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Abstract: In the dairy industry, mammary system traits are economically important for dairy animals,
and it is important to explain their fundamental genetic architecture in Holstein cattle. Good and
stable mammary system-related teat traits are essential for producer profitability in animal fitness
and in the safety of dairy production. In this study, we conducted a genome-wide association
study on three traits—anterior teat position (ATP), posterior teat position (PTP), and front teat
length (FTL)—in which the FarmCPU method was used for association analyses. Phenotypic data
were collected from 1000 Chinese Holstein cattle, and the GeneSeek Genomic Profiler Bovine 100K
single-nucleotide polymorphisms (SNP) chip was used for cattle genotyping data. After the quality
control process, 984 individual cattle and 84,406 SNPs remained for GWAS work analysis. Nine SNPs
were detected significantly associated with mammary-system-related teat traits after a Bonferroni
correction (p < 5.92 × 10−7), and genes within a region of 200 kb upstream or downstream of these
SNPs were performed bioinformatics analysis. A total of 36 gene ontology (GO) terms and 3 Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways were significantly enriched (p < 0.05), and
these terms and pathways are mainly related to metabolic processes, immune response, and cellular
and amino acid catabolic processes. Eleven genes including MMS22L, E2F8, CSRP3, CDH11, PEX26,
HAL, TAMM41, HIVEP3, SBF2, MYO16 and STXBP6 were selected as candidate genes that might
play roles in the teat traits of cows. These results identify SNPs and candidate genes that give helpful
biological information for the genetic architecture of these teat traits, thus contributing to the dairy
production, health, and genetic selection of Chinese Holstein cattle.

Keywords: mammary system-related traits; single-nucleotide polymorphism; GWAS; FarmCPU
model; Chinese Holstein cattle

1. Introduction

Mammary system traits play an important economic role in cattle [1]. In dairy cattle,
mammary infections are a major problem. In response to harmful effects on animal fitness,
udder tissues are the first natural protection against pathogens in the teat canal. Several
environmental factors can affect teat canal morphology, and a previous study confirmed
the existence of a genetic component [2].

Generally, mammary system-related teat shape confirmation trait variation causes
mastitis, reducing milk production and affecting milk flow and quality on dairy cattle farms.
Long and thick teats have been identified as a possible risk factor for the development of
mastitis. Milk somatic cell count and mastitis resistance were found to have a relationship
with udder and teat conformation traits [3,4]. Teat anatomical and functional parameters
are thought to have a significant impact on milk flow performance [5]. Animal health
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identified mastitis as one of Ireland’s most economically significant diseases [6]. Bovine
mastitis is a disease that affects a large number of dairy cattle around the world, and it
has a significant economic impact due to losses at various stages of the dairy production
chain [7,8]. However, genetic selection has been introduced as a possible solution to im-
prove future profitability due to confirmation traits in Chinese dairy cattle production [6,9].
The selection of the teats’ confirmation trait decreased the count of somatic cells and the
occurrence of clinical mastitis in dairy animals [10]. Teat traits are linked to the occurrence
of clinical mastitis in lactating animals [9]. The heritability of teat diameter range was found
to be 0.23, 0.27, and 0.35 in three lactations of US Holstein cows [10,11]. The heritability of
teat end shape was estimated at 0.53, 0.44, and 0.56 for the first, second, and third lactation
periods in US Holstein cows [12]. Teat conformation traits influence mammary system
health and have been used as an indicator trait in a selection index to enhance mastitis
resistance selection [7,13]. Due to less heritability and an absence of data, selection for
teat and udder health traits in dairy cattle is significantly more difficult than selecting for
productivity traits, while recent quantitative trait loci (QTL) mapping studies found QTL
to be linked with mammary system-related traits [8,12,13].

Genome-Wide Association Study (GWAS) has confirmed that the single-nucleotide
polymorphisms (SNPs) are used as genetic markers to identify the complete genome
for target genes that are associated with phenotypic traits in genetic breeding programs.
GWAS was used to enhance genetic breeding in various animals, i.e., cattle, sheep, pigs
and chickens [14,15]. GWAS has discovered genetic differences related to economically
essential traits such as production qualities [16], milk production traits [14], body confor-
mation [17], reproduction traits [18], and mastitis [19,20]. The genetic correlation between
body conformation traits such as udder depth and teat traits was studied for indicators of
longevity and lifetime in Dutch dairy cattle [17]. A genome-wide association study has
been approved to detect the SNP that is related to quantitative trait loci of dairy cattle [1,21].
In post-GWAS analyses such as gene ontology (GO), term analyses have given researchers
a better understanding of the molecular mechanisms underlying conformation traits and
have allowed them to identify the most likely candidate genes [18,22]. In beef cattle, genetic
estimations and selection are improving due to traits that affect efficiency as well as animal
fitness and wellbeing. The Canadian Angus Association (CAA) recently established a
genetic analysis in teat and udder score for enhancing genetic selection in Canadian Angus
cattle [1]. Ten candidate genes for teat- and udder-associated traits in French dairy cattle
were identified [22].

