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Noninvasive medical procedures are usually preferable to their invasive counterparts in the medical community. Anemia
examining through the palpebral conjunctiva is a convenient noninvasive procedure. The procedure can be automated to reduce
the medical cost. We propose an anemia examining approach by using a Kalman filter (KF) and a regression method. The
traditional KF is often used in time-dependent applications. Here, we modified the traditional KF for the time-independent data
in medical applications. We simply compute the mean value of the red component of the palpebral conjunctiva image as our
recognition feature and use a penalty regression algorithm to find a nonlinear curve that best fits the data of feature values and
the corresponding levels of hemoglobin (Hb) concentration. To evaluate the proposed approach and several relevant
approaches, we propose a risk evaluation scheme, where the entire Hb spectrum is divided into high-risk, low-risk, and doubtful
intervals for anemia. The doubtful interval contains the Hb threshold, say 11 g/dL, separating anemia and nonanemia. A suspect
sample is the sample falling in the doubtful interval. For the anemia screening purpose, we would like to have as less suspect
samples as possible. The experimental results show that the modified KF reduces the number of suspect samples significantly for
all the approaches considered here.

1. Introduction

According toWHO [1], anemia is a prevalent health problem
affecting an estimate of 2 billion people in many parts of the
world, especially where dietary iron deficiency, malaria, and
hookworm infections are common. Blood test is the most
common way for the anemia assessment based on the level
of hemoglobin (Hb) concentration. A normal blood test pro-
cedure needs drawing blood from a vein or a finger stick,
which is all right for most people but not acceptable for those
who suffer from blood phobia and fainting during acupunc-
ture. In addition, phlebotomists, laboratory practitioners,
and nurses are charged with drawing a patient’s blood, and
training those people to have enough professional skills is
also the hidden cost that cannot be overlooked. Besides, the

entire procedure of blood test may take more than an hour,
which limits the number of patients that could be examined
in a day and makes the large-scale anemia screening difficult.
In summary, the traditional way of drawing blood for anemia
assessment is time consuming and costly and not appropriate
for everyone. Therefore, an efficient way to screen out anemia
patients for essentially anyone is desirable.

In view of the considerations above, a great number of
studies on noninvasive approaches for Hb estimate as well as
anemia test have been conducted in the recent years [2–14].
One popular solution is to crop a small image within the
digital photo of the palpebral conjunctiva area (Figure 1).
Physicians can diagnose a patient’s anemia condition
based on the pale degree observed from the image, such
as the nonanemic sample in Figure 2(a) and the anemic
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sample in Figure 2(b). Sometimes, image samples taken in
poor condition are not as good as those presented in
Figure 2. The quality of the image is obviously the key to
the success of this kind of solution. Hence, some researchers
study how to acquire palpebral conjunctiva images more reli-
ably, and this is usually accomplished by reducing its depen-
dency on ambient light condition. These include photo
plethysmography [4] and reflectance spectroscopy [5], as
well as a head-mounted device with LED array inside to cap-
ture conjunctiva images [12]. However, they are not popular
or affordable, especially in the rural areas of developing coun-
tries where medical resources are often limited. Thus, we get
data acquisition back on track by using a more popular and
affordable device such as a commercially available digital
camera. At the same time, we need to deal with the biggest
potential problem of this kind of approach, that is, the threat
from noisy sources, including various ambient light condi-
tions and camera settings.

The noise effect results in the interference of extracting
color feature and makes the anemia assessment more suscep-
tible to error. Therefore, a preprocessing step before color
extraction is desirable. Few preprocessing efforts have been
made specifically for noninvasive anemia examining. In [13,
14], a preprocessing algorithm based on k-mean clustering
is tailored to remove the bright reflection spot in the image.
However, this is just one type of special noises due to camera
setting and/or ambient light condition and the k-mean clus-
tering approach is not general enough to deal with all possible
noise types. In fact, applying k-mean clustering to the image
with no bright reflection may even introduce unwanted
man-made noise. Therefore, a more general solution with
low probability of adverse effect is considered in this paper.

