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Background: There is considerable interest in adjusting for suboptimal adherence in randomized
controlled trials. A per-protocol analysis, for example removes individuals who fail to achieve a minimal
level of adherence. One can also reassign non-adherers to the control group, censor them at the point of
non-adherence, or cross them over to the control. However, there are biases inherent in each of these
methods. Here, we describe an application of causal modeling to address this issue.
Methods: The marginal structural model with inverse-probability weighting was implemented using a
weighted generalized estimating equation model. Two ancillary models were developed to derive the
weights. First, stepwise linear regression was used to model the observed percent weight loss, while
stepwise logistic regression model was applied to model early discontinuation from the intervention.
From these, participant- and time-specific weights were calculated.
Discussion: This model is complicated and requires careful attention to detail. Which variables to force
into the ancillary models, how to construct interaction terms, and how to address time-dependent
covariates must be considered. Nevertheless, it can be used to great effect to predict intervention ef-
fects at full adherence. Moreover, by contrasting these results against intention-to-treat results, insights
can be gained into the intrinsic physiologic effect of the intervention.
Trial registration: ClinicalTrials.gov Identifier NCT00427193.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Clinical trials are frequently described as the “gold standard” for
evaluating the effectiveness of a biomedical intervention.
Randomization is expected to create treatment groups equivalent
with respect to known and unknown confounding factors prevail-
ing at baseline. However, this balance can be quickly eroded by
confounders arising post randomization. They include drop-out,
adverse events, and the use of concomitant medications. Subopti-
mal adherence is particularly insidious. It undermines the
ginal structural model; GEE,
e assessment of the long-term
n; BMI, body mass index; RMR,
andard error.
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credibility of the intervention, and casts doubt on the external
validity of the results. The traditional intention-to-treat (ITT)
analysis effectively ignores these factors. This attenuates the
treatment effect towards the null robbing the study of power to
detect significant differences. For this reason, there is generally
strong interest in adjusting for the time-dependent confounder.

A number of approaches have been proposed. A per-protocol
analysis, for example, removes individuals who fail to achieve a
minimal level of adherence. However, this diminishes the external
validity of the study, reduces power, and if applied differentially,
can lead to bias in the between-group comparisons. One can also
censor them at the point of non-adherence or cross them over to
the control group at that point. Peduzzi et al. [1] however,
demonstrated that there are biases in each of these methods.
Another approach is to include adherence as a covariate in a linear
model. However, adherence is an endogenous variable and satisfies
the definition of a time-dependent confounder. That is, it is
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influenced by past and current treatment effectiveness while
simultaneously affecting future outcomes. Standard linear models
are not appropriate under these circumstances.

In this paper, we provide a case study on applying a causal
model to account for suboptimal adherence and predict interven-
tion effects at full adherence. Specifically, the marginal structural
model (MSM) using inverse-probability [2,3] is widely applied in
the epidemiologic [4e6] and clinical trials literature [7,8] including
accounting for adherence [9e11]. The MSM is a form of causal
analysis based upon the theory of counterfactuals [12]. It allows
inference to be drawn under the assumption that, possibly contrary
to fact, all participants had adhered to the intervention at the
prescribed level. It is implemented using a weighted generalized
estimating equation (GEE) model [13]. Informally, the weights
create a pseudo-population inwhich the confounding effects of the
observed adherence are removed and the effect of intervention is
observed. As such, it is a longitudinal version of the propensity
score method [14]. This allows a participant's propensity to adhere
to change as circumstances are perceived over the course of the
study.

The original MSM papers and subsequent applications were
focused on a binary confounder using the Bernoulli distribution. A
rough outline was provided, however, on how to implement this
model for a continuous confounding measure using the Gaussian
distribution. Here, we provide the details on how to do so. We
describe the process to derive the weights and implement the
weighted GEE model. We contrast the MSM results against the ITT
results. We then use these differences to interpret the effects of the
intervention.