The objective of our study is to identify the significant SNPs associated with the
anterior teat position (ATP), posterior teat position (PTP), and front teat length (FTL)
confirmation traits in Chinese Holstein cattle by using the GWAS approach, and to find the
SNP position of candidate genes and pathways that affect these teat traits.

2. Materials and Methods
2.1. Ethics Statement

The Ministry of Agriculture and the China Council on Animal Care provided guide-
lines for collecting hair follicle samples and measuring phenotype traits. It was also
accepted by the School of Yangzhou University Animal Research Group Institutional
Animal Care under the research group license number: SYXK (Su) IACUC 2012-0029.
Anesthesia was not used for experimental animals during this study.

2.2. Animal Phenotype Measurement and DNA Sample Collection

One thousand Chinese Holstein cattle were selected from 4 animal farms in the area
of Jiangsu Province, China. The studied Holstein cattle population was raised on four
dairy farms, Sihong farm: 199, Xuyi farm: 214, Xuzhou farm: 224, and Huaxia farm:
363 animals. The primary data were measured within two months, from November to
December 2019. The three mammary system teat traits were measured individually, while
teat traits were recorded on a scale from 1 to 9. Three mammary system teat-related traits,
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anterior teat position (ATP), posterior teat position (PTP), and front teat length (FTL), of the
1000 cattle were measured according to the China National Standard (GB/T 35568-2017);
three specialists completed the phenotype trait measurements for each cow. For genotyping
analysis, hair follicle samples were collected from each cow and were stored in special
paper envelopes to prevent environmental and DNA contamination; thus, a minimum of
50 hairs were present in each paper envelope.

2.3. Phenotype and Genotype Parameters for Analysis

Pairwise Pearson coefficients and descriptive statistics of the phenotypic datasets
were analyzed by using computer-based software, SPSS software (v16.0, Chicago, IL, USA).
Genetic analysis was performed by using DMU software (v5.6, Aarhus, Denmark) to
estimate individuals’ heritability and genetic correlation between pairs of traits in Holstein
cattle [23]. The phenotype of density distribution of three traits was obtained by using R
language (v 4.0.2, Auckland, New Zealand).

The three teat trait scores were used for the following analysis, and the following
two steps were used for all calculations, adjusted with fixed environmental factors. The
pedigree data were measured back to three generations (2010–2020); the parities of the
cattle were between 1 and 4.

Steps 1. Multiple-trait animal models were used to estimate genetic parameters:

y = Xb + Za + e (1)

where y shows the phenotype of an individual; X is the design matrix for fixed effects
(farm, age and parity); b shows the vector of fixed effects; Z is a matrix to link a with y;
a is the individual additive genetic effect; and e shows the vector random residuals. The
variance components of σ2

a and σ2
e were assessed by means of the REML method in DMU

software, according to the method presented by Madsen et al. [23]. The heritability of each
trait was estimated as h2 = σ2

a /
(
σ2

a + σ2
e
)
.

Steps 2: We used the following model for adjusted phenotype:

yadj = y − Xb̂ (2)

where yadj shows the vector of adjusted phenotype traits; y, and X are the same as in
Equation (1), and b̂ is an estimate of b, which was estimated in Equation (1).

2.4. Genotyping and Quality Control

The DNA of the hair follicles was extracted and genotyped by using the GGP (Gene-
seek Genomic profiler) Bovine 100K SNP Chip by Neogen Biotechnology (Shanghai,
China, http://www.neogenchina.com.cn, accessed on 25 July 2021), and the ARS-UCD1.2
(bosTau9) was used as a genome reference. The GGP Bovine Chip contained approximately
100,000 high polymorphic SNPs that were used for individual genotyping data. Meanwhile,
quality control (QC) was conducted by using Plink software (v1.90, Cambridge, MA, USA)
to remove the markers that did not meet the following standards [24]: (1) the call rate of
an individual genotype was lower than 95%, (2) the call rate of single SNP genotype was
less than 90%, and (3) the minor allele frequency (MAF) of SNP was >0.05 and deviated
from the Hardy–Weinberg equilibrium value (p < 1.0 × 10−6). After quality control, there
remained 984 cows and 84,406 SNP variants for further association analysis.