We treat the bright reflection or any other noise as simply
a measurement error. Apparently, if a preprocessing process
was not able to eliminate all the noise in the first step, the cor-
responding measurement error would add difficulty to the
next step—feature extraction. Being aware of it, some nonin-
vasive methods for anemia assessment attempt to obtain
image samples as clean as possible in the very beginning with
various rather sophisticated equipment [4–7]. With no per-
fect preprocessing method or such special equipment, our
prime work is therefore aimed at reducing the overall mea-
surement error. The idea is connected to one of the most

famous algorithms—Kalman filter (KF). Although it is com-
monly used in the problem of position and orientation track-
ing, its main function stays unchanged, that is, to optimize
each datameasurement and estimation. Therefore, wemodify
the traditional KF such that it can be applied to our current
problem. In fact, there have been examples of applying the
KF for medical fields, such as those in [15, 16], where Kalman
filters were applied to medical image reconstruction and
tracking blood vessel, respectively. Another application is in
signal filtering, which is more direct and easily understood.
Foussier et al. in [17] used KF to reduce the measurement
error of cardiorespiratory signal, resulting in improved signal
quality for further processing. In spite of different applications
above, they share a common characteristic, that is, Kalman fil-
tering is often used to deal with the data with time-dependent
nature. In this paper, we apply it to the time-independent data
derived froman originalmedical signal, which is unique to the
best of our knowledge. Specifically, a feature sample extracted
fromapalpebral conjunctiva image is regarded as a dependent
variable, while the corresponding Hb level is treated as an
independent variable (equivalent to time variable in tradi-
tional KF). As discussed above, each computed feature has
somehow inherited measurement error from the original
data. Therefore, applying KF in such setting is plausible.

Regression analysis is widely used for prediction and
forecasting, where its use has substantial overlap with the
field of machine learning. Regression analysis is also used to
understand which among the independent variables are
related to the dependent variable and to explore the forms
of these relationships. In restricted circumstances, regression
analysis can be used to infer causal relationships between the
independent and dependent variables. However, this can lead
to illusions or false relationships [18], such as overfitting. In
overfitting, a statistical model describes random error or
noise instead of the underlying relationship. Overfitting
occurs when a model is excessively complex, such as having
too many parameters relative to the number of observations.
An overfitting model usually has poor predictive perfor-
mance, as it overreacts to minor fluctuations in training data
[19]. For medical applications, physicians often do not know
how large a samplemeasurement error could be. It is expected
that the fitting relationship from medical data will appear to
perform slightly worse on a new data set than on the data set
used for fitting and prediction, which would cause a serious
problem for both patients and physicians. Therefore, we add
penalty consideration in the regression analysis to avoid the
overfitting problem. Penaltymethods are a class of algorithms
for solving constrained optimization problems [20].

In this paper, we propose a combining algorithm based
on amodified Kalman filter and the nonlinear penalty regres-
sion for anemia assessment. We simply compute the mean
value of the red (R) component of conjunctiva images and
consider it as the only recognition feature to simplify the pro-
posed system. Then, given the data of these mean values, we
use the combining algorithm to fit a nonlinear curve that pre-
sents the relationship between the feature value and the Hb
level. With the fitting curve, we then propose a three-level
evaluation scheme to determine the anemia status of a given
subject as well as the performance of the proposed approach.

Palpebral conjunctiva

Figure 1: The palpebral conjunctiva part of an eye.
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2. Method

A flow chart of the proposed approach is shown in Figure 3.
The original data at hand consist of N palpebral conjunctiva
images of unequal sizes, along with N corresponding Hb
levels, taken from N subjects, respectively. Firstly, we con-
sider only the R component of each cropped palpebral con-
junctiva image. Each image is then normalized to the same
size. Next, for each normalized image, we simply take the
mean value of R component pixels as the only one recogni-
tion feature in our approach to simplify the proposed system.
Since we perform 10-fold cross validation in this work, about
90% and 10% of the images and the corresponding features
values shall be used in training and testing, respectively.
Given the training images and the corresponding Hb levels,
we propose and perform a modified version of Kalman filter-
ing. In the next step, regression with penalty function is used
to find the relationship between feature values and Hb levels.
Finally, a three-level evaluation scheme called risk evaluation
scheme (RES) is proposed for the testing images to signify the
subject’s anemia status and evaluate the performance of the
proposed approach as well.

2.1. Traditional Kalman Filter. The Kalman filter (KF) was
proposed as a novel approach for the state estimation of
dynamic linear state system in [21], and it has been widely
implemented in various applications [22–29].

