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Abstract Aging is a biological process that affects most
cells, organisms and species. Telomeres have been postulated
as a universal biological clock that shortens in parallel with
aging in cells. Telomeres are located at the end of the
chromosomes and consist of an evolutionary conserved
repetitive nucleotide sequence ranging in length from a few
hundred base pairs in yeast till several kilo base pairs in
vertebrates. Telomeres associate with shelterin proteins and
form a complex protecting the chromosomal deoxyribonu-
cleic acid (DNA) from recognition by the DNA damage-
repair system. Due to the “end-replication problem” telomeres
shorten with each mitotic cycle resulting in cumulative
telomere attrition during aging. When telomeres reach a
critical length the cell will not further undergo cell divisions
and become senescent or otherwise dysfunctional. Telomere
shortening has not only been linked to aging but also to
several age associated diseases, including tumorigenesis,
coronary artery disease, and heart failure. In the current
review, we will discuss the role of telomere biology in relation
to aging and aging associated diseases.
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“Death takes place because a worn-out tissue cannot
forever renew itself, and because a capacity for
increase by means of cell division is not everlasting
but finite”

A. Weismann. Clarendon, Oxford 1881
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A brief historical perspective

Telomeres are special deoxyribonucleic acid (DNA) struc-
tures that “cap” the ends of our chromosomes in conjunc-
tion with specialized proteins, the telomere-shelterin
complex. This complex protects the chromosomes from
erosion and end-to-end fusion. The term telomere originates
from the Greek telos, which means “end” and meros which
means “part”. The existence of these end-parts of the
chromosomes was first suggested in 1938 by Muller [60].
In 1961, Hayflick undermined a major paradigm of his time
by providing convincing evidence that primary cells were
not immortal, but could undergo only a limited number of
cell divisions. This phenomenon, currently being referred to
as the Hayflick limit [38], predicts the existence of an
internal counting mechanism within the cell. Olovnikov, a
Russian researcher, was the first who linked the end of the
chromosomes to the cell cycle arrest described by Leonard
Hayflick [66]. The term “end-replication problem” describes
the effect that linear chromosomes cannot replicate their
terminal ends of the chromosome and consequently shorten
at each mitotic cycle. The first identification of the sequence
of the terminal end of the chromosome (the telomere) in the
Tetrahymena was discovered by Elizabeth Blackburn and
Joseph Gal in 1978 [6]. Ten years later, Robert Moyazis and
colleagues revealed that the sequence of the human telomere
consists of TTAGGG repeats [59]. Up to date, the sequence
of many species and organisms have been established and
we can conclude that the telomeres are an evolutionary well-
conserved sequence [55] (Table 1). The next major break-
through in telomere biology was the discovery of the reverse
transcriptase telomerase by Carol Greider working as a
postdoctoral student at the laboratory of Elizabeth Blackburn
in 1985 [31]. In contrast to DNA-polymerase, telomerase is
capable of eclongating the telomeres. Bypassing the end-
replication problem for germ cells is essential to maintain
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Table 1 Telomere length and telomere sequence in different species

Species Telomere Telomere Reference
length sequence
Ciliates
Protozoan 120-420 bp TG4 [6]
(T. thermophila)
Yeast
Baker’s yeast 200-300 bp TG,3(TG)-6 [76]
(S. cerevisiae)
Vertebrates
Humans 5-15 kb TLAG; [59]
Mice Up to 150 kb T,AGs3 [39]
Rats 20-100 kb T,AG; [17]
Birds 5-20 kb T,AG; [37]
Invertebrate
Ants 9-13 kb T,AG, [50]
Plants
Thale cress (4. thaliana) 2-5 kb T5AG; [68]

telomere length for offspring. In 1997 Maria Blasco in the
lab of Carol Greider created a telomerase deficient mouse,
which had inactive telomerase and consequently reduced
telomere length in each following generation [8]. The most
striking characteristic of the telomeres in somatic cells is the

Fig. 1 Telomeres are located at
the very final ends of the linear
chromosomes and consists of
TTAGGG repeats in vertebrates.
Reproduced with permission
[42]
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shortening with age and in cell culture the telomere length is
directly linked to the replicative capacity. In this review, we
will discuss the function of the telomeres and will focus on
the importance of telomere biology in normal aging and in
pathology.