2.5. Population Structure Analysis

We used Plink software (v.1.90, Cambridge, MA, USA) to detect principal component
analysis (PCA) on 984 cows genotyping [24], with 84,406 SNPs of Holstein cattle raised at
four dairy farms, to investigate the population structure. Principal component analysis
was plotted using R language (v 4.0.2, Auckland, New Zealand).

http://www.neogenchina.com.cn
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2.6. Genome-Wide Association Analysis

We conducted GWAS analysis; the fixed and random model circulating probability
unification (FarmCPU) model used a multi-locus linear mixed model to carry out the
association analysis between SNPs and traits [25]. In a fixed effect model, the FarmCPU
method conducts the marker tests with associated markers as covariates and optimization
on the associated covariate markers in a random effect model [25]. As we identified in
association studies, population stratification is a significant factor that can lead to false
positives [26]. Therefore, in this study, the first three PCs were used as covariate variables
in the GWAS models [25], and the fixed effect model formula is given.

y = XbX + Mtbt + Sjdj + e (3)

where y is an adjusted phenotype of traits; bt is the fixed effect of the t pseudo QTN
and Mt is the corresponding genotype matrix; Sj shows the genotype of the marker j; dj
shows effect of the marker j; and e is a vector of random residuals with a distribution with
zero mean and variance of σ2

e . After substitution, every marker has its own p value. The
associated marker map and p values are utilized to update the selection of pseudo-QTNs
by using the SUPER algorithm in a REM, as follows [27]:

y = u + e (4)

where y and e show the same fixed effect model, and u satisfies the formula u ∼ N
(
0, Kσ2

u
)
,

in which u shows genetic effects in an individual. We identified the significance of threshold
value for selecting the significant SNPs by using the method of Bonferroni correction [28].
The genome-wide significant threshold value was 5.92 × 10−7 (0.05/84,406).

2.7. Candidate Gene Identification

We determined the candidate gene and genomic region by using the UCSC genome
browser from cow assembly April 2018 (http://genome.ucsc.edu, ARC-UCD1.2/bos Tau9,
accessed on 25 July 2021) [29] and the National Center for Biotechnology Information gene
“NCBI” (http://www.ncbi.nim.nih.gov/gene/) database (accessed on 25 July 2021).

2.8. Gene Pathway Enrichment Analysis

In this study, we submitted the candidate genes attained by GWAS into the profiler.
The gene ontology (GO) [30] and the Kyoto Encyclopedia of Genes and Genome (KEGG)
pathway analyses [31] (https://www.genome.jp/kegg, accessed on 25 July 2021 ) were
conducted on the candidate gene by using the cluster profiler package in R software(v 4.0.2,
Auckland, New Zealand) [32].

3. Results
3.1. Description and Heritability of Traits

Phenotypic data of 1000 animals were used for description data analysis. The mean
and standard error (S.E) of ATP were 5.34 (0.33), those of PTP were 6.50 (0.51) and those
of FTL were 5.72 (0.52), while the estimated range of the mean (SD) and standard error
was1.04 to 1.63 for teat traits. The distribution of teat trait score is shown in Figure S1,
while the density plot shows the adjusted phenotype distribution among the teat traits
(Figure 1). Heritability was estimated for the mammary system-related teat traits ATP, PTP
and FTL, at 0.17, 0.37, and 0.13, respectively, among the different types of traits (Table 1).

Table 1. Description of data analysis and heritability of cattle mammary system-related teat traits.

Traits Mean Std. Error Std. Deviation Minimum Maximum Heritability

ATP 5.34 0.33 1.04 1 9 0.17
PTP 6.50 0.51 1.62 1 9 0.37
FTL 5.72 0.52 1.63 2 9 0.13

Mean, std. Error and SD; standard deviation score of teat traits and heritability (grey line) for anterior teat position
(ATP), posterior teat position (PTP), and front teat length (FTP) trait measurements.

http://genome.ucsc.edu
http://www.ncbi.nim.nih.gov/gene/
https://www.genome.jp/kegg


Genes 2021, 12, 2020 5 of 15

Genes 2021, 12, x FOR PEER REVIEW 5 of 15 
 

 

Table 1. Description of data analysis and heritability of cattle mammary system-related teat traits. 

Traits Mean Std. Error Std. Deviation Minimum Maximum Heritability 

ATP 5.34 0.33 1.04 1 9 0.17 

PTP 6.50 0.51 1.62 1 9 0.37 

FTL 5.72 0.52 1.63 2 9 0.13 

Mean, std. Error and SD; standard deviation score of teat traits and heritability (grey line) for ante-

rior teat position (ATP), posterior teat position (PTP), and front teat length (FTP) trait measure-

ments. 