2. The CALERIE study

2.1. Overview

To fix ideas, consider the Comprehensive Assessment of the
Long-term Effects of Reducing Intake of Energy (CALERIE) study.
CALERIE was a randomized controlled trial evaluating the effects of
calorie restriction (CR) on the aging process. Here, CR is defined as a
dietary regimen which reduces dietary energy intake while main-
taining proper nutritional adequacy. Across a wide range of species
including yeast, worm, spiders, flies, fish, mice and rats, CR has
been shown to increase median and maximum lifespan [15]. In
humans, supporting evidence has come from observational studies
in longer-lived individuals [16] and from those who self-impose CR
[17]. Moreover, pilot studies [18e20] conducted in preparation for
the present study pointed to significant short-term effects of CR on
resting metabolic rate, cardiovascular and diabetes risk factors, and
cognitive function. CALERIE was the first clinical trial to evaluate CR
effects in a non-obese population over an extended interval of 24
months. The overall goal was to determine if two years of sustained
25% CR would lead to same improvements in the biomarkers of
aging and chronic diseases as seen in the animal studies.

2.2. Study design

CALERIE was a single-blind, multi-center, clinical trial [21].
Healthy individuals from both genders and all races were eligible.
Men were restricted to 21e50 years of age, and women from 21 to
47 years of age; body mass index (BMI) was restricted to the range,
22 � BMI < 28 kg/m2. Participants were assigned at random with
2:1 allocation to the CR intervention or an ad libitum control.
Randomization was stratified by site, sex and BMI, with BMI
dichotomized into normal weight (22 � BMI < 25 kg/m2) versus
overweight strata (25 � BMI < 28 kg/m2). All participants provided
written informed consent, the study protocol was approved by
Institutional Review Boards at all participating institutions, and
oversight was provided by an independent Data and Safety Moni-
toring Board.

Although there were a number of primary and secondary out-
comes, here we focus on the outcomes related to the metabolic
adaptation hypothesis for the effects of CR. It postulates that CR
reduces metabolic rate more than that predicted by the changes in
fat mass and fat-free mass that would ordinarily accompanying
weight loss. This results in increased metabolic efficiency that may
be accompanied by a drop in core body temperature and a decrease
in oxidative stress. Resting metabolic rate (RMR) was measured in
all participants at baseline and at months 12 and 24 (M12 and
M24); additional measurements were performed in CR interven-
tion arm at months 6 and 18 (M6 and M18). RMR was adjusted for
changes in body composition over the intervening interval, and is
henceforward referred to as the adjusted RMR. Core body tem-
perature was measured in all participants at baseline, M6, M12 and
M24. Data from all available time points were included in the sta-
tistical analyses; however, we focus specifically on the results at
M12 and M24.

2.3. CR intervention

A complete description of the CR intervention has been pro-
vided elsewhere [22]. Briefly, an intensive behavioral approach
with appropriate dietary modifications was applied. Participants
made dietary selections (under the supervision of intervention
staff) that most effectively allowed them to achieve the CR goal.
Participants were allowed to vary their dietary choices as needed
or desired over the course of the intervention. Psychologists and
nutritionists supervised the delivery of the CR intervention in a
structured and consistent manner. Behavioral strategies known
to be effective in long-termweight-loss studies [23] were applied
together with dietary composition changes known to enhance
satiety and reduce hunger [24]. In contrast, the controls were not
given any specific calorie goal. They received no dietary or
behavioral counseling and continued unrestricted in their
habitual diets. As such, the control group was conceptualized as
the natural history of this study population as it aged over the
two years.

2.4. Adherence to the CR intervention

Two hundred, eighteen participants started their assigned
intervention, including 143 and 75 in the CR and control groups
respectively. Percent weight loss (%WL) from baseline was the
primary measure for monitoring adherence to the CR intervention.
Based on pilot studies, an algorithm [25] was developed providing
the specific %WL profile required to achieve the prescribed level of
calorie restriction: 11% at M6, and 15.5% at M12, M18 and M24.

Fig. 1 presents box-and-whisker plots of the %WL observed
by CR participants over the four follow-up intervals. The
mean ± standard error (s.e.) was 9.9 ± 0.3%, 11.5 ± 0.4%, 11.4 ± 0.4%
and 10.4 ± 0.4% at M6, M12, M18 and M24 respectively. The %WL
among the controls was 0.8 ± 0.4% over the first 6 months; this
subsequently returned to baseline levels for the remaining 18
months of the study (not shown). Between-group differences were
all highly significant. Nevertheless, despite the considerable degree
of weight loss realized among the CR participants, it fell well short
of the %WL profile targeted for this study.