The KF is analogous to the Markov model, where it needs
an estimate state from the previous time instant and the cur-
rent measurement to calculate the estimate for the current
state. The KF is usually conceptualized as two distinct phases,
time update phase ((1) and (2)) and measurement update
phase ((3), (4), and (5)) [30].

xk k−1 = Fkxk−1 k−1 + Bk−1uk−1, 1

Pk k−1 = FkPk−1 k−1F
T
k +Qk, 2

Kk =
Pk k−1H

T
k

HkPk k−1H
T
k + Rk

, 3

xk k = xk k−1 + Kk zk −Hkxk k−1 , 4

Pk k = I − KkHk FkPk−1 k−1F
T
k + I − KkHk Qk 5

Here, the KF model computes the estimate state xk∣k at
time k which is evolved from the previous estimate state
xk−1∣k−1; the Fk is the state transition model which is applied
to the previous state; the Bk is the control-input model which
is applied to the control vector uk; the Pk∣k is the estimate of
error covariance matrix; the Kk is Kalman gain; zk is the
observation value at the current time k. In practice, the
process noise covariance matrix Q (must be positive semi-
definite in theory) and the measurement noise covariance
matrix R (must be positive definite in theory) might
change with respect to time change or measurement. They
are assumed to be independent (of each other), white, and
normally distributed.

The time update phase is responsible for projecting for-
ward the current state (1) and error covariance estimates
(2) to obtain the first predicted estimates xk∣k−1 for the next
time step. The aim of this step is to minimize the covariance
of the estimation error, which represents a degree of uncer-
tainty of the estimation [30]. The measurement update phase
is responsible for updating the Kalman gain in (3), state
estimate in (4), and estimate covariance in (5). In (4), xk∣k−1
is updated to the final estimate state xk∣k at time k. Equation
(5) for the updated estimate of covariance matrix above is
only valid for the optimal Kalman gain.

In most cases, Kalman filtering is wildly applicable to the
time-dependent field of navigation, radar, computer vision,
and so forth, and very few works have applied it to medical
data processing. In the next section, we attempt to modify
the traditional KF so that it can be connected to the medical
data processing task of interest.

2.2. A Proposed Modified Kalman Filter. The original images
have various sizes, and they are normalized (enlarged) to a
fixed size to avoid possible loss of useful information. Then,
we compute the mean value of the R component in the
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Figure 3: A flow chart of the proposed approach.
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Figure 2: Cropped palpebral conjunctiva samples. (a) Nonanemic sample; (b) anemic sample.
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RGB color space and use it as a recognition feature for
anemia assessment, because the reddish and pale conjunctiva
may correspond to two opposite extremes of Hb levels.

However, when the variance or standard deviation of
feature values is large (due to measurement errors in data
acquisition and individual differences in physiology), it is
more difficult to figure out the exact relationship between
the feature values and the Hb levels. Thus, we use Kalman
filtering to make the samples closer to each other so that it
will be easier for us to find the fitting curve representing the
relationship between these two quantities. Kalman filtering
is commonly used in time-dependent cases, as we discussed
earlier. We map our time-independent feature Hb problem
into a target position-tracking problem, which is a well-
known time-dependent problem. In the tracking problem,
time is the independent variable and the target position is
the dependent variable with some measurement error or
uncertainty. The KF is used to reduce the uncertainty. In
our problem, the Hb level is regarded as an independent var-
iable and the feature is considered to be a dependent variable,
which also suffers from measurement error due to camera
setting or ambient light condition. With this mapping, the
same principle of KF can be applied to our problem after a
proper reformulation of the original KF setting.

Firstly, we sort the measurement data zoriginal k by Hb in
an ascending order. We assume that there are enough
amounts of measurement data for analysis. We also assume
that the interval defined by any pair of two adjacent and
sorted Hb values has small enough differences, so that we
have essentially the same interval length. Furthermore, one
Hb level with finite precision may correspond to multiple
feature values in practice. To simplify the problem, we take
the average of these feature values in this case and convert a
possibly one-to-many mapping function zoriginal k to a
one-to-one counterpart z k . Now, k is no longer limited to
a time step; instead, it can be interpreted as a discrete number
of cases considered in either ascending or descending order
of Hb. We are about ready to apply Kalman filtering to our
problem. For the efficient implementation of KF, we simplify
the original KF by treating some complicated parameters in
KF to be constants and avoiding the required iteration of
their estimation as follows.

