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ABSTRACT A diversity of clustered regularly interspaced short palindromic repeat
(CRISPR)-Cas systems provide adaptive immunity to bacteria and archaea through re-
cording “memories” of past viral infections. Recently, many novel CRISPR-associated
proteins have been discovered via computational studies, but those studies relied
on biased and incomplete databases of assembled genomes. We avoided these bi-
ases and applied a network theory approach to search for novel CRISPR-associated
genes by leveraging subtle ecological cooccurrence patterns identified from environ-
mental metagenomes. We validated our method using existing annotations and dis-
covered 32 novel CRISPR-associated gene families. These genes span a range of pu-
tative functions, with many potentially regulating the response to infection.

IMPORTANCE Every branch on the tree of life, including microbial life, faces the
threat of viral pathogens. Over the course of billions of years of coevolution, pro-
karyotes have evolved a great diversity of strategies to defend against viral infec-
tions. One of these is the CRISPR adaptive immune system, which allows microbes
to “remember” past infections in order to better fight them in the future. There has
been much interest among molecular biologists in CRISPR immunity because this
system can be repurposed as a tool for precise genome editing. Recently, a number
of comparative genomics approaches have been used to detect novel CRISPR-
associated genes in databases of genomes with great success, potentially leading to
the development of new genome-editing tools. Here, we developed novel methods
to search for these distinct classes of genes directly in environmental samples (“met-
agenomes”), thus capturing a more complete picture of the natural diversity of
CRISPR-associated genes.
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Every branch on the tree of life, including microbial life, faces the threat of viral
pathogens. Over billions of years of coevolution with their viruses, prokaryotes have

developed numerous strategies for defending themselves (1). The study of these
defense systems has drawn much attention of late, not only for their ecological
implications but also for their ability to target specific DNA or RNA sequences, making
them powerful tools for handling and editing genetic material. The clustered regularly
interspaced short palindromic repeat (CRISPR) immune system, widespread in both
bacteria and archaea, enables us to designate specific sites that we would like to edit
on a genome and either to corrupt or to add to the sequence in those locations (2).
CRISPR systems are diverse, with system types and subtypes distinguished by distinct
sets of associated protein machinery (3). This diversity has sparked something of a gold
rush to characterize novel CRISPR proteins and other microbial defense systems. Just
since 2018, dozens of novel CRISPR-associated (cas) genes as well as more than 10
entirely novel classes of defense systems have been discovered (4–6).

Several groups have discovered large numbers of putative cas genes by exploiting
the fact that cas genes are often colocated on the genome and looking for gene
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families which frequently show up adjacent to known cas genes (4, 5). This approach
has led to the discovery of numerous novel proteins that may be involved in the
mechanism or regulation of CRISPR immunity. Nevertheless, such studies have relied on
publicly available databases of assembled genomes, which capture only a small and
strongly biased subset of the total range of global microbial diversity. In order to paint
a more complete picture of functional CRISPR diversity, we mined a large data set of
ocean metagenomes (7) for novel cas genes. In place of physical proximity on the
genome, our approach instead exploits ecological relationships— detectable via gene
cooccurrence patterns.

Recently, large-scale metagenomic data sets have permitted the construction of
functional networks connecting groups of orthologous genes on the basis of how
strongly their abundances correlate across independent samples (8). These networks
can be used for gene annotation, taking advantage of predictive techniques developed
extensively in coexpression and protein-protein interaction networks (see, e.g., refer-
ence 9). Such an approach works especially well for defense genes, where frequent
horizontal transfer and loss events should reduce spurious correlations due to changes
in the taxonomic composition of a community (10).