2.5. Intention-to-treat results

The primary analytic vehicle was a Gaussian repeated measures
analysis [26,27] with treatment, time, and the treatment � time



Fig. 1. Box-and-whisker plot of the percent weight change in the CR intervention over
the four follow-up intervals.
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interaction as independent variables. Design variables, site, sex, and
BMI stratum as well as the baseline value of the outcome, were
included as covariates to increase precision. Time was treated as a
categorical variable, and an unstructured covariance matrix was
applied for the repeated observations.

ITT results were reported in Ravussin et al. [28] and Table 1
presents the adjusted mean ± s.e. change for the two metabolic
adaptation outcomes by treatment group over time. Small and non-
significant changes from baseline were observed in the adjusted
RMR in the control group. In the CR group, significant decreases
were observed: 48.2 ± 9.2 kcal/d at M12, and 38.2 ± 11.3 kcal/d at
M24. The between-group difference was statistically significant at
M12 but failed to reach significance at M24. For core temperature,
significant decreases of 0.05 ± 0.02 �C were observed in the CR
group at both time points; however, because of small and non-
significant decreases among the controls, the between-group dif-
ferences failed to reach statistical significance. Thus, the ITTanalysis
provided only muted support for the metabolic adaptation hy-
potheses for the effects of CR.
Table 1
Baseline values and changes from baseline in the control and calorie restriction treatment
from the MSM model.

Outcome Intention-to-treat analysis

Controls CR intervention

Mean (s.e.)b Within-group
p-valuec

Mean (s.e.)b Within-grou
p-valuec

Adjustede RMR (kcal/d)
Baseline 1393 (24) 1418 (17)
Month 12 �13.9 (12.3) 0.52 �48.2 (9.2) <0.001
Month 24 �22.6 (14.6) 0.25 �38.2 (11.3) 0.002
Core temperature (�C)
Baseline 37.0 (0.03) 37.0 (0.02)
D Month 12 �0.03 (0.02) 0.54 �0.05 (0.02) 0.006
D Month 24 �0.02 (0.02) 0.64 �0.05 (0.02) 0.02

%WL ¼ percent weight loss; MSM ¼ marginal structural model; CR ¼ calorie restricted;
a Percent weight loss profile is: 11% at month 6, and 15.5% at months 12, 18 and 24 (
b Baseline values are the observed mean (s.e.); change scores are the least-squares ad
c Within-group p-value tests for a significant change from baseline to the follow-up

difference in the change score at that visit.
d Change scores are the least-squares adjusted means (s.e.) from the marginal structu
e RMR is adjusted for changes in body composition over time (see text).
3. Implementation of the marginal structural model

3.1. Derivation of the weights for the percent weight loss model

The original MSM papers [2,3] provided a detailed review on
how to implement the model when adherence is binary. Weights
are derived from an ancillary regression model with adherence
(Yes/No) as the dependent variable. It is treated as a survival
outcome, i.e., the time to becoming non-adherent, and analyzed
using a logistic regressionmodel [29]. That is, a longitudinal dataset
is created consisting of multiple observations per subject. One
proceeds sequentially through the different time intervals. If the
subject was adherent in the interval, an observation is added to the
dataset with the adherence outcome coded as “Yes”. When the
interval during which the subject became non-adherent is reached
(if any), an observation is added with the outcome coded as “No.”
No further observations are added beyond this interval. A partici-
pant who is adherent throughout the study has observations for all
the time intervals with adherence always coded as “Yes.”

The dataset is then analyzed using a logistic regression model
including a term for the time interval as well as the fixed and time-
dependent covariates of interest. The former is treated as a cate-
gorical variable effectively adding an intercept for each time in-
terval. Because observations are only added to the dataset if the
subject was adherent in the previous interval, one is modeling the
logit of the probability of remaining adherent (or, becoming non-
adherent) at any visit conditional on being adherent at the previ-
ous visits. The model is fit in the usual manner, and the logits are
estimated from the estimated regression parameters. The condi-
tional probabilities of remaining adherent are derived by taking the
inverse logit transformation; the conditional probability of
becoming non-adherent is one minus this quantity. The cumulative
product of these conditional probabilities over a set of follow-up
visits therefore represents the joint probability of the partici-
pant's adherence profile up to that visit. This quantity is inverted
and used as the weight for that participant at that visit.