Telomere; structure and T-loop

In vertebrates, the end of the chromosome, a G-rich strand,
ends in a single strand extension of 75-200 bp, the G-tail
(Fig. 1). In the nonmitotic phase of the cell cycle this G-tail
is shielded by a crucial so-called telomere shelterin
complex in which the telomere binds internally by forming
two internal loops, the D-loop and the T-loop [33]. The
telomere shelterin complex is designed to protect the
chromosomal ends from erosion and end-to-end fusion
[21] and is formed by different proteins associated with the
telomeres, such as telomeric repeat binding factor 1 (TRF1)
and 2 (TRF2) that can bind to double stranded telomere
DNA. Another telomere associated protein, protein protec-
tion of telomeres 1 (POT1), can bind directly to single
stranded DNA, and it is suggested that POT1 binding to the
3’overhang is important for forming the D-loop. Other
proteins involved in the shelterin complex that are recruited
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Fig. 2 Schematic representation of the telomere shelterin complex
and its associated proteins; TRF1, TRF2, POTI, Rapl, TIN2, and
TPP1

by TRF1 and TRF2 are repressor activator protein 1
(Rapl), TPP1, and TRFl-interacting nuclear factor 2
(TIN2) [21] (Fig. 2). Telomere shortening will result in
destabilization of the chromosomes and an inability to
recruit the proteins of the shelterin complex. As a result, the
T-loop cannot be formed as easily and the chromosome
ends will be left uncapped. This is a situation that resembles
double stranded DNA breaks, and presents a highly
unstable cellular state that may lead to activation of the
p53 or pl6inkda pathway and eventually can result in
senescence or apoptosis [20].

Telomere length and aging

In contrast to the similarity of the sequence, the telomere
length is highly variable among species, within species,
within an organism, and even between chromosomes. In a
study that evaluated telomere length in different organs
from humans of different age, telomere length varied
between 8 and 15 kbp and was highly variable between
organs from one subject [82]. This may be explained by
variable telomere attrition rate—in humans it is estimated
that telomere length shortens 30-150 bp per replication
cycle in fibroblasts and lymphocytes [35, 97]. There is a
high amount of variance in telomere length in humans.
Already at birth, remarkable differences in telomere length
are observed. In addition, females have longer telomeres
than men and in African Americans telomeres generally are
longer than in White Americans [41]. As there is no gender
difference at birth, it is most likely due to differences in
environmental factors such as differences in estrogens
levels [48]. Strikingly, macaques have approximately the
same life span as humans but have longer telomeres in
addition to a longer subtelomeric region [29]. Telomere
attrition rate is not stable for each chromosome, in human

cells the chromosomes 17p, 13p, and 19p have been
identified as being shorter compared to the other chromo-
somes [30, 52].

In humans, telomere length is measured extensively in
leukocytes in relation to aging and various pathologies.
Leukocyte telomere length obviously has the advantage of
being relatively easily obtained and processing is a
relatively simple process. Telomere length in leukocytes is
highly variable among individuals and decreases through-
out life. Especially large differences develop the first few
years after birth [70] after which telomere length are
relatively stable throughout childhood, preadolescent, and
adolescent years. Eventually, telomere length attrition
increases at very old age (Fig. 3). An important aging
hypothesis is that telomere attrition increases at the onset of
disease. Therefore, telomere length of the leukocytes could
be a good marker for disease. Telomere length in different
aging diseases is discussed later in the review. The major
disadvantage of using leukocyte telomere length is that it is
a measure of the activity state of the immune system and
one might argue that leukocyte telomere length is rather a
representation of increased inflammation than of aging.