 

Figure 1. Density plot; division adjusted of phenotypes ATP (a), PTP (b) and FTL (c) in the population of Holstein cattle. 

3.2. Phenotype and Genotype Correlation 

Similarly, the directions of pairwise phenotypic correlations were estimated by the 

Pearson correlation coefficient in mammary system-related teat traits. The estimates of 

positive phenotypic correlations were 0.16 (FTL and ATP), 0.27 (PTP and ATP), and 0.03 

(FTL and PTP) for teat traits (Table 2). The pairwise genetic correlation was estimated 

between pair traits by DMU software (v5.6, Aarhus, Denmark). The pairwise genetic cor-

relations were 0.48 (FTL and ATP), −0.09 (PTP and ATP), and 0.24 (PTP and FTL) for teat 

traits, while PTP and ATP showed a negative correlation between traits (Table 2). 

Table 2. Pearson phenotypic (upper diagonal) and genetic (lower diagonal) correlations for ATP, 

PTP and FTL traits in Chinese Holstein cattle. 

Traits ATP PTP FTL 

ATP 1 0.27 ** 0.16 ** 

PTP −0.09 1 0.03 

FTL 0.48 0.24 1 

ATP, Anterior teat position; PTP, posterior teat position; FTL, front teat length. The superscript ** 

shows a significant correlation at 0.01. 

3.3. Information of Marker (SNPs) 

After quality control, 984 cattle and 84,406 SNPs were used to perform GWAS, and 

the filter SNPs were distributed on 29 chromosomes. After quality control, the minor allele 

frequency of all SNPs was recalculated due to its low value, and only MAF remained 

above 5% in the data. The distribution of the SNP information on chromosomes is shown 

in Figure S2. 

  

Figure 1. Density plot; division adjusted of phenotypes ATP (a), PTP (b) and FTL (c) in the population of Holstein cattle.

3.2. Phenotype and Genotype Correlation

Similarly, the directions of pairwise phenotypic correlations were estimated by the
Pearson correlation coefficient in mammary system-related teat traits. The estimates
of positive phenotypic correlations were 0.16 (FTL and ATP), 0.27 (PTP and ATP), and
0.03 (FTL and PTP) for teat traits (Table 2). The pairwise genetic correlation was estimated
between pair traits by DMU software (v5.6, Aarhus, Denmark). The pairwise genetic
correlations were 0.48 (FTL and ATP), −0.09 (PTP and ATP), and 0.24 (PTP and FTL) for
teat traits, while PTP and ATP showed a negative correlation between traits (Table 2).

Table 2. Pearson phenotypic (upper diagonal) and genetic (lower diagonal) correlations for ATP, PTP
and FTL traits in Chinese Holstein cattle.

Traits ATP PTP FTL

ATP 1 0.27 ** 0.16 **
PTP −0.09 1 0.03
FTL 0.48 0.24 1

ATP, Anterior teat position; PTP, posterior teat position; FTL, front teat length. The superscript ** shows a
significant correlation at 0.01.

3.3. Information of Marker (SNPs)

After quality control, 984 cattle and 84,406 SNPs were used to perform GWAS, and
the filter SNPs were distributed on 29 chromosomes. After quality control, the minor allele
frequency of all SNPs was recalculated due to its low value, and only MAF remained
above 5% in the data. The distribution of the SNP information on chromosomes is shown
in Figure S2.

3.4. Population Structure Analysis

The PC analysis was used to formulate the population structure of the 984 animals
in four farms: farm 1: 197, farm 2: 206, farm 3: 220, and farm 4: 361 animals. The
population structure (Figure 2) showed all results in the four groups as a cluster. PCA
analysis was used to detect the level of population stratification. Therefore, these principal
components were performed as covariates in the fixed effect model for association analysis
to prevent false positives caused by group stratification. Principal components explained
21% of the variation, in which PCA1 and PCA2 contributed 11.8% and 9.2% of the genomic
relationships, respectively; therefore, the first three PCs in the principal component analysis
were fixed as variable covariates in the association analysis using the FarmCPU model.
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nent analysis (PCA). PC1 and PC2 contributed 11.8% and 9.2% −of the variation, respectively.