In the case of a continuous confounder, Section 6.2 of Robins
et al. [2] suggested that the logistic regression model can replaced
by ordinary least-squares regression. Thus, an ancillary regression
model among the CR participants was applied using %WL as the
dependent variable. A key assumption is sequential ignorability, i.e.,
no unmeasured confounders conditional on past %WL and covariate
groups from the intention-to-treat analysis and predicted at the targeted %WL profile

Predicted at %WL profilea

Between-group
p-valuec

CR intervention Between-group
p-valuec

p Mean (s.e.)d Within-group
p-valuec

0.33
0.04 �57.7 (13.8) <0.001 0.007
0.78 �58.6 (15.0) <0.001 0.06

0.41
0.70 �0.07 (0.03) 0.02 0.26
0.84 �0.06 (0.03) 0.06 0.32

RMR ¼ resting metabolic rate.
see text).
justed means (s.e.) from the ITT repeated measures analysis.
visit in that group; between-group p-value tests for a significant between-group

ral model.
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history. To address this, the broad list of potential independent
variables shown in Table 2 was proposed by the investigators. The
general rule was to err on the side of being inclusive rather than
being parsimonious. A multi-step process was applied.

1. The analysis dataset pooled all the available observations across
the 4 follow-up visits.

2. The design variables, study visit and clinical site, were forced
into the model.

3. Expert opinion suggested that age, sex and BMI stratum would
be important predictors of %WL. They were forced into the
model.

4. As justified in more detail below, the lagged %WL value was
forced into the model.

5. In the regression model for a specific outcome (e.g., the adjusted
RMR), the lagged value of that outcome was forced into the
model

6. For the time-dependent covariates in group 3, both the
contemporaneous and lagged values were investigated. The
baseline value was used for the lagged value for the M6
observation.

7. All interactions with age, sex, BMI stratum and site were
investigated.

8. A stepwise regression model was applied to determine which
variables were significantly related to %WL. All predictors sig-
nificant at a¼ 0.05 plus those forced into themodel advanced to
the final model.

9. Consistent with good statistical practice, if an interaction term
was significant, then the corresponding main effects also
advanced irrespective of their own levels of statistical
significance.

From the final model, the probability of the observed %WL value
for each CR participant at each visit was derived from the Gaussian
Table 2
Independent variables considered for the ancillary regression m

Category

1. Demographic

2. Baseline covariates
Self-reported nutrition variables

Physical activity
Safety markers

3. Time-dependent covariates
Self-reported nutrition variables

Physical activity
Safety markers

Intervention variables

BMI ¼ body mass index; kcal ¼ kilocalories; BDI¼Beck Depress
Disorder Symptoms.
probability density function. The mean was estimated using the
estimated regression parameters while the residual variance was
used for the estimate of s2. Because the lagged %WL was included
as a covariate for the observations at M12, M18 and M24, the
probability represented the conditional probability given the pre-
vious %WL value (and the other covariates). This was not done for
the M6 observation, and the corresponding value represented the
marginal %WL probability at M6. The cumulative product of these
probabilities over a set of follow-up visits therefore represented the
joint probability of the %WL profile up to that visit. For inverse-
probability weighting, this quantity was placed in the denomina-
tor of the participant- and time-specific weights.

Hern�an et al. [3] observed that the derived weights can vary
dramatically across participants and over time and may adversely
affect the numerical stability of the GEE algorithm. They advocated
using stabilizedweights instead. Thus, a second ancillary regression
model restricted to the time-independent covariates derived above
(and the lagged %WL) was applied. The joint probability of the
participant's %WL profile up to any visit was again derived as the
cumulative product of the probabilities derived at the different
time points. This quantity was placed in the numerator of the
participant- and time-specific weights. The stabilized weight for
each participant at each visit, therefore, was the ratio of the cu-
mulative probabilities from excluding and including the time-
dependent covariates.