We firstly assume that the first data in the array z k is
correct, where we have P 1 = 0. And there is no control
vector in our case, so uk is set to be 0. For the one-
dimensional data in our case, let H = 1 (just a scaler, not
a matrix anymore). We also consider the system to be sta-
ble and set F = 1. Extensive researches have been done to
estimate noise covariance matrices Qk and Rk from the
data, such as [31–37]. A practical implementation of get-
ting a good estimate of these covariance matrices is still
difficult. Furthermore, KF is sensitive to errors in Qk and
Rk, and its output can be unacceptable if errors are large.
Therefore, we usually assume they are small constants
within a certain range, sayQk =Q = 1 × 10−3~1 × 10−2 and
Rk = R = 1 × 10−3~1 × 10−2. Thus, after a simple derivation,
the mathematical formulation of the original KF is
reduced to that shown next:

K k =
P k− 1 +Q

P k− 1 +Q + R
, 6

x k = K k ⋅ z k + 1− K k ⋅ x k− 1 , 7

P k = 1− K k ⋅ P k− 1 − 2 ⋅Q ⋅ K k + 2 ⋅Q, 8

where K k is the Kalman gain. Note that (6), (7), and (8)
give a simplified version of Kalman filtering according to
our current research work. The simplification provides a
useful guide for those who want to implement the filtering
directly with their own programming languages and tech-
niques. One handy alternative is to use the existing
MATLAB function “kalman” with a proper parameter set-
ting. In our implementation, we use the statement
output = kalman system input,Q, R , where system input
is the structure array containing the input signal and the
parameters such as H and F, and Q and R correspond
to Qk (or Q here) and Rk (or R here), respectively.

With the modified KF proposed above, a more con-
densed data x(k) than z(k) can be obtained and then used
in the following step.

2.3. Penalty Regression. The anemia examining can be con-
sidered as a linear regression problem, since the pale degree
of the palpebral conjunctiva is commonly regarded as an
obviously visible feature reflecting Hb level. For example,
the conjunctiva looks paler when Hb level tends to be low.
However, no study has ever shown that the problem consid-
ered here can be modeled perfectly by a linear expression
between the pale degree and the Hb level. Naturally, we
cannot exclude the development of a nonlinear expression
for our problem.

Since we take the mean value in R component as the
feature, we formulate the anemia-examining problem as a
predicting problem based on a fitting curve with an nth order
nonlinear polynomial function:

f hk, ai = 〠
n

i=0
ai ⋅ h

i
k, 9

where hk represents kth subject’s Hb level in an ascending
order after applying the proposed Kalman filtering and
f hk, ai is the corresponding function whose value repre-
sents a feature value. The coefficient ai in (9) is to be deter-
mined next.

The coefficient determination problem is basically an
optimization problem. An unconstrained optimization prob-
lem is formed by adding a term, called penalty function, to
the objective function. The penalty function consists of a
penalty parameter multiplied by a measure of violation of
some constraints. In the case of overfitting problem, we
consider a penalty function S ai in terms of penalty coef-
ficient ci:

S ai = λ ⋅ 〠
n

i=1
ci ⋅ a

2
i , 10

where λ is a penalty parameter. Similar to solving a normal
regression problem, we look for each calculated feature
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f hk, ai that could be as close to the measurement value x k
as possible. Do note that x k is the value after using the
proposed KF. The final penalty regression curve is computed
by minimizing the cost function E as follows:

E = α ⋅ 〠
M

k=1
f hk, ai − x k 2 + S ai , 11

where α is called learning rate. To find the minimum
value of the cost function for the M samples (after apply-
ing the proposed KF) in terms of the coefficient ai, we use
the well-known gradient descend algorithm comprising of
the following two main equations:

∂E
∂a0

= 2α ⋅ 〠
M

k=1
f hk, ai − x k = 0, 12

∂E
∂ai

= 2α ⋅ 〠
M

k=1
f hk, ai − x k ⋅ hik + 2λ ⋅ ci ⋅ ai = 0 13

By assigning appropriate values for the coefficient ci, we
can inhibit the increase for a particular higher-order coeffi-
cient ai to avoid overfitting.

Since there is no closed-form solution for ai′s based on
(12) and (13), an iterative computer procedure is generally
required. We use an existing MATLAB function for this
problem. When we get all the ai′s, the relationship between
Hb level hk and the feature value f hk, ai is established. Once
we have extracted the feature value from a new sample image,
the corresponding Hb level would be estimated immediately
according to this relationship.