3.5. Results of Genome-Wide Associations

GWAS analysis was conducted by using the FarmCPU model in this study. The
quantile–quantile plots (Figure 3) showed that the model used in this research for GWAS
analysis was suitable. The lambda values (λ) of ATP, PTP, and FTL were 0.97, 0.95, and
0.92, respectively, and they were all close to 1.01, and the line certified the accuracy of
the association analysis between traits and SNPs. In the Q–Q plots, the point in the
upper right corner showed the significant SNPs that were associated with traits under
research (Figure 3). The Manhattan plots (Figure 4) were used to show the results of GWAS
significance level (−log10 of p value of each SNP) by chromosome position. Large peaks of
SNPs in the Manhattan plot showed a strong association with traits.
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Figure 3. Quantile–quantile plot of the three traits. (a), anterior teat position (ATP); (b), posterior teat position (PTP); and
(c), front teat length (FTL) from GWAS in Holstein cattle. Q–Q plot showed the observed and expected p value of every SNP.
The red line shows no association of null hypothesis. The black dot SNP showed the threshold.
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Chinese Holstein cattle. Manhattan plots in which the genomic coordinate of SNPs is shown along the horizontal axis. On
the vertical axis, the negative logarithms of the association of p value of each SNP are represented, and after the Bonferroni
correlation, the green horizontal lines indicate significant threshold value. Circular Manhattan plot: the three teat shape
conformation traits were plotted from outside to inside (d).

In the GWAS study, the threshold value for significant SNP showed 5.92 × 10−7

(0.05/84406). All nine significant SNPs were associated with mammary system-related teat traits.
Four significant SNPs were located on chromosomes Chr9 (ARS-BFGL-NGS-101241), Chr29
(ARS-BFGL-NGS-43147), Chr18 (BovineHD1800006781) and Chr5 (BovineHD0500031672),
which were detected to be associated with trait ATP. For posterior teat position, three
significant SNPs were detected on chromosomes Chr22 (ARS-BFGL-NGS-16048), Chr3
(Hapmap58721-rs29026738), and Chr12 (12-88054488-G-A-rs4235240); these SNPs were
related to trait PTP. For front teat length (FTL), two SNPs were located on the chromosomes
Chr15 (BovineHD1500023818) and Chr21 BovineHD2100009187, which were detected to be
associated with trait FTL (Table 3).

Table 3. Genome-wide significant SNPs associated with mammary system-related teat confirmation traits.

Traits SNP Name CHR Position (bp) MAF Nearest Gene Distance (kb) p Value Effect

ATP

ARS-BFGL-NGS-101241 9 67971873 0.24 MMS22L 100kb 5.10 × 10−9 −0.22498
ARS-BFGL-NGS-43147 29 37332830 0.12 E2F8 100kb 4.16 × 10−7 −0.24097
BovineHD1800006781 18 22013861 0.48 CDH11 100kb 1.09 × 10−7 0.16219
BovineHD0500031672 5 109356610 0.18 PEX26 Within 2.54 × 10−7 −0.20494

PTP
ARS-BFGL-NGS-16048 22 55808310 0.34 TAMM41 Within 3.14 × 10−9 −0.50077

Hapmap58721-rs29026738 3 104278203 0.084 HIVEP3 Within 3.05 × 10−8 −0.83939
12-88054488-G-A-rs42352402 12 84040288 0.168029 MYO16 Within 6.02 × 10−8 0.61091

FTL
BovineHD1500023818 15 80481458 0.37 SBF2 Within 9.69 × 10−8 0.27188
BovineHD2100009187 21 31317530 0.46 STXBP6 100kb 1.98 × 10−7 0.28855

SNP, single-nucleotide polymorphism; CHR, chromosome; ATP, anterior teat position; PTP, posterior teat position; FTL, front teat length;
MAF, minor allele frequency; Effect.
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3.6. Identification of Candidate Gene

In this study, of the genes that are located at a distance within this region, 200 kb of
significant SNPs are known as candidate genes. All nine significant SNPs were associated
with traits. The five SNPs, BovineHD0500031672, ARS-BFGL-NGS-16048, Hapmap58721-
rs29026738, 12-88054488-G-A-rs42352402, and BovineHD1500023818, were located within
the genes peroxisome biogenesis factor 26 (PEX26), mitochondrial trans-locator assembly
and maintenance protein 41 homolog (TAMM41), HIVEP zinc finger 3 (HIVEP3), myosin 16
(MYO16), and SET binding factor 2 (SBF2), respectively (Table 3). The four single-nucleotide
polymorphisms ARS-BFGL-NGS-101241, ARS-BFGL-NGS-43147, BovineHD1800006781
and BovineHD2100009187 were located within 100 kb distance of E2F transcription factor 8
(E2F8), cysteine and glycine rich protein 3 (CSRP3), cadherin 11 (CDH11) and syntaxin
binding protein 6 (STXBP6), respectively, whereas the four SNPs were found on differ-
ent chromosomes.