3.2. Deriving the weights for early discontinuation of the CR
intervention

A similar approach was applied to derive the inverse-probability
of censoring weights [11], i.e., discontinuing prior to the scheduled
end of follow-up. As described in detail above, this was treated as a
survival outcome and analyzed using the logistic regression model
[29]. A stepwise logistic regression analysis was performed using
odels.

Variables

� Age
� Sex
� BMI stratum
� Race
� Height
� Ethnicity
� Marital status
� Housing situation
� Education
� Family income

� kcal/day
� %fat
� %protein
� %carbohydrate
� Total minutes of physical activity
� BDI (marker of depression)
� MAEDS subscales (markers of eating disorders)

� kcal/day
� %fat
� %protein
� %carbohydrate
� Total minutes of physical activity
� BDI (marker of depression)
� Hemoglobin (marker of anemia)
� MAEDS subscales (markers of eating disorders)
� Percent attendance at individual intervention sessions
� Percent attendance at group intervention sessions

ion Inventory; MAEDS ¼ Multi-axial Assessment of Eating
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the same broad list of potential predictor variables outlined in
Table 2. All significant predictors plus those forced into the model
advanced to the final model. The probability of the participant's
disposition at each time point, i.e., either continuing the interven-
tion or discontinuing at that visit, conditional on undertaking the
intervention at the previous time point, was derived using the
estimated regression parameters and applying the inverse logit
transformation. The cumulative product of these probabilities over
a set of follow-up visits represented the joint probability of the
participant's participation profile up to that follow-up visit. This
model was performed with and without the time-dependent
covariates, and the stabilized weights were derived as the ratio of
the cumulative probabilities from excluding and including the
time-dependent covariates.

The final weight for each CR participant at each visit was the
product of the stabilized weights from the two sets of ancillary
analyses.

4. Results

4.1. Stabilized weights

The final list of predictors for the %WL ancillary model in the
analysis of the adjusted RMR is shown in Table 3. The adjusted R2

value was 0.71 indicating that the predictors collectively accoun-
ted for a considerable amount of the variation in %WL. Among the
variables forced into the model, neither the lagged value of the
adjusted RMR nor study site were statistically significant after
accounting for other variables in the model. Age and BMI stratum
were significant as main effects and through their interactions
with other variables. Two markers from the dietary recall were
significant predictors: the lagged number of kilocalories
(marginally significant at p ¼ 0.06) and the contemporaneous
percent calories from carbohydrates. Both the contemporaneous
and lagged values of the binge eating subscale from theMulti-axial
Assessment of Eating Disorder Symptoms [30] reached statistical
significance. We return to the clinical significance of these pre-
dictors in the Discussion.
Table 3
Final set of independent variables derived for the ancillary regressionmodel for %WL
in the analysis of the adjusted resting metabolic rate.

Variable p-value

Lagged %WLa <0.001
Lagged adjusted RMRa 0.52
Study visita <0.001
Study sitea 0.97
Agea <0.001
Age � Lagged %WL 0.02

Sexa 0.03
BMI Stratuma 0.04
BMI stratum � study site <0.001
BMI stratum � lagged adjusted RMR 0.003
BMI stratum � self-reported kcal e lagged 0.04

Others
Marital status <0.001
Housing situationc 0.006
Self-reported kcal e lagged 0.06b

Pct calories from carbohydrates e contemporaneous 0.04
MAEDS Binge eating subscale e contemporaneous <0.001
MAEDS Binge eating subscale e lagged 0.02
Pct attendance at group intervention sessions <0.001

%WL ¼ percent weight loss; RMR ¼ resting metabolic rate; BMI ¼ body mass index;
kcal ¼ kilocalories; Pct ¼ percent; MAEDS ¼ Multi-axial Assessment of Eating Dis-
order Symptoms.

a Effect forced into the model.
b Main effect included due to a significant interaction.
c Housing situation refers to house, apartment, dormitory, etc.
With respect to the discontinuation model, 26 participants
discontinued the CR intervention prior to the end of the study
including 6 (23.1%) before M6, 8 (30.8%) before M12, 11 (42.3%)
before M18 and 1 (3.9%) before M24. The final list of predictors is
shown in Table 4. Among the variables forced into the model, study
site, age (marginally at p ¼ 0.07), sex and the lagged adjusted RMR
were significant predictors; BMI stratum was not. One of the
macronutrients from the dietary recall was significant, i.e., the
percent calories from carbohydrates at baseline, overall and
through its interaction with sex. The score on the Beck Depression
Inventory [31] at baseline also reached significance through its
interaction with sex.