2.4. Evaluation Schemes. Here, we proposed a three-level
evaluation scheme to examine the performance of the
anemia detection methods based on how risky a patient
may have anemia. Therefore, it is called risk evaluation
scheme (RES). The RES extends the traditional evaluation
approach that classifies a sample in two levels, one for
anemia and another for nonanemia. The RES considers
the uncertainty or possible classification error for the sam-
ples located around the borderline separating anemia and
nonanemia and adding one more level for those samples.

Specifically, the RES is designed to separate the samples
into three different levels, which are high risk, doubtful,
and low risk in terms of the chance of having anemia.
In RES, we consider an error tolerance range (ETR) for
each individual sample because the KF cannot eliminate
all the errors completely, especially the variation from
individual differences.

The ETR is based on the idea that each sample cannot
stay in one position, but within a certain range. Similarly,
the threshold borderline for anemia and nonanemia sepa-
ration cannot not stay at a fixed location either. Figure 4
shows two parallel horizontal Hb level bars. In the top
bar, an anemic threshold indicated by a vertical line seg-
ment is given and the threshold could be 11 g/dL or other
choices. Each arrow points to a sample value, say x, and
the corresponding horizontal line segment containing the
arrow represents an interval of length 2 × ETR. To be
more specific, the interval containing x is from x−ETR
to x+ETR. When x happens to be the threshold (say,
x=11 g/dL), the corresponding interval defines the doubt-
ful level as indicated in the yellow region of the bottom
bar. Similarly, the Hb range from zero to the left boundary
of the doubtful interval is defined as the interval having a
high-risk level (or the red area in the bottom bar), and the
remaining Hb range is defined as the interval having a
low-risk level (or the green area in the bottom bar). For
the samples whose intervals touch the interval of doubtful
levels such as C and D, they have higher chances of being
misclassified to the opposite status, that is, from anemia to
nonanemia and vice versa. These samples are called sus-
pect samples. The remaining samples are therefore called
nonsuspect samples, and they are either in the high-risk
level or in the low-risk level. For example, in Figure 4, A
and B are in the high-risk level, while E is in the low-
risk level.

Since the intervals determined here are based on the
choice of ETR and a particular set of training data, they can
vary from different training sets even when we set a fixed
ETR. In the experiment of Section 3, the ETR is chosen to
be the standard deviation of the training data, making the
determination of interval depend more on training data. To
evaluate the anemia detection methods using testing data,
we define an index for each risk level as follows:

Doubtful level

High-risk level

Anemia Nonanemia

Low-risk level

2×ETR

2×ETR

ECB
2 × ETR 2 × ETR 2 × ETR 2 × ETR

A

D

Figure 4: Illustration of RES.
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High‐risk index = no of labeled anemic samples in high‐risk level
total no of samples in high‐risk level ,

14

Low‐risk index = no of labeled nonanemic samples in low‐risk level
total no of samples in low‐risk level ,

15

Doubtful index =
total no of nonsuspect samples

total no of samples
16

Since the indices are evaluated in terms of testing data,
while the corresponding risk levels are determined by train-
ing data, the performance evaluation of the anemia detection
methods can be more reliable in this way. The possible values
of each index are all in (0, 1) and higher values are preferred.
The first two indices indicate how reliable the anemia detec-
tion methods can determine anemia and nonanemia cases,
respectively, with high confidence. The doubtful index evalu-
ates the screening capability of the methods to differentiate
anemia and nonanemia cases. Samples that are predicted to
be in the doubtful level (i.e., suspect samples) are more likely
to be uncertain. More suspect samples imply poorer screen-
ing capability of the anemia detection methods because
further examination, including real blood test, is required
for the uncertain cases. The doubtful index evaluates the
capability of the anemia detection methods to push suspect
samples away into the high-risk level or low-risk level. Obvi-
ously, an excellent algorithm would have less estimated
samples in the doubtful level (contributing to a higher value
of the doubtful index), higher value of the high-risk index,
and higher value of the low-risk index. Note that the doubtful
interval is adjustable in practice by controlling the value of
ETR. For example, if a physician requires less doubt or more
confidence in anemia diagnosis, the interval can be extended
so that more data will fall in this interval and less data will be
considered as high risk or low risk. Further discussion and
numerical values of these indices are given in Section 3.2.