3.7. Bioinformatics Analysis

UCSC Genome browser and the NCBI database were used for identifying genes
through cow assembly in April 2018 (ARC-UCD1.2/bosTau9). A total of 185 genes were
found within a 200 kb region on significant SNPs for the mammary system-related teat
traits, and these functional genes were used for further analysis, gene ontology terms and
KEGG pathway analysis.

3.8. Gene Enrichment Analysis

For a deeper understanding of the functions of the nine significant SNPs that are
related to indicators of the mammary system performance of cattle, the genes within
200 kb of significant SNPs for each mammary system-related teat shape trait were selected
for functional enrichment analysis. A total of 185 genes were used for gene enrichment
analysis. GO and KEGG analysis were conducted by the Cluster Profiler Software Package
in R (v 4.0.2, Auckland, New Zealand). Gene ontology results were significantly enriched
(p < 0.05) in teat traits, and gene ontology enrichment analysis derived 36 GO terms, which
included 28 biological processes, one cellular component and seven molecular functions, as
shown in Supplementary Table S1. The GO result shows candidate genes that are related
in GO terms (Figure 5).
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KEGG results (Table 4) identify that each teat trait of the candidate genes was en-
riched in the following four pathways: allograft rejection (bta05330), apoptosis (bta04210),
cytokine–cytokine receptor interaction (bta04060), and histidine metabolism (bta00340);
thus, 20 of the 185 candidate genes were involved in the pathway of regulation. KEGG
pathways were selected based on the p value (p < 0.05), in which all pathways are closely
related to mammary system-related teat traits. A KEGG pathway dot plot is shown in the
Supplementary Materials (Figure S3).

Table 4. KEGG pathway analysis using candidate genes associated with genome-wide significant association.

KEGG ID Description Gene Count p Value Genes Name

bta05330 Allograft rejection 3 3.68 × 10−6 FASLG, BOLA-DRA
GZMB

bta04210 Apoptosis 7 4.50 × 10−4 BID, FASLG, LOC505326, LOC786826,
LOC508858, LOC508646, GZMB

bta04060 Cytokine–cytokine
receptor interaction 8 1.09 × 10−2

CCL16, LOC616364, LOC100297044,
LOC525415, TNFSF18, FASLG,

TNFSF4, TNFSF8
bta00340 Histidine metabolism 2 4.91 × 10−2 AMDHD1, HAL

4. Discussion

Mammary system-related teat traits are a type of linear trait or functional trait in
dairy cattle. These traits are associated with cattle longevity, health and welfare. In this
study, the heritability of mammary system-related teat traits of Holstein cattle was of a
medium level (Table 1). Previous studies have identified that animal differences in bovine
mammary systems are genetically influenced by the heritability value (estimate range
between low to medium) [1,33]. Wu et al., 2013, estimated the heritability of front teat
placement, teat length and rear teat placement (0.18, 0.21 and 0.11, respectively) in Chinese
Holstein cattle [34]. The heritability of the three mammary system-related teat traits studied
in this research was between 0.13 and 0.37 (ATP 0.17, PTP 0.37 and FTL 0.13; Table 1) in
Chinese Holstein cattle.

The relationship between phenotypic and genotypic correlations has been researched
in animal studies [35]. Front teat placement (FTP) showed genetic correlations (−0.33)
for Holstein breeds [22]. A notable exemption was the individual fore udder (FU) trait,
recording a negative to moderately positive genetic correlation that ranged from −0.39
to 0.35 between fore teat placement (FTP) and fore teat length (FTL) in Chinese Holstein
cattle [36]. Phenotype and genetic correlation were estimated in the mammary system-
related teat traits of cattle. Estimates of positive phenotypic correlations of FTL and ATP,
PTP and ATP, and PAT and FTL were 0.16, 0.27, and 0.03, respectively, for mammary system-
related teat traits. Estimates of genetic correlations were measured between mammary
system-related teat traits. Genetic correlations of FTL and ATP, PTP and ATP, and PTP and
FTL were 0.48, −0.09, and 0.24, respectively, for teat traits, while posterior teat position
and anterior teat position showed a negative genetic correlation between traits (Table 2).

