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Abstract

Background

Ventricular septal perforation and left ventricular aneurysm are examples of potentially fatal

complications of myocardial infarction. While various artificial materials are used in the

repair of these issues, the possibility of associated infection and calcification is non-negligi-

ble. Cell-seeded biodegradable tissue-engineered patches may be a potential solution. This

study evaluated the feasibility of a new left ventricular patch rat model to study neotissue for-

mation in biodegradable cardiac patches.

Methods

Human induced pluripotent stem cell-derived cardiac progenitor cells (hiPS-CPCs) were cul-

tured onto biodegradable patches composed of polyglycolic acid and a 50:50 poly (l-lactide-

co-ε-caprolactone) copolymer for one week. After culturing, patches were implanted into left

ventricular walls of male athymic rats. Unseeded controls were also used (n = 10/group).

Heart conditions were followed by echocardiography and patches were subsequently

explanted at 1, 2, 6, and 9 months post-implantation for histological evaluation.

Result

Throughout the study, no patches ruptured demonstrating the ability to withstand the high

pressure left ventricular system. One month after transplantation, the seeded patch did not

stain positive for human nuclei. However, many new blood vessels formed within patches

with significantly greater vessels in the seeded group at the 6 month time point. Echocardi-

ography showed no significant difference in left ventricular contraction rate between the two

groups. Calcification was found inside patches after 6 months, but there was no significant

difference between groups.
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Conclusion

We have developed a surgical method to implant a bioabsorbable scaffold into the left ven-

tricular environment of rats with a high survival rate. Seeded hiPS-CPCs did not differentiate

into cardiomyocytes, but the greater number of new blood vessels in seeded patches sug-

gests the presence of cell seeding early in the remodeling process might provide a pro-

longed effect on neotissue formation. This experiment will contribute to the development of

a treatment model for left ventricular failure using iPS cells in the future.

Introduction

Due to the complication of myocardial infarction in adults, problems such as left ventricular

rupture and ventricular septal perforation may present as fatal complications, mandating sur-

gical repair. [1] The materials currently utilized are not degradable, lack growth potential, and

do not promote attachment of endotherial and smooth muscle cells or macrophage migration.

[2] Tissue engineering may provide a new way to regenerate organs and deliver tissue-specific

cell types to the site of injury, thereby replicating the structure and function of native myocar-

dium. [3] Tissue engineered constructs often consist of a scaffold and seeded cells; as the scaf-

fold degrades, new biocompatible tissue is deposited. [4] Human iPS (hiPS) cells are an

infinite source of cardiomyocytes due to their high potential for differentiation and are there-

fore reported to be one of the most promising cell sources for cardiac regeneration therapy.

[5,6,7,8,9] Previously, we reported the development of tissue engineering technology using

induced, or artificial, pluripotent stem (iPS) cells and demonstrated that this method is feasible

and safe. [10,11] Limitations of these early studies include the use of differentiated cardiomyo-

cytes that may as a result have limited mitotic potential and use of a right ventricular model.

[11] We created a new cardiac patch in which hiPS cell-derived cardiac progenitor cells

(hiPS-CPC) are seeded on a sheet of bioabsorbable polymer and implanted in a rat left ventric-

ular myocardial defect model.The patch was implanted in the apex wall of the left ventricle so

that the luminal surface of the graft received direct blood supply and allowed host cardiomyo-

cyte ingrowth at the anastomosis. The purpose of this study was to verify whether it is possible

to obtain improved neoplasia by seeding progenitor cells and to verify whether the material

can compensate for left ventricular injury.

Methods

Preparation of the tissue-engineered cardiac patch

A scaffold composed of a woven fabric of polyglycolic acid (PGA) and 50:50 poly (l-lactic-co-

ε-caprolactone) copolymer (PLCL) was constructed as previously described. [12] The scaffold

with a thickness of 0.6 to 0.7 mm was cut into a 6-mm circular patch using a biopsy punch (Fig

1A). The structure of the sponge was checked by imaging using scanning electron microscopy

(SEM, Fig 1B and 1C). hiPS-CPCs (Cellular Dynamics International (CDI), Madison, Wiscon-

sin) were cultured on the biodegradable patch in a 96-well plate at a density of 1.0 × 106 cells

per well for one week and cell culture media was changed every two days. Because these cells

were myocardial progenitor cells, they did not beat before transplantation. After culturing,

patches were implanted in the left ventricular wall of male nude athymic rats, as described

below.
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Left ventricle wall biodegradable patch implant procedure