3. Experimental Results and Discussion

In our experiment, we use the same palpebral conjunctiva
images in [13, 14] as our database. There are a total of 100
images in which 40 of them are labeled as anemia samples
and 60 of them are labeled as nonanemia samples according
to the threshold set at 11 g/dL [13, 14]. In other words, those
with an Hb level higher than 11 g/dL are labeled as anemia
patients in this paper; otherwise, they would be nonanemic
patients. All cases are adult patients and the Hb levels of all
of them are examined prior to the treatment. Given the data-
base, we use 10-fold cross validation to evaluate the perfor-
mance of the proposed approach. In other words, 90
images are used for training and 10 images are used for test-
ing each time and the overall performance is the average
result of 10 times (i.e., a total of 100 test data are averaged).

In our previous works ([13, 14]), we enlarged the images
to 500× 500 pixels in order to observe the image texture bet-
ter and facilitate the further processing of images (e.g., extract
entropy features). The two articles ([13, 14]) use the same

database, where the original images are usually not square
and their sizes vary significantly, but all of them are less than
150× 150 pixels. All available images are resized (enlarged) to
a fixed size of 500× 500 pixels using relevant MATLAB
functions. To comply with those two works, we also do the
same thing here. The resulting images indeed become finer
in this way and the image characteristics is more obvious.

To initialize the first estimate value in our modified KF,
let x 1 = z 1 . For the penalty regression, we let n = 4. If
we choose a polynomial order higher than 4, the final regres-
sion curve stays almost unchanged at the price of additional
computing cost. Furthermore, we attempt to avoid the
overfitting problem by punishing the higher-order term and
inhibiting the growth of its coefficient. The key of choosing
penalty parameters c1–c4 and λ is to reduce the contribution
from higher-order terms (to avoid overfitting or overtrain-
ing), which reduces the curvature of our fitting line and
makes it smoother. So, the assignment principle for the
parameters is as follows: The parameter values for lower-
order terms are set smaller (lower penalty) and those for
higher-order terms are set larger (higher penalty). The fitting
algorithm is based on gradient descend, which means it
would still be capable of finding the fitting line as long as
we follow the assignment principle just mentioned. For
example, even if the values for c2–c4 are set much greater than
c1, the final fitting line can be obtained (it would look like the
result of linear fitting). Thus, the choice of c1–c4 is custom-
ized by the user subject to the assignment rule just discussed.
The parameter λ is chosen such that the penalty term would
not be too large to make the convergence difficult. In our
case, the value assigned to the penalty parameter is smaller
than α in order not to make the convergence difficult. For
α, it is the step size in the iteration process. Technologically,
we should assign α a value that is as small as possible in order
not to miss the extremal point in the optimization process.
But, the computational cost would be relatively high accord-
ingly. The final results would be the same if α is limited to
within a range. For example, through our simulation, if the
value range for α is under 9 × 10−11, the final results remain
the same generally.

Thus,we set c1 = 1, c2 = 10, c3 = 20, and c4 = 30empirically,
since we want to keep higher-order coefficients closer to zero.
We set a random value from 0 to 1 for the initial value of ai.
Considering the performance and the convergence speed, we
let a0 be the first value of the feature data and set learning rate
α = 1 × 10−11 and penalty parameter λ = 1 × 10−12. The loop
termination condition ismetwhen the twoobjective cost func-
tions in two successive iterations differ by less than 1 × 10−6.

3.1. Experimental Results of the Proposed Approach. Compar-
ing Figures 5 and 6, we can see that the data (denoted by
asterisks) after applying the proposed Kalman filtering has
lower data variation, which facilitates the use of regression
analysis in the next step. For the fitting curve without penalty
function in Figure 5(a), a serious overfitting problem occurs
due to great data fluctuation. We can see that the mean value
around 180 has roughly two different corresponding Hb
levels, which will have a matching issue during the testing
phase. In contrast to the regression curve with penalty
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function in Figure 5(b), it can better present the decreasing
trend of the feature. In addition, the regression curve with
penalty function is robust that it changes little before and
after applying the proposed Kalman filtering. Furthermore,
for the no-penalty regression in Figure 6(a), the matching
issue still exists even though the data fluctuation is reduced
after applying the proposed KF. The fitting curve in
Figure 6(b) gets around the problems of both matching issue
and great data fluctuation. Therefore, Kalman filtering helps
to improve the fitting accuracy and penalty function helps to
improve the fitting robustness.