Most animal research on telomeres has been performed
in rodents, especially on inbred mice and rat species that
have highly variable telomere lengths. Laboratory rats have
relatively long telomeres that vary between 20 and 100 kb
and telomere length in mice is even more variable and can
extend up to 150 kb (of the C57BL/6 mice) [17, 39]. In
contrast, the outbred (wild type) mice strain Mus spretus
has telomere length that is comparable to human cells.
Comparing multiple mice strains showed that most mouse
species do not have long telomeres, and long telomeres in
mice strains originate from excessive breeding [39]. In rats,
telomere length shortens with aging in several organs like
kidney, liver, pancreas, and lungs. Research into telomere

» granulocytes

Telomere length (kb)

Age (yrs)

Fig. 3 Telomere length in lymphocytes and granulocytes during
human lifespan. Reproduced with permission from [4]
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length from blood derived cells from multiple bird species
with different life expectancies shows that telomere attrition
rate is a better predictor of life expectancy than the age of
the animal [37]. One remarkable animal is the Leach’s
storm-petrel, a long lived bird species with a maximum
observed lifespan of 36 years. Instead of telomere attrition,
it is suggested that the telomere length increases during
aging in this species [37]. The Leach’s storm-petrel has
increased levels of telomerase activity in their bone marrow
cells compared to other birds [36]. It is tempting to
speculate that these animals have managed to increase their
lifespan by dealing with telomere erosion. However, the
assumption that absolute telomere length has an effect on
life span is still elusive. For example, mice strains with
longer telomeres do not seem to have an increased lifespan
compared to mice strains with shorter telomeres. How these
differences in telomere length affect lifespan are still
unknown, the most accepted hypothesis is that the shortest
telomeres are contributing most to the expected lifespan
[40].

Quantifying telomere length

The most commonly used techniques to measure telomere
length are Southern blot, polymerase-chain reaction (PCR)
based techniques and in situ hybridization. Southern
blotting or telomere restriction fragment analysis (TRF) is
the traditional method and still considered the gold standard
[22]. The telomeres are represented as smears, and the
weight of the smear is representative for the average
telomere length. The main disadvantage of this technique
is the relatively high amounts of DNA which is required.
This technique is therefore not feasible for determining
telomere length in single cells, or for different chromo-
somes, or when DNA availability is limited. The real-time
PCR-based method is relatively fast and only requires small
amounts of genomic DNA. This technique is based on
modified PCR primers to avoid primer-dimer amplification
as much as possible [13]. The final measure will be a ratio
telomere quantity divided by a reference gene quantity
(T/S ratio) which is a relative measure, perfectly valid
within a given population (as it will correctly rank subjects)
but more difficult to compare between populations. The
most recent advantage is the development of a multiplex
assay in which both the telomere and the reference gene is
targeted in a single well [14]. The PCR technique suffers
the same disadvantage as the TRF method when consider-
ing single cell or specific chromosome analysis. The
quantitative PCR technique has been widely used and
accepted to estimate telomere length in large cohort studies
[10, 15, 86, 93]. A specific modification of the previous
techniques is single telomere length analysis, which uses
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Southern blotting techniques to separate PCR-amplified
products, by combining specific primers and probes for
the telomeres and the subtelomeric regions to measure
telomere length per chromosome [5]. This technique is at
the moment thought to be the most accurate telomere
measurement, but it is a labor-intensive and technically
challenging technique that can only be used for chromo-
somes from which the subtelomeric region is known. In situ
hybridization techniques make it possible to visualize
the telomeres in single cells. Quantitative fluorescence
in situ hybridization (Q-FISH) uses a (CCCTAA); peptide
nucleic acid probe to visualize the telomeres. In metaphase
spreads, the telomeres are visible at the end of the
chromosomes and they can be quantified also in single
chromosomes [52]. An important variation on this tech-
nique is the flow fluorescence in situ hybridization, or
Flow-FISH. By combining Q-FISH hybridization and flow
cytometry analysis, it is possible to measure average
telomere length in interphase cells in combination with
standard flow cytometry antibodies to select the cell
population of interest [71].