We built a conditional-dependence network from abundance profiles of eggNOG
(11) gene families (“NOGs”) provided by the Tara Oceans project (7) using an approx-
imation to the graphical lasso (12) combined with tools for large-scale network con-
struction (13). The resulting network revealed that cas gene families cluster more
closely to other cas gene families than to genes chosen at random (Fig. 1a), indicating
that proximity on the network can be used to predict gene function. Proximity-based
label propagation methods rely on this “guilt-by-association” assumption, spreading
annotations across the network between closely connected nodes. We predicted 32
novel putative CRISPR-associated gene families using a neural-network-based label
propagation method specialized for annotation problems with a small number of
positive annotations (Fig. 1b) (9). Given that the network consists of 28,988 nodes, 9,842
of which have a preexisting annotation and only 122 of which are cas, our prediction
problem is one of finding a needle in a very large haystack. Nevertheless, 5-fold
cross-validation with known cas genes showed this method to be conservative but
effective (see Fig. S1 in the supplemental material), with a low false-positive rate
(7 � 10�4), and that it was able to successfully recover about one in six cas gene
families (true-positive rate of 0.16; successfully predicted genes had highly correlated
abundances corresponding to other known cas genes across samples) (Fig. S2). We
emphasize that these gene families are “CRISPR-associated” families in a somewhat
loose sense, in that many are likely involved in regulating the response to viral infection
(see below) rather than being directly implicated in the targeting of viral sequences or
acquisition of novel immune memories. For simplicity, we refer to our predicted genes
as cas genes here, though these gene families may appear by themselves and/or
provide nonimmune functions in other contexts (though the same can be said even of
the universal cas gene cas1 [14]). When inferring function in a specific genome, then,
it is likely that one would have to consider more than simple homology (e.g., genomic
context, transcriptional patterns).

Most of the 32 gene families that we predicted to be cas would not have been
detected by the proximity-based methods previously employed by others. Searching
among all completely assembled genomes on GenBank, we found none of the 32
families with a signal of proximity to cas genes (Fig. S3). This result is to be expected,
given that the distribution of strains and defense genes in the ocean is likely poorly
represented by public databases of sequenced genomes. Therefore, we repeated our
search using a set of 2,631 metagenome-assembled genomes from the ocean (15). Only
5 of our predicted families were significantly more likely than random to appear on the
same contig as a known cas gene in these genomes (for NOG85832, P � 10�4; for
NOG121080, P � 0.0021; for NOG121689, P � 10�4; for NOG269516, P � 10�4; for
NOG273942, P � 10�4). However, this lack of proximity may reflect a lack of power (due
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to an inability to assemble much of the original metagenomes) rather than a true
absence of proximity.

We found that 5 genes in our putative novel cas families (NOG87308, NOG121080,
NOG145673, NOG273942, and NOG314802) were homologous to known cas genes in
comparisons to a large protein database (see Table S1 in the supplemental material for
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details; hmmsearch E value cutoff 0.05). Notably, NOG12180 and NOG273942 showed
both signatures of homology and proximity to known cas genes, in addition to our
ecology-based prediction, making them strong candidates for future research.

To determine if we could directly implicate any of these genes in the host’s response
to infection, we analyzed two data sets detailing the transcriptional response of
different Sulfolobus islandicus strains (LAL14/1 and REY15A) to viral infection (16, 17).
We found representatives of 6 of our predicted families in the S. islandicus genomes, all
of which were differentially expressed in LAL14/1 but only 3 of which were differentially
expressed in REY15A (Fig. 2a and b). In particular, an ortholog of NOG280809, anno-
tated as a cyclase, was strongly upregulated at all postinfection time points for LAL14/1
and was located three genes upstream of a CRISPR array (2,166 bp), near the Cmr-�
type III-B cas operon (Fig. 2c). Interestingly, in REY15A, a local genomic rearrangement
has led to the NOG280809 ortholog being located much further away from the cas
operon, and it was no longer differentially expressed during infection (despite this gene
having 99.9% sequence similarity at the nucleotide level between the two strains).
Perhaps related to this rearrangement, the Cmr-� operon was upregulated during
infection in LAL14/1 but was downregulated in REY15A, warranting further experimen-
tal investigation (Fig. 2d and e). That said, the differences in experimental procedures
between the two studies make further conclusions difficult (see below) (16, 17).
Additional analysis of an expression data set from the bacterium Thermus thermophilus
also revealed that many of the putative novel cas genes in this organism’s genome are
differentially expressed during infection (Fig. S4 and S5) (18).