3.2. Applying the Proposed Approach to Selected Methods. In
addition to our proposed methods, we also examine several
related anemia assessment methods using the RES proposed
in Section 2.4. The first one includes the use of a linear regres-
sion for R color component only (adopted from [38], where it
originally considered all R, G, and B components as a whole
for regression). The second one uses the erythema index
(defined as the logarithm of the R component value) and
linear regression [10]. The third one uses the hue color com-
ponent in the HSI color model as the recognition feature and
perform anemia classification manually [39]. However, for
the convenience of comparison, we use our nonlinear penalty
regression method to replace the manual classification part.
These methods are chosen for comparison because they are
related to ours as follows: (1) they all use only one simple

recognition feature, such as R component value, erythema
index, and hue component value, to determine the anemia
status, and (2) the first two methods also implement a regres-
sion approach for Hb level estimation. None of them includes
KF or any other filters in their original methods.

In the following, we compare the results of all the
methods considered before and after applying the proposed
KF. The results are shown in Figure 7 and Table 1. Unlike
the samples in low- or high-risk levels, anemic samples in
the doubtful level do not appear to have obvious color fea-
tures. The Hb level threshold of 11 g/dL or any specific
threshold value is commonly viewed as a “golden” standard
to differentiate anemia and nonanemia. However, it is not a
“perfect” one. For example, not every patient with 10.9 g/dL
can be diagnosed as anemic with great confidence. In a
general medical case, a doctor or a researcher may consider
a disease in more than one level. The patients with minor
symptom or asymptomatic may fall in level 1 and others in
another level, say level 2. The treatment plans for the patients
in level 1 are more conservative because the doctor is not sure
if the patients really have the disease. Back to our case, the
samples in the doubtful level are more likely in the uncertain
zone. Reducing the number of such samples becomes our
primary task. The results of Figure 7 show that all the
methods can reduce the number of suspect samples after
applying the modified KF. Especially for [39], it can hardly
identify any anemic samples or nonanemic samples with
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Figure 5: A typical result for the training data without proposed Kalman filtering and the fitting curve (a) without and (b) with
penalty function.

7Journal of Healthcare Engineering



7 8 9 10 11 12 13 14 15
120

140

160

180

200

220

240

Hemoglobin level (g/dL)

M
ea

n 
va

lu
e ⁎

⁎
⁎

⁎
⁎⁎ ⁎

⁎⁎

⁎⁎
⁎
⁎⁎ ⁎⁎

⁎ ⁎
⁎
⁎
⁎
⁎

⁎⁎ ⁎⁎
⁎
⁎
⁎

⁎

⁎ ⁎⁎ ⁎
⁎⁎⁎⁎ ⁎ ⁎⁎

⁎

⁎⁎

⁎
⁎
⁎ ⁎

⁎

(a)

7 8 9 10 11 12 13 14 15
120

140

160

180

200

220

240

Hemoglobin level (g/dL)

M
ea

n 
va

lu
e ⁎

⁎
⁎

⁎
⁎⁎ ⁎

⁎⁎

⁎⁎
⁎
⁎⁎ ⁎⁎

⁎ ⁎
⁎
⁎
⁎

⁎

⁎⁎ ⁎⁎ ⁎
⁎⁎

⁎

⁎ ⁎⁎ ⁎
⁎⁎⁎⁎ ⁎ ⁎⁎

⁎

⁎⁎

⁎
⁎
⁎ ⁎

⁎

(b)

Figure 6: A typical result for the training data with proposed Kalman filtering and the fitting curve (a) without and (b) with penalty function.
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confidence before the use of KF, since the data variation is too
large for the method. However, it can reduce the number of
suspect samples from 100 to 58 after applying KF and regain
the capability of identifying anemic samples with confidence.

Table 1 shows the performance comparison using RES,
where ETR is selected as the standard deviation of the
training data. The sensitivity and specificity criteria follow
their well-known definitions except that only the nonsuspect
samples are considered. From Table 1, we can see that the
sensitivity and specificity performance for some methods
have declined slightly after using the proposed KF, but the
KF reduces both the standard deviation of feature values
and the number of suspect samples. From the aspect of prac-
tical medical application, a physician needs to give patients
the correct information as much as possible, and thus, an
appropriate reduction in the numbers of suspect samples is
desirable. Although some methods in Table 1 show very high
performance in sensitivity and specificity such as the one in
[10], they have too many suspect samples (74 out of 100),
which means the corresponding subjects may still need blood
test for further verification just in case. Then, the screening
purpose of any noninvasive anemia assessment study is
hardly met. Therefore, our work is to reduce the occurrence
of suspect samples as much as possible, which is equivalent
to reducing the number of suspect samples in doubtful level.
Although with slight decreasing in sensitivity and specificity,
according to the last column, the proposed KF can reduce the
number of suspect samples significantly for all the methods
considered here.