Telomere maintenance

Telomerase, a ribonucleoprotein complex that is composed
of RNA and protein components, can elongate the telomere
sequence in mammals and yeast by binding to the open end
of the G-strand. Telomerase is highly expressed during
embryonic development but its expression is suppressed
within a few weeks after birth in most somatic cells. Highly
proliferative cells maintain high levels of telomerase, like
stem cells, progenitor cells, lymphocytes, skin keratino-
cytes, and cancer cells [27]. The major components of the
active telomerase complex are telomerase reverse transcrip-
tase (TERT), a telomerase RNA component (TERC, that is
complementary to the telomere sequence) and dyskerin,
which is a protein that binds to both TERT and TERC and
increases stability of the complex [19, 32]. Elongation of
the telomeres in mammals and yeast not depending on
telomerase is called alternative lengthening of telomeres
(ALT). In human tumors, it was discovered that cells
negative for telomerase could also elongate their telomeres
by a recombination mechanism [12]. Recombination takes
place by binding of the ALT-associated promyelocytic
leukemia bodies to the telomeres. Telomere elongation
occurs heterozygous in these cells and ALT can best be
recognized by the presence of both short and long
telomeres.

The TERC -/- mouse has increased our knowledge on
the importance of telomerase in aging and in the potential
role of telomerase and telomere shortening in the different
diseases [101]. As always, it is difficult to translate data



Pflugers Arch - Eur J Physiol (2010) 459:259-268

263

from knockout models directly to human pathology, but
especially in premature aging diseases the TERC-/- mice
show great overlap with human disease [7].

Telomere biology and cellular senescence

Primary cells in culture are not immortal. As Hayflick
demonstrated in 1961, cells stop dividing after a certain
number of passages and become sedative [38], a phenotype
also known as replicative senescence. The senescent
phenotype is accompanied by changes in morphology, gene
expression, and proteins. Beta galactosidase staining is
frequently used to identify senescent cells and is associated
with changes in p53, pl6, and p21 expression [26, 62, 78].
There are multiple stimuli that can induce senescence;
telomere shortening, DNA damage, and induction of
oncogenic or tumor suppressor signals [16, 47, 79].
Induction of cellular senescence is an important suppressor
of tumorigenesis [79, 103]. Although telomere attrition
might not be primarily involved in the acute induction of
senescence [16], the cumulative burden of oxidative stress
and the cumulative telomere attrition might increase to
likelihood of a cell to enter senescence [47]. Telomere
attrition through replication and accumulation of DNA
damage can result in an increase of senescent cells in different
tissues and organs eventually resulting in decreased function
and pathology. Telomere shortening has been implicated as
one of the major mechanisms of replicative senescence [97].
The end-replication problem accounts for a loss of ~100 bp
telomere length at each population doubling. On average
cells are estimated to reach senescence after~50 population
doublings. This is a bit earlier than predicted by the end-
replication problem alone. It is likely that the state of the
telomere and the presence of the proteins involved in
forming the shelterin complex are important cofactors
associated with the induction of senescence [46]. For
example, there is ample evidence that disruption of the
telomere binding proteins results in early senescence. In
primary human fibroblasts, TRF2 inhibition induces a
p53- and retinoblastoma-dependent senescent phenotype
[46, 94]. Likewise, inhibiting POT1 by RNA interference
led to the disappearance of the telomeres single-stranded
overhangs and induced apoptosis, chromosomal instability,
and senescence [104].

Telomere biology in stem cells

Stem cells and progenitor cells have an important role in
maintaining tissue homeostasis by replenishing (senescent,
apoptotic) cells and repairing damage that occurs through-
out life. Exhaustion of the stem cell or progenitor cell pool

has been considered an important factor in the aging
process of an organism [67]. One of the hallmarks of stem
cells is their telomerase activity and stable length of their
telomeres [63, 87]. Stem cells reside in different compart-
ments throughout the body. In mice it has been shown that
there exists a large difference in telomere length among the
different compartments. The longest telomeres have been
observed in skin, small intestine, cornea, testis, and brain
compartments [28]. Although it seems that stem cells have
stable telomeres by its increased telomerase activity, it does
not make them invulnerable to telomere erosion. Clonal
expansion after damage or in a disease state could induce
telomere erosion that ultimately could induce senescence
and an exhaustion of the stem cell pool. This hypothesis is
supported by data from bone marrow-derived cells exhibit-
ing a decreased migratory capacity and significant telomere
shortening in patients with coronary artery disease [80].
The best characterized stem cells are the hematopoietic
stem cells (HSC) which continuously replenish the hema-
topoietic cell lineages. HSC have been reported to have
shorter telomeres compared to fetal liver and cord blood
derived cells [96]. Recent data have also suggested a
reduction of telomere length of HSC during aging [99].