Fig. 2 presents box-and-whisker plots of the final stabilized
weights at the four follow-up visits in the analysis of the adjusted
RMR. The tops of the whiskers are all below 2.0, with small
numbers of larger values. The maximum value of 6.9 was for a
participant who withdrew after the M6 visit.

4.2. Metabolic effects predicted by the MSM

The MSM was implemented using a weighted GEE model using
the identity link and the Gaussian variance. To ensure a consistent
basis for comparing the ITT and MSM results, the same terms
described above for the ITT model were included as independent
variables. Additionally, linear and quadratic terms in %WL,
centered at the targeted %WL profile, were added for the CR group
to provide for the association between the change in outcome and
%WL achieved. Because controls were not given any specific %WL
goal, “adherence”was a meaningless concept in this group (even if
it could be calculated). Thus, no MSM adjustments were per-
formed in this group. This also ensures a consistent basis for
comparing treatment differences between the ITT and MSM ana-
lyses. The linear and quadratic terms in the control group were
therefore set to 0, and the participant- and time-specific weights
were all set to 1.0.

The unstructured covariance matrix led to convergence prob-
lems, and was replaced by compound symmetry supplemented by
the robust estimator [32] of the covariance matrix among the
regression parameters. A preliminary test to determine if the
quadratic trend differed across the four time points was not sig-
nificant (p ¼ 0.58), and the corresponding interaction terms were
Table 4
Final set of independent variables derived for the ancillary logistic regression model
for early discontinuation of the CR intervention in the analysis of the adjusted
resting metabolic rate.

Variable p-value

Lagged adjusted RMRa 0.047
Study visita 0.25
Study sitea 0.02
Site � pct attendance at group intervention sessions 0.02

Agea 0.07
Sexa 0.008
Sex � pct calories from carbohydrates - baseline 0.009
Sex � BDI e baseline 0.02

BMI stratuma 0.54
Others
Pct calories from carbohydrates e baseline 0.05
BDI e baseline 0.11b

Pct attendance at group intervention sessions 0.005
Ethnicity 0.02

RMR ¼ resting metabolic rate; pct ¼ percent; BDI¼Beck Depression Inventory;
BMI ¼ body mass index; MAEDS ¼ Multi-axial Assessment of Eating Disorder
Symptoms.

a Effects forced into the model.
b Main effect included due to a significant interaction.



Fig. 2. Box-and-Whisker plots of the final stabilized weights, by time point, in the
analysis of the adjusted resting metabolic rate.
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removed from themodel. In the final model, the quadratic termwas
marginally significant (p ¼ 0.07); however, it was retained in the
model to ensure robustness. Fig. 3 provides a scatterplot of the
adjusted RMR values at M12 and M24 with the overlaid quadratic
curve. It shows that the greatest effect occurred around the tar-
geted %WL level of 15.5%.

Table 1 reports the predicted means ± s.e. change in the
adjusted RMR at the targeted %WL profile from the MSM model. A
deeper decrease was observed in the adjusted RMR: 57.7 ± 13.8 and
58.6 ± 15.0 kcal/d at M12 and M24, respectively. Both were highly
significant; the between-group comparisons reached statistical
significance (marginally significant at p ¼ 0.06 at M24). This sug-
gests that at the targeted %WL profile, CR would result in an im-
mediate drop in the adjusted RMR which would be sustained with
continued CR exposure. The MSM analysis of core temperature,
however, was little changed from the ITT analysis. The linear and
quadratic terms in %WL failed to reach statistical significance
(p ¼ 0.30 and 0.70, respectively) indicating that core temperature
was largely unresponsive to the actual degree of %WL. The pre-
dicted decrease from baseline was 0.07 ± 0.03 and 0.06 ± 0.03 �C at
months 12 and 24, respectively. The between-group comparisons
continued to be non-significant.
Fig. 3. Scatterplot of the adjusted resting metabolic rate against percent weight loss in
the CR group at months 12 and 24 overlaid with the fitted quadratic curve. The vertical
reference line corresponds to the targeted weight loss level.
5. Discussion