Of course, we can also change ETR in RES to achieve cus-
tomized results. The choice of ETR is obviously a trade-off.
As discussed in Section 2.4, a larger range would produce
more uncertain (suspected) data, while achieving higher

accuracy on certain data and vice versa. Table 2 shows the
results of different methods (with the proposed KF) using
(14), (15), and (16) in RES. Generally speaking, these
methods perform quite well among the nonsuspect samples
except [39]. Then, the primary task of noninvasive anemia
examining becomes reducing as many suspect samples as
possible. The method of KF+hue+nonlinear penalty regres-
sion [39] has the worst result with the lowest high-risk, low-
risk, and doubtful indices. For the rest of the methods in
Table 2, the method of KF+R+ linear regression has compa-
rable results with ours. However, it has 0.56 in the doubtful
index, which is worse than that of ours. For the method of
KF+ erythema index+ linear regression [10], it has excellent
results of 0.9545 and 1.0000 in the high-risk index and low-
risk index, respectively, but poor result of 0.44 in doubtful
index due to too many suspect samples.

Originally, KF is often used to smooth time-varying
data. Now, we apply it to deal with the feature without
any time-varying nature, especially in medical applications.
It demonstrates how to reduce measurement error. In fact,
many medical-related data are time irrelevant, which
means our work has the potential use in many other med-
ical applications. Since no research works discuss how a
KF can be applied to a time-unrelated medical field to
the best of our knowledge, one contribution of our work
is to present a new extending application of KF. With
the proposed Kalman filtering, physicians and researchers
could operate regression algorithms more effectively. Thus,
KF may become a useful option for medical applications.
Another contribution of our work is to propose a three-
level evaluation scheme for anemia detection methods,
which is particularly useful if anemia screening is the main
objective of the methods.

Table 1: Performance comparison between the methods with and without KF.

Sensitivity Specificity
Number of

suspect samples
Sensitivity
change

Specificity
change

Number of suspect
samples change

R + linear regression (adopted from [38]) 0.8333 0.8261 65
+2.86% −6.62% −32.31%

KF+R+ linear regression (adopted from [38]) 0.8571 0.7714 44

Erythema index + linear regression [10] 1.0000 1.0000 74
0% −4.35% −24.34%

KF+ erythema index + linear regression [10] 1.0000 0.9565 56

Hue + nonlinear penalty regression [39] ∗NAN ∗NAN 100 ∗NAN ∗NAN −42%
KF+hue + nonlinear penalty regression [39] 0.8462 0.5862 58

R+nonlinear penalty regression 0.7647 0.8158 45
−0.36% −0.89% −28.89%KF+R+ nonlinear penalty regression

(proposed algorithm)
0.7619 0.8085 32

∗NAN: there is no data, which means all test samples are considered to be suspect samples.

Table 2: The index of each level in RES.

High-risk index Doubtful index Low-risk index

KF +R+ linear regression (adopted from [38]) 0.6923 0.56 0.9000

KF + erythema index + linear regression [10] 0.9545 0.44 1.0000

KF+hue + nonlinear penalty regression [39] 0.4783 0.42 0.8947

KF +R+ nonlinear penalty regression (proposed algorithm) 0.6400 0.68 0.8837
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4. Conclusion

In this paper, we proposed a combining approach consisting
of the modified Kalman filtering and penalty regression for
noninvasive anemia detection. The KF is reformulated so
that it can be applied to time-irrelevant medical data. With
our proposed KF, the variance of the data could be reduced
which can facilitate the pattern-recognition task at a later
stage. The penalty regression reduces the chance of overfit-
ting, resulting in a more robust prediction system. We also
propose a risk evaluation scheme and the idea of suspect
samples. The suspect samples are those difficult to determine
for sure whether we have an anemia case or not. The
experimental results show that the proposed KF can effec-
tively reduce the number of suspect samples for our pro-
posed method and other relevant methods. This is a
great advantage for the screening purpose of noninvasive
anemia detection methods. We have proposed a simple
and easy-to-use anemia detection method, which can be
transformed into wearable or mobile devices if required.
In the future, we would explore the use of the proposed
KF for other medical applications.
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