To functionally characterize our set of putative cas genes, we applied profile-profile
searches to reveal distant homologies to known gene families based on protein
structure (19). Several putative cas genes were annotated as components of abortive
infection (Abi) or toxin-antitoxin type defense systems, which kill the cell upon infection
to prevent further spreading of the virus to nearby kin. Other groups have suggested
that Abi and DNA-degrading systems such as CRISPR often come as paired defense
strategies (20). Alternatively, CRISPR systems are often inducible in response to infec-
tion (see, e.g., reference 21). Such inducibility requires recognition of viral infection,
similar to what would be needed for an Abi-type defense. It is plausible that some
CRISPR systems have co-opted the response capabilities of Abi systems to detect
viruses, consistent with the observation that CRISPR systems often evolve by swapping
out and in parts of their machinery in a modular fashion (3).

Several other putative cas genes had potential infection-sensing function (Table 1).
Notably, we annotated one family as representing a putative phage shock protein,
typically responding to changes in membrane permeability. Another family contains
cyclases, which are potentially relevant as type III CRISPR systems are thought to use
cyclic molecules to coordinate their response to infection (22). A number of families
were predicted to contain DNA-binding domains common in cas genes. Four families
were annotated as having a helix-turn-helix (HTH) DNA-binding domain, with two of
these being the winged HTH domain which is common in cas genes (23). Two
additional genes were predicted to be possible iron-dependent repressors, typically
containing a winged helix domain at their N terminus (24).

Finally, we annotated almost half (15) of our predicted gene families as involved in
secretion, transport, or extracellular matrix assembly or as being transmembrane
related (Table 1). Viruses must interact directly with the cell surface in order to
successfully infect a cell, and it is likely any infection-sensing capacity in the cell would
start at this interface. This result is in agreement with previous proximity-based
searches for novel cas proteins, which revealed a large number of integral membrane
proteins associated with CRISPR (4).

In summary, we validated a novel network-based approach for the automated
discovery of cas genes directly from metagenomes that exploits the information
encoded in ecological relationships between genes and revealed 32 putative novel
gene families associated with CRISPR immunity. Using a rigorous cross-validation
framework to assess predictive ability, we found our approach to be conservative,
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making very few false-positive predictions. Thirteen of our predicted families were
partially validated using independent sources of information, including homology
and proximity to known cas genes as well as transcription postinfection (Fig. 1b and 2a
and b; see also Fig. S4a and b) (Table 1). Three of these (NOG12180, NOG273942, and
NOG280809) are particularly promising candidates for additional study, based on
multiple intersecting lines of evidence. Distant homology suggests that most of our 32
predicted gene families are plausibly involved in the cellular response to phage
infection, but full characterization of the role of these proteins in antiviral defense will
require experimental manipulation. Finally, while genomic colocation has been a
fruitful signal of shared function in the past, it is impossible to determine how often
genes interact with CRISPR in trans without developing proximity-independent meth-
ods to infer functional interactions.

Network construction. Functional networks connect genes on the basis of shared
or interacting functional roles. These interactions are often inferred on the basis of
protein-protein interactions or coexpression or, more recently, on the basis of corre-
lated abundances (8). When we say that our approach exploits ecological relationships
between genes, we mean that genes that are highly abundant in similar environments
(and less abundant in similar environments) are likely to have related functions. By
looking at the correlated abundances of genes across environments, we can capture
these functional relationships.

We obtained publicly available functional profiles describing the relative abun-
dances of 63,771 eggNOG v3.0 (http://eggnog.embl.de/version_3.0/) (11) gene families
across 139 prokaryote-enriched Tara Oceans samples (7). We then normalized the data

TABLE 1 Putative novel cas genes and their annotations

NOG Putative type Regulatory role Defense rolec Membrane or extracellular role TMd