The MSM was developed in the context of the epidemiologic
cohort design which does not enjoy the advantages conferred by
randomization in randomized controlled trials. Under specific and
detailed assumptions, it adjusts for the confounding effects of
covariates observed post randomization. Whereas the value of the
intention-to-treat analysis is that it anticipates the effect of the
intervention if it were introduced into general practice, the value of
the MSM is that it anticipates the effect of the intervention under
the specific counterfactual condition, i.e., following the targeted
adherence profile.

In the context of clinical trials, the credibility of the MSM
analysis is critically dependent on the degree to which the coun-
terfactual condition can actually be realized. Given the limited
long-term success of weight-loss studies, there was never any
ambition of introducing 25% CR into mainstream dietary practice.
Rather, the purpose of the studywas to determine if the physiologic
effects observed in carefully controlled animal studies would be
replicated in humans. CALERIE anticipated that the strict adherence
imposed in animal studies would not be realized in human trials.
Causal modeling, therefore, provided the only alternative to
address this scientific question, and was written directly into the
protocol.

The original MSM papers were focused on a binary confounder
using the Bernoulli distribution. A recent monograph from the SAS
Institute [33] provides a good overview of the model and some
programming code from which to start. Here, we have provided a
detailed case study on the application of this model for a contin-
uous confounding measure using the Gaussian distribution. All
MSM applications have emphasized that there are a number of
extra steps and careful attention to detail is required, and this was
no less true here. The construction of the ancillary models pre-
dicting adherence andwithdrawal from the intervention are critical
to deriving the inverse-probability weighting. Care must also be
taken to identify which variables to force into the model, how to
construct interaction terms, and how to address time-dependent
covariates. In the weighted GEE model, the unstructured covari-
ance matrix led to convergence problems, and some dexterity is
required to overcome these types of problems. To satisfy the
assumption of no unmeasured confounders, the study must antic-
ipate and collect all the data predictive of these measures. A careful
review of the literature and expert opinion among the clinical in-
vestigators are important first steps. Nevertheless, one can never be
certain that all such predictors have been identified. Moreover, the
weights are estimated from the ancillary regression models and
there is sampling variability associated with the derived values.
Consistent with other applications of the MSM model [4e11],
however, this variability was not taken into consideration in our
analysis. It would be worthwhile developing techniques to reflect
this uncertainty using, for example, bootstrapping procedures.

Despite this, the exercise is well worth the additional effort and
it provided important insight into the physiologic mechanisms at
play in calorie restriction. The MSM lent additional support to the
metabolic adaptation theory of calorie restriction. Adjusted RMR
was sensitive to the level of %WL achieved. At full adherence, an
immediate drop in the adjusted RMR is predicted which would be
sustained with continued CR exposure. On the other hand, core
temperature was largely unresponsive to %WL. At full adherence,
significant decreases are predicted, but would fail to exceed those
in the control group. The implications are that CR at the prescribed
and ideal amount would have replicated findings already observed
in animal models. Future work will apply this model to investigate
other pathways suggested for the effects of CR. They include the
pituitary-thyroid axis as measured by triiodothyronine, thyroid



J. Rochon et al. / Contemporary Clinical Trials Communications 4 (2016) 222e228228
stimulating hormone and catecholamines, and an inflammatory
model measured by tumor necrosis factor alpha, C-reactive protein,
other proinflammatory cytokines.

Although beyond the scope of this paper, the ancillary models
provided insight into the factors which affected the %WL observed.
Not unexpectedly, greater %WL was associated with a lower calorie
intake, a larger percent of calories from carbohydrates and greater
attendance at the group intervention sessions. Married, male sex
and older age were also positively associated. These variables may
prove useful as adherence markers in future studies.
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