This study was carried out in strict accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was

approved by the Committee on the Ethics of Animal Experiments of the Nationwide Chil-

dren’s Hospital (Protocol Number: AR12-00079). All surgery was performed under anesthesia

and all efforts were made to minimize suffering. Adult male nude athymic rats (Jackson Labo-

ratories, Bar Harbor, ME) weighing 230–300 g were used for the left ventricle wall replacement

procedure. General anesthesia was induced with ketamine (50 mg/kg, i.p.) and xylazine (5 mg/

kg, i.p.); anesthesia was maintained using isoflurane (1.5%) in oxygen. Animals were intubated

with a 16-gauge catheter and respiration was maintained at 60 cycles per minute with a tidal

volume of 2.5 ml. The surgical procedure was performed using aseptic techniques with sterile

instruments. First, the skin of the chest was sterilized with a povidone-iodine solution and the

heart was exposed through a median sternotomy. A purse string suture was placed in the left

ventricle apex wall with 7–0 polypropylene sutures (Ethicon, Somerville, NJ, USA). Both ends

of the suture were passed through a 22-gauge plastic vascular cannula, which was used as a

tourniquet (Fig 2A and 2B). The tourniquet was tightened and two-thirds of the distended

part of the left ventricle apex wall inside the purse string suture was cut to create a flap. To

indicate that a transluminal defect had been created in the left ventricle, the tourniquet was

briefly released to determine whether massive bleeding occurred and a core of a 16-gauge cath-

eter was inserted in left ventricle (Fig 2C–2E). Next, the cardiac patch was sutured along the

margin of the purse string suture with 7–0 polypropylene to cover the hole in the left ventricle

Fig 1. Example of cardiac patch composed of knit mesh of PGA between 2 layers of PLCL; A: 6-mm diameter biodegradable patch, B:

SEM images of the sponge layer 100X magnification. C: SEM images of the sponge layer 500X magnification.This patch consists of a

knit mesh of PGA sandwiched between 2 layers of PLCL.

https://doi.org/10.1371/journal.pone.0234087.g001
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(Fig 2F) and the ventricular flap was then sutured onto the patch (Fig 2G). After suturing, the

tourniquet was released and the purse string suture was removed. Additional sutures were

added, as needed, to achieve hemostasis (Fig 2H). After expanding the lungs using positive

end-expiratory pressure, the sternum was closed parasternally with four interrupted 5–0 poly-

propylene sutures (Ethicon). The muscle layer and skin were closed with 4–0 Vicryl absorbable

sutures (Ethicon). For the first 3 days after surgery, buprenorphine (0.05 mg/kg) and cefurox-

ime (100 mg/kg) were administered subcutaneously twice daily. Animals were randomly

divided into two groups: 1) hiPS-CPC seeded group and 2) unseeded group (n = 10/group).

Two animals in each group were sacrificed at 1 and 2 months post-surgery and 3 animals in

each group were sacrificed at 6 and 9 months post-surgery.

Fig 2. Various stages of patch implantation. (A): A purse string suture placement in the left ventricle apex wall; (B):

tourniquet tightening; (C): cutting the distended part of the left ventricle apex wall; (D) flap creation; (E): needle used

to examine hole creation; (F): cardiac patch implantation; (G): closing the flap (H): purse string suture removal.

https://doi.org/10.1371/journal.pone.0234087.g002
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Echocardiographic analysis

Echocardiographic measurements were obtained preoperatively and at 1, 2, 6, and 9 months

postoperatively. Animals were anesthetized with isoflurane (2% isoflurane with 100% oxygen

gas inhalation through a nose cone). Echocardiography was performed to assess ventricular

function (Vevo Visual Sonics 770; Visual Sonics, Toronto, ON, Canada). Two-dimensional

imaging in a parasternal long axis plane was obtained. Left ventricular systolic and diastolic

volumes were estimated by the modified Simpsons method to calculate LV ejection fraction

(Analysis package from Vevo Visual Sonics).