Telomere biology and premature aging

Some human disorders associated with shorter telomere
length originate from defective telomerase function or
mutations in the DNA repair system. For example,
Dyskeratosis congenita (DC) is a human premature aging
syndrome linked to mutations in the telomerase complex
resulting in decreased telomerase stability and shorter
telomeres [57]. Patients with DC develop numerous different
pathologies, including short stature, hypogonadism, infertil-
ity, bone marrow failure, skin defects, hematopoietic defects,
and premature death. In addition, these patients have an
increased susceptibility to develop malignancies. Another
human disease example that involves a telomerase mutation
is aplastic anemia. Subjects with aplastic anemia experience
accelerated telomere shortening and die young [51]. Some
diseases originating from mutations in genes of the DNA
repair system also result in a phenotype characterized
by accelerated telomere shortening and premature aging.
Example genes include the Ataxia telangiectasia (ATM),
Wemer syndrome, Bloom syndrome, and Fanconi anemia
genes. Most of these DNA repair genes also have a role in
telomere biology. Mouse knockout models for these proteins
do not always result in the same characteristics as the human
disease. It has been suggested that the remarkable longer
telomere length in mice might provide an explanation for
these discrepancies. Combining DNA repair KO mice for
Wemer, Bloom, and ATM syndrome with the TERC -/- mice
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indeed resulted into a phenotype with characteristics that more
closely resembled the expected pathology in humans [7].

Telomeres and aging associated diseases

The debate on how telomere biology affects life span is
ongoing, but a link between telomere length and mortality
has been established. In addition, numerous associations
between aging-associated diseases and telomere length
have been reported [15]. Telomere length could be
considered as a biological parameter that intertwines
replicative history and exposure to environmental stress.
Human life span is highly dependent on the development of
aging associated diseases especially cancer and cardiovas-
cular disease.

Cancer

Tumorigenesis is a major factor influencing life expectancy
in long-lived species. Shorter telomere length is also a risk
factor for the development of cancer [102]. Progressive
shortening of the telomeres will lead to activation of the
DNA damage response [34, 102]. In the normal situation
this will result in activation of ataxia telangiectasia mutated
(ATM) and ataxia telangiectasia- and Rad3-related (ATR),
and the associated downstream factors including CHKI,
CHK2, and phosphorylation of p53. In the setting of a
competent p53 pathway, senescence or apoptosis will be
initiated and tumorigenesis inhibited [25]. However, when
the p53 pathway is inadequate tumorigenesis is no longer
inhibited in the presence of telomere dysfunction [25, 34,
69]. In addition, 80 to 90% of all tumors express telomerase
or have a form of alternative telomere lengthening [77].
Clinical data revealed that telomere length (measured in
lymphocytes) is shorter in subjects with different types of
cancer, including cancers of the head and neck, breast,
bladder, prostate, lung, and kidney [102].

Cardiovascular risk factors

Next to cancer, cardiovascular disease and its risk factors
are the major contributors to the population’s disease
burden during aging. For example, the presence of diabetes
has been linked to reduced telomere length [1, 44, 75]. In
the Framingham Heart Study, even a subclinical presence of
insulin resistance was associated with reduced telomere
length [24]. Hypertension and the responsiveness to
angiotensin are related to outcome in humans [88, 92].
The number of genetic variants influencing the develop-
ment of hypertension is only small [61]. However, a role for
telomeres has been suggested, normotensive persons with
short telomeres were more susceptible to develop hyper-
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tension and hypertensive subjects with short telomeres were
more susceptible to develop atherosclerosis [105]. Interest-
ingly, even subclinical activation of the renin-angiotensin
system (RAS) has been associated with shorter telomeres
[24, 95]. A final example is cigarette smoking, a strong risk
factor for the development of coronary heart disease [2].
Smoking negatively affects telomere length [54, 58, 84],
possibly due to mechanisms involving oxidative stress [98].

