCs: Lin−c-Kit+Sca1+. Highly 

enriched HSCs: Lin−c-Kit+Sca1+CD150+CD48−.

(B) The expression of SIRT2 in HSCs isolated from young (3 months old) and old mice (2 

years old) was quantified by qPCR. n = 3.

(C) HSC number in the bone marrow of 3-month-old WT and SIRT2 KO mice was 

determined via flow cytometry. n = 9 and 8.

(D) Competitive transplantation using HSCs isolated from 3-month-old WT and SIRT2 KO 

mice as donors. The percentage of total donor-derived cells in the peripheral blood (PB) of 

the recipients was determined via flow cytometry. n = 13.

(E) Lineage differentiation in the peripheral blood of 3-month-old WT and SIRT2 KO mice 

was determined via flow cytometry. MNCs, mononuclear cells. n = 5.

(F) Bone marrow cellularity in 3-month-old WT and SIRT2 KO mice. n = 9 and 8.

Error bars represent SE. **p < 0.01. ns, p > 0.05. Student’s t test.

See also Figure S1.
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Figure 2. 
SIRT2 Is Required for HSC Maintenance at an Old Age

(A) The number of HSCs in the bone marrow of 24-month-old WT and SIRT2 KO mice was 

determined via flow cytometry. n = 8.

(B) Competitive transplantation using HSCs isolated from 24-month-old WT and SIRT2 KO 

mice as donors. The percentage of total donor-derived cells in the peripheral blood (PB) of 

the recipients was quantified by flow cytometry. n = 12 and 11.

(C) The percentage of lymphoid and myeloid cells in the PB of 24-month-old WT and 

SIRT2 KO mice was determined by flow cytometry. MNCs, mononuclear cells. n = 12 and 

10.

(D) Bone marrow cellularity of 2-year-old WT and SIRT2 KO mice. n = 6 and 7.

(E and F) Flow cytometry analyses of staining for 7-AAD and activated caspase 3 in HSCs 

of aged WT and SIRT2 KO mice. n = 10 and 7 (E). n = 6 (F).

Error bars represent SE. *p < 0.05. **p < 0.01. ***p < 0.001. ns, p > 0.05. Student’s t test.

See also Figure S2.
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Figure 3. 
SIRT2 Prevents HSC Death upon the NLRP3 Inflammasome Activation

(A and B) NLRP3 expression in macrophages and HSCs isolated from mouse bone marrow 

was determined by qPCR (A) and western analyses (B).

(C–E) HSCs isolated from young WT and SIRT2 KO mice were primed with LPS for 20 h, 

and stimulated with ATP, a NLRP3 inflammasome inducer, for 30 min. Cells were stained 

with 7AAD and analyzed with flow cytometry. Data shown are the number of HSCs (C), the 

percentage of 7AAD-positive cells in the gated HSC population (D), and the percentage of 

Lin+ cells (E). n = 3.

Error bars represent SE. *p < 0.05. ***p < 0.001. ns, p > 0.05. Student’s t test.

See also Figure S3.
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Figure 4. 
The NLRP3 Inflammasome Regulates the Functional Decline of HSC Aging

(A) HSCs were isolated from young and old WT mice, primed with LPS, and then 

stimulated with ATP, a NLRP3 inflammasome inducer. Cell lysates were used for western 

analyses for pro caspase 1 and actin, and culture supernatants were used for cleaved p20 

caspase 1 western analyses.

(B and C) Bone marrow cells of young and old WT mice were stained for activated 

caspases. Data shown are the percentage of caspase+ cells in HSCs. n = 6 (B). n = 7 and 6 

(C).

(D) Aged HSCs were transduced with NLRP3 shRNA lentivirus or control virus. NLRP3 

mRNA levels were quantified by qPCR. n = 3.

(E and F) Competitive transplantation using aged HSCs transduced with NLRP3 shRNA 

lentivirus or control virus as donors. The percentage of donor-derived cells in the peripheral 

blood of the recipients (E) and donor-derived lineage differentiation in the peripheral blood 

of the recipients (F) were determined by flow cytometry. n = 8 and 5.

Error bars represent SE. *p < 0.05. **p < 0.01. ns, p > 0.05. Student’s t test.

See also Figure S4.
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Figure 5. 
HSC Aging Is Regulated by Caspase 1

(A–C) Competitive transplantation using aged HSCs transduced with caspase 1 shRNA 

lentivirus or control virus as donors. Gene expression of caspase 1 was determined by qPCR 

(A). The percentage of donor-derived HSCs in the bone marrow of the recipients (B) and the 

percentage of donor-derived cells in the peripheral blood of the recipients (C) were 

determined by flow cytometry. n = 3 (A). n = 4 and 6 (B). n = 5 and 6 (C).