Histology, immunohistochemistry, and immunofluorescence

After sacrifice, the left ventricle was separated from the heart by axial dissection, and a sagittal

transection centered on the apical patch was performed. Explanted cardiac patches were fixed

in 4% paraformaldehyde, embedded in paraffin, and sectioned at a thickness of 5 μm. Sections

were stained with hematoxylin and eosin (H&E), Masson’s trichrome, von Kossa to examine

calcification, and by immunohistochemistry and immunofluorescence (IF). The degree of cal-

cification was determined by area measurements using ImageJ software. Measurements are

reported as a percentage of positive area over the entire patch area.

For immunohistochemistry, tissue sections were blocked for endogenous peroxidase activ-

ity prior to staining. Platelet endothelial cell adhesion molecule (CD31, 1:1000, Abcam, Cam-

bridge, MA) was used to identify endothelial cells. Antibody binding was detected with

appropriate biotinylated secondary antibodies followed by streptavidin-horseradish peroxi-

dase. Positive staining was assessed using 3,3-diaminobenzidine peroxidase substrate (Vector

Laboratories SK4105, Burlingame, CA). Nuclei were counterstained with Gill’s hematoxylin.

Angiogenesis measurements reported as count of positive CD31 vascular over the entire patch

area.

Statistical analysis

Numeric values are listed as mean ± standard deviation (SD). Statistical analyses of ejection

fractions were conducted via two-way ANOVA; all other data were analyzed via Student’s t-

test. A p value less than 0.05 was selected as the cutoff for statistical significance.

Results

Postoperative course and gross observations

No deaths occurred during the postoperative course in either group and no gross evidence of

thrombosis was present in any of the animal explants. At the time of explantation, all rat hearts

exhibited minimal thoracic adhesions with no recognizable pattern of adhesive tissue present

in either groups. There was no evidence of aneurysm formation at the site of the implanted

patch in the left ventricle at any time point (Fig 3).

Echocardiographic analysis

At all-time points, there was no significant difference in ejection fraction between the two

groups (Fig 4). Diastolic volumes increased over time in both groups, but there was no signifi-

cant difference. In the seeded group, there was a trend towards smaller ventricular systolic vol-

umes, but this difference was also not statistically significant.
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Histology, immunohistochemistry, and immunofluorescence

Visualization of Masson’s trichrome stain show collagen and muscle fibers. At eight weeks,

some patch material still remains and is covered by collagen. Over the course of 24 weeks, the

cardiac patch gradually degraded and could not be detected (Fig 5A). We assessed PGA fiber

degradation and collagen formation using polarized light microscopy with Picro-Sirius Red

(PSR) stained histological sections from 1, 2, 6 and 9 months after implantation. Under

Fig 3. Macroscopic view of operated rat hearts. Over time, some fibrous adhesions on the pericardial surface formed. The

patch was sutured in the heart interior. There were no significant differences in macroscopic findings between the two

groups.

https://doi.org/10.1371/journal.pone.0234087.g003

Fig 4. Echographic analyses over a period of 36 weeks compared to baseline: LV Ejection fraction (EF); LV

diastolic volume; LV systolic volume. There are no aneurysmal changes in either group.

https://doi.org/10.1371/journal.pone.0234087.g004
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polarized light, the PGA fibers are birefringent and can be visualized. The PGA fibers can be

seen as highly organized bundles within the scaffold at 1M after implantation, but by 2M the

fibers had fragmented and nearly degraded. No fragments of the PGA fibers were visible at 6

months after implantation (Fig 5B). The wall thickness of the LV ventricle apex was very thin.

Using immunofluorescence, explanted patches were stained with anti-human nuclear antigen

to detect hiPS-CM and troponin to detect cardiomyocytes. While images did reveal cells that

stained positive for anti-human nuclear antigen, the pattern of staining was cytoplasmic, and

not restricted to the nucleus as would be expected for this antigen. We therefore concluded

that these cells represented false positives and remaining true hiPS-CM were not observed.

(Fig 5C). At this time point, H&E staining showed cell infiltration. The number of cells present

in the patch at each time point was compared, and there was no significant difference between

the seeded group and the non-seeded group (Fig 6C-1). At 6 months, multinuclear giant cells

and granular tissue can be observed indicating ongoing chronic inflammation (Fig 6A). After

6 months, von Kossa staining revealed no calcification in the patch (Fig 6B), but there was cal-

cification present on the inner surface of the left ventricle. There was no significant difference

in degree of calcification between two groups (Fig 6C-2), but there was a significant difference

in the number of CD31 positive vessels (p = 0.03, Fig 6C-3).