Population stratification is a major challenge faced in GWAS studies. Population
stratification and family structure can cause several false positive results in GWAS [37]. In
GWAS studies, population stratification is a critical causative factor. When various genetic
structures are involved, genetic variations caused by the selection of cows from various
groups and areas may be interpreted as phenotypic differences in the GWAS practice,
leading to false positive associations. [38]. After proper correction, the lambda (λ) value
should be close to 1 [39]. There are numerous methods for accurate stratification of the
population, and the statistical model can be a useful method to correct and minimize
the chances of type-1 errors (false positive associations) [40]. The general linear model
was conducted using a suitable population structure as a covariate [41], and the mixed
linear model used both a population structure by filtering and the total genetic effect
in each individual as covariates. Effective ways to control or minimize false positives
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and make adjustments for testing markers have been suggested. Mixed linear model
(MLM) can miss potentially important discoveries and lead to false negatives due to the
confounding between population structures, quantitative trait nucleotides (QTNs), and
kinship [42]. Therefore, in this research, we performed the FarmCPU model analysis for
totally false positive controls, removed confounding, and improved the computational
power of efficiency by using the fixed effect model and random effect model, iteratively [25].
In population-based association studies, population stratification is a critical issue [43,44].

After the correction of population stratification, the inflation factor mean lambda
value should be close to 1 [42]. According to previous studies, the lambda value (λ) was
0.983 and 1.004 for colostrum and serum albumin concentrations, respectively, indicating
that population stratification was successfully corrected by the appropriate model [45].
In the present study, the Q–Q plots of teat traits (Figure 4) showed that the deviation
of the observed value from the expected value is near 1 and that the inflation factor, or
lambda value (λ), of ATP, PTP and FTL traits was close to 1.01. These factors indicate that
population stratification was corrected by using different suitable models.

The principal component analysis method [44] detected the population structure that
divides individuals into grouped ancestry based on their genetic character (Figure 2), and
the experimental population was clustered into four groups, where different colors of the
clusters showed each animal’s farm. Each group that was closely clustered had a stronger
genetic relationship in the animal population. This division of four groups was indicated
in the semen and blood, and these four groups may be attributed to Holstein semen from
different overseas countries. These cattle contained blood from other breeds; therefore, we
know that Chinese Holstein cattle can be registered (Chinese Holstein, GB/T 3157 2008)
as at least having 87.5% foreign blood in the Holstein population. The stratification
could be because the semen used on the four animal farms came from multiple countries,
and this semen came from native bulls. In all animals, the genetic population structure
was involved as a fixed effect in the model GWAS to correct the effects of population
stratification. Therefore, the PCA plot showed a population structure and also showed
variation in genomic relationships of population structure.

In the present study, GWAS analysis found nine significant SNPs that are associated
with three traits (ATP, PTP and FTL) in Chinese Holstein cows by using the FarmCPU
model. The two most highly significant SNPs (ARS-BFGL-NGS-101241 and ARS-BFGL-
NGS-16048) occurred among them; two SNPs were located nearby: the MMS22L gene
within TAMM41. These genes were associated with ATP and PTP traits. MMS22L may
help in homologous recombination-mediated genome stability maintenance during DNA
replication [46]. River buffalo are primarily selected for milk production and are well
adapted to hot climates; MMS22L genes might play an essential role in river buffalo’s
heat adaptability [43]. Nguyen et al. [47] reported that the MMS22L gene has been de-
tected in esophageal cancers and clinical lungs of humans. Kutik et al. [48] described that
the TAMM41 gene is the mammalian equivalent of a yeast protein; the deletion of the
Tamm41 gene resulted from the high content of phosphatic acid in mitochondria. The
first metabolite was involved in the biosynthesis of cardiolipin, with a virtual absence of
phosphatidylglycerol in most cardiolipin species.

The study recognized the other genes that are significantly associated with anterior
teat position, posterior teat position and front teat length traits (PEX26, MYO16, HIVEP3
and SBF2). These candidate genes of teat traits have effects on mammary structure and
milk production in dairy animals. Expression of PEX26 gene mutations have occurred in
Chinese hamster ovary cells and human cell lines and can cause disorders of peroxisome
biogenesis (PBDs) in humans [49]. The MY016 gene affects milk production yield, fat yield
and protein yield in Buffalo animals [50]. The MY016 gene (BTA12) has been identified at
significant SNPs within position in Holstein cattle [51]. The finding of this mutation in the
SBF2 gene may refer to the cause of thrombocytopenia in humans [52]. The HIVEP3 gene
belongs to the enhancer-binding protein family of the human immunodeficiency virus
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type 1 that encodes large zinc finger proteins and regulates transcription via the kappa B
enhancer motif [53]. In prostate cancer, the HIVEP3 gene functions as an oncogene [54].