(D and E) Competitive transplantation using HSCs from aged WT and caspase 1 KO mice as 

donors. Donor-derived HSC engraftment in the bone marrow (D) and the percentage of 

donor-derived cells in the peripheral blood of the recipients (E) were determined via flow 

cytometry. n = 8 and 6 (D). n = 14 (E).

(F) Lineage differentiation in the peripheral blood of aged WT and caspase 1 KO mice was 

determined by flow cytometry. n = 26 and 15.

Error bars represent SE. *p < 0.05. **p < 0.01. ***p < 0.001. Student’s t test.

See also Figure S4.
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Figure 6. 
SIRT2 Reverses the Functional Decline of HSC Aging

(A and B) Aged HSCs were transduced with SIRT2 or GFP lentivirus. SIRT2 mRNA levels 

were quantified by qPCR (A). Staining of activated caspase 1 was quantified by flow 

cytometry analyses (B). n = 3 (A). n = 4 (B).

(C–E) Competitive transplantation using aged HSCs transduced with SIRT2 or control 

lentivirus as donors. The donor-derived HSC engraftment in the bone marrow (C), the 

percentage of donor-derived cells in the peripheral blood (D), and donor-derived lineage 

differentiation in the peripheral blood (E) were determined by flow cytometry. n = 4 and 5 

(C and D). n = 6 and 8 (E). Error bars represent SE. *p < 0.05. Student’s t test. See also 

Figures S5 and S6.
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Figure 7. 
Mitochondrial Stress Triggers Caspase 1 Activation in Aged HSCs

(A and B) Aged HSCs were transduced with indicated lentivirus: SIRT3, SIRT7, SOD2KR 

(A) and NRF1 shRNA(B). At 2 days post-transduction, cells were stained for activated 

caspase 1 and analyzed via flow cytometry. Data shown are activated caspase 1+ cells in the 

gated HSC population. n = 3.

(C and D) Bone marrow cells of SIRT7 KO mice and their WT controls were stained for 

activated caspases. Data shown are the percentage of caspase+ cells in HSCs. n = 5 and 6 

(C). n = 5 (D).

(E) A proposed model. SIRT2 represses NLRP3 inflammasome activation in HSCs. In aged 

HSCs, reduced SIRT2 expression and increased mitochondrial stresses lead to activation of 

the NLRP3 inflammasome, reduced HSC survival, and reduced functionality.

Error bars represent SE. *p < 0.05. **p < 0.01. ns, p > 0.05. Student’s t test.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Actin antibody produced in rabbit Sigma-Aldrich Cat# A2066; RRID: AB_476693

Caspase 1 Monoclonal Antibody (5B10), eBioscience(TM) Thermo Fisher Scientific Cat# 14–9832; RRID: AB_2016691

anti-NLRP3/NALP3 mAb (Cryo-2) antibody AdipoGen Cat# AG-20B-0014; RRID: AB_2490202