Discussion

Clinically, non-biodegradable materials are utilized as patches for left ventricular repair associ-

ated with sequelae after myocardial infarction; however, there are a host of problems related to

durability, thrombosis, biocompatibility, and infection that requires reoperation. [2,12] For

example, PTFE patches have been accepted worldwide as one of the most reliable non-biode-

gradable synthetic materials in terms of durability, low thrombotic properties, and comfortable

handling during surgery, but there are many reports of bacterial infections. In general, cardiac

surgeons have concerns about implanting foreign materials in the heart as infective endocardi-

tis can be a lethal complication after open heart surgery. Even now, some surgeons inevitably

use Dacron patch or PTFE patch to repair for ventricular septal rupture after myocardial

infarction. In addition to these risks, left ventricular function after myocardial infarction con-

tinues to deteriorate following the use of non-degradable myocardial patches. These clinical

demands motivated us to develop new bioabsorbable materials for use in cardiac surgery.

Complications associated with non-biodegradable materials and the potential to regenerate

functional myocardium associated with tissue engineering have fostered the development of

surgical models and evaluation of various scaffold designs. Due to challenges and limitations

in the use of exogenous cell-based biomaterials, cell-free strategies are being investigated as an

alternative. [13] This approach requires the attachment and growth of host parenchymal cells

as well as their production and organization of extracellular matrix. Materials of natural origin,

such as collagen and fibrin, have been evaluated as scaffolds for tissue regeneration after myo-

cardial infarction. These are applied surgically as patches, or less invasively as gel forming

injectable ECM proteins. Acellular scaffolds are advantageous over cellular scaffolds in that:

(1) these are off-the-shelf products that can be immediately implanted (e.g., SynerGraft1), (2)

elicit a limited immune response, and (3) cost far less to produce. [14,15] Biodegradable syn-

thetics, like the polymers that comprise our scaffold, are another category or materials widely

Fig 5. (A) Masson’s trichrome staining of sections indicating collagen (blue) and muscle (red) demonstrating cell

infiltration and material degradation. (B) PSR staining of section indicating inmature collagen (yellow) and mature

collagen (red), White fiber (PGA fiber) demonstrating PGA degraded at the 2-month time point (red bar 500μm), (C)

Evaluation of iPS cells and cardiomyocytes on patches one month after transplantation using immunofluorescence.

Red; human nuclear antigen, Green: troponin T Blue: DAPI.

https://doi.org/10.1371/journal.pone.0234087.g005
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used in tissue engineering applications due to their mechanical properties, material unifor-

mity, stability, and lower risk of infection compared to natural biomaterials. Biodegradable

synthetic polymers can be modified with high precision to meet tissue-specific properties such

as appropriate degradation rates, porosity, and mechanical strength. [16–19] Cell seeding can

provide additional benefits to neotissue formation that include increasing functional capacity

of resulting neotissue, accelerating neo tissue, formation, and modulating the immune

response. However, it is well known in cell culture studies that cells are more likely to survive

if they are able to attach to a surface as demonstrated in our experiments. [20] Proper selection

of both a scaffold and seeded cells will continue to be an important determinant in the success

of regenerative medicine. [4]

In the past, heart tissue was considered non-renewable; however, recent studies have sug-

gested that cardiomyocytes, although rare, can replicate. In previous studies, Nakane et al. A

designed heart tissue composed of three different cell types differentiated from hiPS cardio-

myocytes (CM), endothelial cells, and vascular wall cells. [21] Compared to sham surgery,

these structures have led to better preservation of viable myocardium and maintenance of wall

thickness. This approach focuses on the outside of the heart, but the same methods applied

inside the heart may be worth investigating.

This study focused on examining the feasibility of a biodegradable, prosthetic patch seeded

with hiPS cells in improving left ventricular function following cardiac insult.