The CDH11 and STXBP6 genes were identified and are associated with ATP and FTL
in Holstein cattle population. The significant SNP (BovineHD1800006781) was located on
Chr18 and had a position within 100 kb of the cadherin (CDH11) gene. Specifically, the
highly associated CDH11 gene belonging to this module has been identified in the devel-
opment of mastitis and growth of mammary glands in dairy animals [55,56]. STXBP6 has
important roles in the development of multiple diseases, including neurological disorders,
diabetes, and cancer in humans and animals [57]. The significant candidate gene of E2F8 is
important for orchestrating genes essential for cell cycle progression and proliferation [58].
The present study exposed new hormonal and developing regulations of E2F8 mRNA
during bovine follicular growth, while the E2F8 gene has been found in the follicular
development of cattle [59]. In cattle, the CSRP3 gene is found on chromosome 29, and these
findings suggest CSRP3’s high potential as a marker gene for growth improvement and
body traits in the selection program of Chinese Holstein cattle [60]. CSRP3 genes have been
functionally characterized and play vital roles in the development of tissue-specific cell
growth in sheep [61].

In our study, gene ontology terms enrichment analysis and KEGG pathway anal-
ysis identified a number of GO terms and KEGG pathways. The identified significant
genes were related to our traits under observation; for example, the four candidate genes
(MMS22L, E2F8, HAL and STXBP6) were clustered in biological processes, and these
genes were associated with our significant SNPs. MMS22L gene terms were related to
DNA-dependent DNA replication (GO: 0006261) and recombination DNA repairing (GO:
0000725); E2F8 gene terms were related to embryo development (GO: 0009790) and utero
embryonic development (GO: 0001701); HAL gene terms were related to cellular amino acid
catabolic processes (GO: 0009063), cellular amino acid metabolic processes (GO: 0006520),
and organic acid metabolic processes (GO: 0006082); and STXBP6 gene terms were related
to proteins containing complex subunit organization in biological processes. This is im-
portant for cell division during the growth and repair of damaged tissues; in mammals,
the disruption of DNA replication can lead to a loss of genome integrity and an increase
in cancer susceptibility [62]. The differential metabolites involved in pathways, including
amino acids, nucleotide metabolism, carbohydrate, energy, lipid, cofactors, and vitamins
and biosynthesis of other secondary metabolites are associated with the development of
mammary glands, lactogenesis, and lactation in yaks, which were described by Li et al. [63].
The HAL gene was found in gene ontology and has an effect on amino acid metabolism
in animals and humans; dietary histidine is related to factors that improve metabolic
syndrome and affect ion absorption in human populations. In ruminant animals, histidine
is a limiting factor for milk protein synthesis, and it may be the first limiting amino acid
for growth [64]. In Chinese Holstein cattle, the HAL gene was found to be significantly
associated with milk protein yield and milk yield. Additionally, the HAL gene has been
reported within QTLs for milk production traits [27].

The UGDH gene works as coenzyme binding (GO: 0050662). The UDP-glucose
6-dehydrogenase (UGDH) gene had been confirmed to be related to biological processes,
metabolic processes, growth performance, and milk production in Holstein cattle [65].

The top four significant KEGG analysis pathways were related to immune response,
e.g., allograft rejection (KEGG: bta5330), which has three candidate genes; apoptosis (KEGG:
bta04210), which consists of seven genes; cytokine–cytokine receptor interaction (KEGG:
bta04060), which comprises eight genes; and histidine metabolism (KEGG: bta00340),
which is a non-significant pathway that has two genes. All candidate genes are involved in
the regulation of pathways and mammary development; one candidate gene, FASLG, is
commonly found in the first three KEGG pathways. The FASLG gene has a role in apoptosis
in normal human mammary cells [66]. The expression of immune response-related BoLA–
DRA genes influences the immune function of lactating cows and decreases milk yields [67].
While the HAL gene was found in both gene ontology terms and KEGG pathways, histidine
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metabolism is a limiting factor for milk protein synthesis, and it may be the first limiting
amino acid for growth in animals (cattle, poultry, fish and humans) [64]. Therefore, it is
practical to suppose that all significant SNPs and candidate genes might be associated with
mammary system-related teat traits.

5. Conclusions

GWAS analysis was performed on three mammary system-related teat traits, which
were chosen as indicators of mammary system performance in Chinese Holstein cattle.
This study identified nine significant SNPs associated with ATP, PTP and FTL traits in
Chinese Holstein cattle. We also found several candidate genes, MMS22L, E2F8, CSRP3,
PEX26, CDH11, HAL, TAMM41, HIVEP3, MYO16, SBF2 and STXBP6, that contribute to
metabolism, immune response, biological information, and genetic improvement. Our
study highlighted useful biological information to understand genetic architecture and
provided fundamentals for molecular breeding programs that can lead to genetic improve-
ment programs regarding ATP, PTP and FTL traits in Holstein cattle. Further research is
needed to confirm the biological activities of these genes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12122020/s1, Distribution of Teat traits score, Figure S1; Distribution of SNPs, Figure S2;
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