Atherosclerosis

Endothelial dysfunction is recognized as one of the earliest
events of atherogenesis [3] and is associated with classical
risk factors or risk markers including cholesterol and
inflammatory markers [85, 91], which can be modified by
pharmacological treatment [92]. The endothelial and smooth
muscle cells in the vessel, which are most susceptible to
develop atherosclerosis are highly proliferative and are
subjected to stress by increasing mean arterial pressure,
increased cholesterol, and increased oxidative stress. This
results in an increased susceptibility for senescence [45,
53]. Indeed senescent-positive endothelial cells can be
found in almost any atherosclerotic plaque [56] and an
association with shorter telomeres in atherosclerotic plaques
has been established [64]. The first clinical study linking
coronary artery disease to telomere length dates back to
2001 [72]. This ground breaking study suggested telomeres
of circulating white blood cells to be approximately 300 bp
shorter in patients with coronary artery disease compared to
controls. The authors estimated that this telomere differ-
ences resembles an age difference of almost 9 years [72].
Further and larger scale studies confirmed these findings
and extended it to premature atherosclerosis and ischemic
heart failure [9, 10, 15, 93]. For example, the West of
Scotland Primary Prevention Study (WOSCOPS) observed
that subjects in the middle or lower tertile of telomere
length were at greater risk to experience a clinical
manifestation of coronary heart disease than persons with
longer telomeres [10]. The WOSCOPS data also suggested
that the use of statins was more beneficial for the patients
with the shortest telomeres [10]. Apparently patients that
are protected by longer telomeres addition of statin
treatment did not result in additional protection. Interest-
ingly, telomeres of offspring from subjects with coronary
artery disease already have shorter telomeres compared to
offspring from parents without atherosclerosis [11]. This
might explain part of the heritability of coronary artery
disease next to other genetic factors [73, 83].

Heart failure

Chronic heart failure (CHF) is the main cardiovascular
discharge diagnosis in the United States [23]. In particular,
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after the necessity of hospital admission, CHF is associated
with a high mortality rate [43]. Recent clinical trials have
not added much to the prognosis, and the search for new
strategies is intensive [49, 89, 90, 100]. Although in
general, the incidence and prevalence of CHF steeply
increases with aging, there exists a striking variability in
the susceptibility, age of onset and pace of progression.
This variability cannot completely be attributed to the
presence of conventional risk factors and recent evidence is
suggesting a role for telomere biology [74]. Endomyocardial
biopsies from patients with heart failure have demonstrated
that diseased hearts are characterized by shorter telomeres,
increased cellular senescence, and cell death [18]. It has been
estimated that telomere length is reduced by as much as 25%
in failing hearts compared to nonfailing hearts [65]. Also, the
telomere length in leukocytes of subjects with heart failure
are significantly shorter compared to age and gender
balanced controls [86]. In this study, the severity of heart
failure symptoms was also associated with the degree of
telomere shortening. Furthermore, cardiac function as mea-
sured by ejection fraction in general has been associated with
telomere length [81]. One standard deviation of longer
telomere length was associated with a 5% higher left
ventricular ejection fraction. In these elderly subjects,
telomere length alone accounted for 12% in the observed
variability of ejection fraction. Renal function impairment
relates to even worse outcome in patients with CHF. Shorter
telomere length in CHF is also associated with decreased
renal function, possibly due to drop-out of functional
nephrons [93].

Conclusions and future perspectives

Telomere biology is involved in biological aging and
disease processes. Experimental evidence suggests that
telomere shortening, uncapping, and cellular senescence
results in an “aging” phenotype [46]. The exhaustion of
progenitor cells and the cumulating of senescent cells
might explain the decline in organ function associated
with aging. Shorter telomere length has been associated
with several age associated diseases, including cancer,
diabetes, atherosclerosis, and heart failure. To gain more
insights in the role of telomere biology in the aging
process of humans, we are still in need of large population
based cohorts with telomere length and telomerase activity
measurements at multiple time-points. If telomere biology
can be proven to be causally involved in the development
and progression of these age-associated diseases, it will
pave the way for new therapeutic or preventive strategies.
For example, telomerase or telomere length could be
targeted in the emerging stem cell therapies for organ
dysfunctions.
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