NOG10439 ABC transporter X
NOG16349 Major facilitator superfamily X
NOG44531 PspC X
NOG46784 TA
NOG82932 I-U
NOG84780 TA
NOG85832a Type II secretion, peptidoglycan binding X
NOG87308a I-Eb Abi
NOG116663 III-A HTH domain
NOG121080a Fibronectin, cell wall biogenesis X
NOG121689a I-D Winged helix
NOG121881 I-B
NOG131471 III-A ABC transporter, outer membrane protein assembly X
NOG133718 Iron-dependent repressor
NOG138333 I-Eb Secretion
NOG140114 Iron-dependent repressor
NOG145673a I-Fb Winged helix
NOG146536 Membrane protein X
NOG242488 I-D Curli biogenesis/secretion
NOG269516a TA/RM
NOG269593a I-Bb Fibronectin, secretion, S-layer, sugar binding
NOG273942a III-A
NOG280809a Cyclase
NOG296050
NOG300351 Membrane protein
NOG309511a I-E Accessory Sec system GspB transporter
NOG309759 I-E X
NOG312939 I-U X
NOG314802a I Abi/RM
NOG315893a I-E HTH domain
NOG318199a I-B
NOG328008 I-Bb X
aValidated by at least one independent source of information.
bConfirmed by multiple neighbors in network.
cTA, toxin-antitoxin; RM, restriction modification.
dTransmembrane.
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to get the average copy number per genome in a sample for each gene family (using
the median abundance of a curated set of 77 single-copy marker genes) (25). This
normalization step allows us to avoid the statistical issues that arise when working with
compositional data. Many of the gene families in the data set were exceedingly rare,
and we eliminated any families present in less than 10% of samples, leaving 29,988
families. We then built an unweighted conditional-dependence network connecting
these families on the basis of their correlated abundances using the pipeline described
in the R package “huge” (13), choosing options that allowed construction of such a
large network (26). Specifically, we first transformed our data using nonparanormal
transformation [function huge.npn()], followed by network inference using the
Meinshausen-Bühlmann method (12) over a range of regularization intensities pre-
ceded by sure independence screening (26) [options nlambda � 30 and scr � T and
method � “mb” in the huge() function]. We selected the optimal regularization param-
eter using the rotation information criterion [function huge.select()]. This approach
yielded a sparse functional network with 44,236 edges.

Many NOGs come with annotations at the protein family level. Additionally, even
when a NOG lacks a family-level annotation, the individual genes within that NOG may
be annotated. We sought to maximize the number of nodes in the network annotated
as cas by considering any NOG containing a cas gene to represent a CRISPR-related
gene family. Using the uniparc database (27), we matched the set of gene identifiers
(IDs) associated with each NOG to protein names. If any protein name contained the
keyword “CRISPR,” that protein was considered to be encoded by a cas gene, and so
was the NOG that contained it. In total, we annotated 122 nodes in this network as cas
genes.

Prediction on the network. Label propagation methods represent a broad class of
methods used to classify nodes on a network. Typically, these methods start with a set
of labeled nodes and iteratively “propagate” these labels to nearby unlabeled nodes,
eventually labeling all nodes on the network. Many variants of label propagation
methods have been developed, but they all rely on the central assumption that nodes
that are close together on the network are more likely to have similar labels. We began
by testing this assumption on our network with respect to cas genes (our binary labels
being cas and non-cas). We found the shortest paths from all nodes in our network to
the nearest annotated cas node using the distances() function in the igraph R package
(28). As noted above, this revealed that cas genes tend to cluster in the network,
making label propagation-based classification methods potentially useful tools for cas
gene prediction.

For prediction of novel cas genes, we used the COSNet label-propogation method,
implemented in R, specifically designed for semisupervised classification in networks
with extremely imbalanced classes (9). First, we assessed performance using 5-fold
cross validation, choosing balanced folds and using the find.division.strat() function to
ensure roughly equal numbers of cas genes in all folds (which were otherwise randomly
selected). We calculated performance metrics considering only annotated NOGs (i.e.,
those with preexisting annotations as cas or with any existing NOG-level annotation;
NOGs lacking any annotation were included in the prediction step but not in calculat-
ing the resulting performances, since “true” positive or negative values could not be
assigned). We then predicted our final 32 putative novel cas genes using the complete
network. For both cases, following the recommendation in the COSNet documentation,
we added a small amount (10�4) of regularization, though this had little effect on our
results from comparisons to a model without regularization (Fig. S1).

We note that our method is biased toward the discovery of class 1 and, in particular,
type I systems (Table 1), as these make up the majority of our training set of gene
families.