This study investigated the possibility of using a biodegradable PGA-PLCL scaffold for sur-

gical left ventricular repair. Our previous work has shown proven that PGA-PLCL, an FDA-

approved material with growth potential, seeded with cultured bone marrow cells used in the

Fig 6. (A): Cells can infiltrate and attach to the scaffold four weeks after implantation. Hematoxylin and eosin staining revealed multinuclear giant cells (yellow

arrows). (B): Von Kossa staining shows phosphate commonly associated with calcification in the LV at 24 and 36 weeks after implantation. (C):1. Number of cells in

bioabsorbable patch at each time point. 2. Evaluation of calcification at 6 months after transplantation (n = 3). 3. Evaluation of the number of CD31 positive vessels 1

month and 6 months after implantation (n = 3/time point).

https://doi.org/10.1371/journal.pone.0234087.g006
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venous system is clinically feasible. [22,23] This patch consists of a knit mesh of PGA sand-

wiched between 2 layers of PLCL. The PGA provides a strong backbone to withstand the

blood flow within the body, while PLCL provides a porous surface for cell attachment and

infiltration. Given that sufficient nutrient and oxygen delivery through functional vasculature

or other means of perfusion is essential for successful cardiac stem cell therapy, we implanted

the hiPS-CPC seeded heart patch via left ventricular reconstruction allowing the blood supply

to be integrated directly into the luminal surface of the patch. Another consideration of the

study was the thickness of graft material. A previous study by J. Riegler et al. demonstrated

that the survival rate of seeded cells was lower when implanted in heart tissue grafts thicker

than 400μm in mouse model. [24] Considering the difference in animal models, we chose a

graft thickness of 600μm.

When we try to create infarction model with the additional incision of left ventricular apex

for placing the patch in rats, animal survival rates were low following the procedure. Therefore,

we simplified the model to utilize left ventricular apex incision to implant our patches in the

blood stream. Following implantation, the patch was able to withstand the high-pressure sys-

tem without rupturing and there was no evidence of infection in both groups. There is no

report of survival experiments in rats which simulating the left ventricle, that is, simulating

VSP or left ventricular rupture, and we consider the importance of this research on the method

of surviving the rat for one year with no complication. However, long-term postoperative fol-

low-up revealed calcification. These results suggest that cell seeding may not influence forma-

tion of calcification. Furthermore, as our previous works with PGA-PLCL tissue engineered

constructs have exhibited no calcification in the venous and right ventricular environments,

the results suggest that the cause may be due to shear stress of the left ventricle, extensive tissue

necrosis, and the inflammatory response that can lead to to calcium chemo-attaction. [25]

Immunofluorescence showed that seeded hiPS-CPCs do not remain on the biodegradable

patch after 1 month. Prior in vitro studies on co-cultures of adult rat muscle and cardiac stem

cells show that stem cells survive longer than adult cardiomyocytes alone due to increased lev-

els of insulin-like growth factor 1 and vascular endothelial growth factors, both of which were

associated with decreased apoptosis and increased myocyte survival. [26] The seeded cells may

also contribute to differences in cardiac function. Keller et al. showed that scaffold-based 3D

human dermal fibroblast cultures can be used as cardiac patches to stimulate revascularization

when transplanted into infarcted LV of severe combined immunodeficiency (SCID) mice. [27]

In our results, the cell seeding group also showed more revascularization at 6-month time-

points, however there was no statistical difference in left ventricular ejection fraction between

the two groups during the 9-month follow-up.

Several limitations exist with this current work. Small sample size is one of the limitations.

This study is still at a preliminary stage, and only examines how seeding iPS cells with bioab-

sorbable material contributes to myocardial regeneration. In the future study, we would like to

perform power analysis and increase the number of samples. Our approach utilized cells pur-

chased from CDI for which the genetic information and differentiation induction method are

not clear; nor were the cells. [28] Therefore, we may need to generate a line of myocardial pro-

genitor cells with our desired functions. Secondly, additional time-points are required to eluci-

date the temporal loss of seeded cells. It is possible that the in vivo structural and chemical

environment results in the death of hiPS-CPCs.

Although more effort is required to further develop these cardiac patches, we have demon-

strated the potential of tissue engineering to improve cardiac function following myocardial

infarction.
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Conclusion

In summary, we have demonstrated the safety of a biodegradable cardiac patch of hiPS-CPC

seeded in left ventricular myocardial contraction in rats. Seeded hiPS-CPCs disappeared from

the patch at an early stage and did not contribute to left ventricular contractility, but may affect

angiogenesis. These findings need to be further investigated for improved surgical outcomes.
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