CD45.1 Pacific Blue 3iolegend Cat# 110722; RRID: AB_492866

CD45.1 PerCP 3iolegend Cat# 110726; RRID: AB_893345

Streptavidin PerCP 3iolegend Cat# 405213

Mac1 PE 3iolegend Cat# 101208; RRID: AB_312791

CD3 Pacific Blue Biolegend Cat# 100214; RRID: AB_493645

Sca1 Pacific Blue Biolegend Cat# 108120; RRID: AB_493273

Streptavidin APC-Cy7 Biolegend Cat# 405208

c-Kit APC-Cy7 Biolegend Cat# 105826; RRID: AB_1626278

CD3 APC-Cy7 Biolegend Cat# 100222; RRID: AB_2242784

B220 APC-Cy7 Biolegend Cat# 103224; RRID: AB_313007

Sca1 Cy7-PE Biolegend Cat# 122514; RRID: AB_756199

CD45.2 Cy7-PE Biolegend Cat# 109830; RRID: AB_1186098

CD150 Cy7-PE Biolegend Cat# 115914; RRID: AB_439797

Gr1 Cy7-PE Biolegend Cat# 108416; RRID: AB_313381

CD3 Biotin Biolegend Cat# 100304; RRID: AB_312669

CD48 Cy7-PE Biolegend Cat# 103424; RRID: AB_2075049

B220 Biotin Biolegend Cat# 103204; RRID: AB_312989

Gr1 Biotin Biolegend Cat# 108404; RRID: AB_313369

CD8a Biotin Biolegend Cat# 100704; RRID: AB_312743

Mac1 Biotin Biolegend Cat# 101204; RRID: AB_312787

Ter119 Biotin Biolegend Cat# 116204; RRID: AB_313705

CD4 Biotin Biolegend Cat# 100404; RRID: AB_312689

CD48 FITC Biolegend Cat# 103404; RRID: AB_313019

Gr1 FITC Biolegend Cat# 108406; RRID: AB_313371

CD150 PE Biolegend Cat# 115904; RRID: AB_313683

CD45.1 PE Biolegend Cat# 110708; RRID: AB_313497

c-Kit APC Biolegend Cat# 105812; RRID: AB_313221

B220 APC Biolegend Cat# 103212; RRID: AB_312997

CD45.2 APC Biolegend Cat# 109813; RRID: AB_389210

Gr1 PerCP-Cy5.5 Biolegend Cat# 108428; RRID: AB_893558

Mac1 PerCP-Cy5.5 Biolegend Cat# 101228; RRID: AB_893232

Gr1 APC-Cy7 Biolegend Cat# 108424; RRID: AB_2137485

CD3 PerCP-Cy5.5 Biolegend Cat# 100218; RRID: AB_1595492

Mac1 APC-Cy7 Biolegend Cat# 101226; RRID: AB_830642

CD8a APC-Cy7 Biolegend Cat# 100714; RRID: AB_312753
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REAGENT or RESOURCE SOURCE IDENTIFIER

Ter119 APC-Cy7 Biolegend Cat# 116223; RRID: AB_2137788

CD4 APC-Cy7 Biolegend Cat# 100414; RRID: AB_312699

CD45.2 FITC eBioscience Cat#11–0454-85; RRID: AB_465062

Chemicals, Peptides, and Recombinant Proteins

LPS Invivogen Cat# tlrl-eklps

ATP Invivogen Cat# tlrl-atpl

Pam3CSK4 Invivogen Cat# tlrl-pms

Trichloroacetic acid (TCA) Sigma Cat# T0699

Dulbecco’s Modification of Eagle’s Medium Invitrogen Cat# 11965092

Fetal Bovine Serum Invitrogen Cat#10437–028

Penicillin Streptomycin Solution (100x) Invitrogen Cat# 15140122

0.25% Trypsin Invitrogen Cat# 25200056

TRIzol Reagent Invitrogen Cat#15596026

7AAD Biolegend Cat# 420404

Fixation buffer Biolegend Cat# 420801

Permeabilization wash buffer Biolegend Cat# 421002

CD117 (c-kit) MicroBeads, mouse Miltenyi Biotec Cat# 130–094-224

Stemspan SFEM Stemcell technologies Cat# 09600

ES-Cult FBS Stemcell technologies Cat# 06952

Murine IL3 Peprotech Cat# 213–13

Murine IL6 Peprotech Cat# 216–16

Murine Flt3 ligand Peprotech Cat# 250–31L

Murine TPO Peprotech Cat# 315–14

Murine SCF Peprotech Cat# 250–03

Critical Commercial Assays

FAM-FLICA Caspase-1 Assay Kit ImmunoChemistry Technologies Cat# 98

FLICA 660 Caspase-1 Assay ImmunoChemistry Technologies Cat# 9122

PE Active Caspase-3 Apoptosis Kit BD PharMingen Cat# 550914

FITC Active Caspase-3 Apoptosis Kit BD PharMingen Cat# 550480

qScript cDNA SuperMix Quanta Biosciences Cat# 95048–100

Eva qPCR SuperMix kit BioChain Institute Cat# K5052200

Experimental Models: Cell Lines

HEK293T ATCC CRL-3216

Experimental Models: Organisms/Strains

Mouse: SIRT2 KO Bobrowska et al., 2012 N/A

Mouse: Caspase1 KO Kuida et al., 1995 N/A

Mouse: SIRT7 KO Mohrin et al., 2015 N/A

Mouse: C57BL/6J Charles Rivers Laboratories C57BL/6NCrl
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REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: B6.SJL-Ptprca Pepcb/BoyJ (CD45.1) The Jackson Laboratories JAX: 002014

Oligonucleotides

Primers and shRNA cloning oligos Table S1 N/A

Recombinant DNA

pFUGw Mohrin et al., 2015 Addgene #14883

pFUGw-H1 Mohrin et al., 2015 Addgene #25870

Cell Rep. Author manuscript; available in PMC 2019 February 12.


	SUMMARY
	Graphical Abstract
	In Brief
	INTRODUCTION
	RESULTS
	SIRT2 Is Required for HSC Maintenance in an Age-Dependent Manner
	SIRT2 Prevents HSC Death upon Activation of the NLRP3 Inflammasome
	The NLRP3 Inflammasome Regulates the Functional Decline of HSC Aging
	SIRT2 Overexpression Reverses the Functional Decline of HSC Aging
	Mitochondrial Stress Triggers Caspase 1 Activation in Aged HSCs

	DISCUSSION
	STAR★METHODS
	CONTACT FOR REAGENT AND RESOURCE SHARING
	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Mice

	METHOD DETAILS
	Flow Cytometry and Cell Sorting
	Cell Culture
	Immunoblotting
	Lentiviral Transduction of HSCs
	Transplantation Assays
	mRNA Analysis

	QUANTIFICATION AND STATISTICAL ANALYSIS

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table T1