Proximity-based search. We downloaded a set of 2,631 draft metagenome-
assembled genomes that were assembled from the Tara data set (15). Using hmmer
(29), we built profile hidden Markov models (HMMs) of all NOGs annotated as cas at the
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NOG level as well as our set of 32 putative novel cas NOGs and searched the complete
set of profiles against each genome using hmmscan (E value cutoff of 0.01/number of
genomes). We then quantified how often (on average) each of our 32 gene families
cooccurred on the same contig as a cas gene across all genomes. We simulated a null
distribution for each of the 32 families by reassigning the locations of the putative
novel cas gene in each genome to the location of another randomly chosen open
reading frame (ORF) (104 simulations for each gene).

Similarly, we downloaded all completely assembled prokaryotic genomes from
GenBank and searched them against the HMMs built as described above. For each
genome, we drew a random location on the genome in order to simulate a null
distribution of random gene locations with respect to cas across the genomes (re-
peated 100 times for 100 null distributions). We then calculated the minimum distance
(in base pairs) from each of the 32 predicted cas to any of the previously annotated cas
genes across all genomes. One putative novel cas gene (NOG10439) was not found in
any of these genomes using our E value cutoff (0.01/number of genomes).

Annotation of putative cas genes. We used a number of tools from the HHsuite
and hmmer software packages to perform sensitive profile-profile or profile-sequence
searches for distant protein homology (19, 29). We first built HMM profiles of our
predicted NOGs using hmmer’s hmmbuild command. To detect homology to known
cas genes, we downloaded all proteins from UniProtKB that included the keywork
“CRISPR” in the protein name field. To this set, we added sequences from the align-
ments of novel cas genes found by Shmakov et al. (4) (ftp://ftp.ncbi.nlm.nih.gov/pub/
wolf/_suppl/CRISPRicity/NewProfiles.tar.gz). We then used hmmsearch to compare the
HMM for each of the predicted cas NOGs to this large set of 111,761 amino acid
sequences using an E value cutoff of 0.05.

For broader functional prediction, we used HHblits to search for related genes in
uniclust30 and HHsearch to search for homologous domains in Pfam (19). For all
HHsuite searches, we used a cutoff probability score of 90% in annotating homologs
(HHsuite documentation recommends using their probability score rather than E
values, which can be unreliable in this context).

Finally, we used TMHMM to predict whether each gene contained in a predicted
NOG coded for a transmembrane protein (30) (proteins predicted by TMHMM to have
at least 18 amino acids in transmembrane helices).

The putative type was determined by looking at nearby (within two nodes) known
cas genes in the network, and type determinations were considered to represent
sufficient confidence if at least two neighbors had that type.

Transcription analysis. We downloaded three transcriptome sequencing (RNA-seq)
data sets spanning multiple domains of life in which cas genes had been previously
observed to be upregulated postinfection, including two from different Sulfolobus islandicus
strains (LAL14/1 and REY15A [16, 17]) and one from Thermus thermophilus HB8 (18). We
matched our set of putative novel cas genes to the genome for each organism
(GCF_000364745.1, GCF_000189555.1, and GCF_000091545.1) using hmmscan and the
HMM profiles built for each NOG as described above (E value cutoff of 0.01/number of
genes in each genome). Because of the diverse set of experimental approaches and analysis
pipelines used to quantify expression across the three data sets, we chose to present
expression data as analyzed by the original authors, keeping their P values and data
normalization without modification. We note that these expression data sets were exclu-
sively from thermophilic organisms and may not have provided the best correspondence
to the marine samples used for our network-based predictions. Unfortunately, there is a
lack of expression data sets demonstrating upregulated CRISPR immunity during viral
infection of marine organisms.

Note that the two S. islandicus data sets used different host strains and different
viruses and examined different time scales of infection (hours versus days).

The T. thermophilus HB8 cas operons all lie on a single plasmid, as do the majority
of the CRISPR arrays possessed by this organism. Agari et al. note that knocking out the
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host gene crp decreases the postinfection expression of plasmid-borne cas targeting
genes but leads to an increase in the level of expression of the plasmid-borne spacer
acquisition machinery (18). We included data from both wild-type and Δcrp strains in
our analysis (Fig. S4 and S5).

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, PDF file, 0.02 MB.
FIG S2, PDF file, 0.1 MB.
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