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In the era of genome-wide association studies (GWAS) and personalized medicine, predicting the impact of single nucleotide

polymorphisms (SNPs) in regulatory elements is an important goal. Current approaches to determine the potential of reg-

ulatory SNPs depend on inadequate knowledge of cell-specific DNAbinding motifs. Here, we present Sasquatch, a new com-

putational approach that uses DNase footprint data to estimate and visualize the effects of noncoding variants on

transcription factor binding. Sasquatch performs a comprehensive k-mer-based analysis of DNase footprints to determine

any k-mer’s potential for protein binding in a specific cell type and how this may be changed by sequence variants.

Therefore, Sasquatch uses an unbiased approach, independent of known transcription factor binding sites and motifs.

Sasquatch only requires a single DNase-seq data set per cell type, from any genotype, and produces consistent predictions

from data generated by different experimental procedures and at different sequence depths. Here we demonstrate the ef-

fectiveness of Sasquatch using previously validated functional SNPs and benchmark its performance against existing ap-

proaches. Sasquatch is available as a versatile webtool incorporating publicly available data, including the human

ENCODE collection. Thus, Sasquatch provides a powerful tool and repository for prioritizing likely regulatory SNPs in

the noncoding genome.

[Supplemental material is available for this article.]

Major efforts are being made to understand the links between
genetic variation within human populations and predisposition
to a wide range of common diseases and traits. Currently, more
than 2000 genome-wide association studies (GWAS) have identi-
fied almost 17,000 single nucleotide polymorphisms (SNPs)
(Welter et al. 2014), but as yet, their contribution to functional var-
iation has been limited. This is mainly because most SNPs (∼94%)
associated with common diseases and traits are in noncoding re-
gions of the genome (Rockman and Kruglyak 2006; Maurano
et al. 2015), where their functional role is unclear and the genes
whose expression they affect are not known.

Regulation of gene expression occurs via the binding of
tissue-specific and general transcription factors (TFs) to regulatory
sequences (promoters, enhancers, and boundary elements).
Whereas promoters can be easily linked to the genes they regulate,
enhancers and boundary elements are widely dispersed, lying tens
to thousands of kilobases (kb) upstreamor downstream,within the
genes they regulate orwithin the introns of unrelated genes (Natoli
and Andrau 2012; Pennacchio et al. 2013). It has been suggested
that many SNPs may influence gene expression by altering the
binding of transcription factors to these regulatory elements
(Bauer et al. 2013; Pasquali et al. 2014). Importantly, recent im-
provements in chromosome conformation capture (3C) tech-
niques have enabled us to link remote regulatory elements to the

genes they control; however, performing informative 3C depends
on identifying the causal regulatory SNP (Edwards et al. 2013;
Hughes et al. 2014; Davies et al. 2016) or a small set of prioritized
variants.

Interpretation of GWAS data is frequently confounded by
linkage disequilibrium (LD). Hence, causative SNPs within a group
of linked polymorphisms are frequently prioritized by intersection
with annotated regulatory elements or their potential to alter de-
rived TF binding motifs. Major drawbacks of such approaches are
their dependency on incomplete ChIP-seq data and associated
transcription factor position weight matrices (PWMs) in specific
cell types. Such analyses are entirely dependent on knowingwhich
transcription factors bind whichmotifs and how binding is affect-
ed by sequence variation in the cell type under investigation,
which is known for fewer than 100 of the 2000–3000 known tran-
scription factors in a very limited number of cell types (Vaquerizas
et al. 2009).

DNase I accessibility assays are unbiased and identify all com-
mon regulatory elements (Thurman et al. 2012). Regulatory SNPs
that alter TF binding can be identified from altered chromatin ac-
cessibility at individual regulatory elements. At high sequence read
depths, stable TF binding at such elements can be assessed at near
base-pair resolution using DNase-seq digital footprints (Fig. 1A;
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Hesselberth et al. 2009; Neph et al. 2012). Therefore, in principle,
analysis of digital footprints could reveal alterations in TF binding
(Sung et al. 2016; Vierstra and Stamatoyannopoulos 2016) due to
SNPs (Maurano et al. 2015; Moyerbrailean et al. 2016). In practice,
this approach is limited by the necessity to generate DNase-seq
data from appropriate cell types with and without the informative
SNPs. Furthermore, depending on the level of DNase-seq signal
at different genomic regions, digital footprints may be weak and
consequently difficult to interpret.

Meta-approaches that overcome these limitations use DNase
footprints and allele-specific sensitive signals, piled-up over
matches to known PWMs (Pique-Regi et al. 2011; Maurano et al.
2015;Moyerbrailean et al. 2016). They are able tomake predictions
of binding and how this may be affected by variants at bp re-
solution; however, again, such analyses depend on incomplete
catalogs of PWMs, which limits their use. As yet, there is no
clear consensus on how best to identify or predict regulatory
SNPs using DNase-seq footprints (Sung et al. 2016; Vierstra and
Stamatoyannopoulos 2016).

To address these limitations, we have developed Sasquatch, a
comprehensive and unbiased approach to prioritize regulatory var-
iants based on DNase footprinting.

Using both publicly available data and data generated in pri-
mary erythroid cells as part of this study, we illustrate the efficien-
cy of Sasquatch in prioritizing SNPs associated with previously
validated changes in TF binding, re-evaluate regulatory SNPs re-

ported in the literature, and demonstrate its use for interpreting
GWAS data.

Results

We have developed Sasquatch to assess the cell-type–specific TF
binding potential based on DNase footprints. Sasquatch requires
no prior knowledge of the underlying binding motifs. Additional-
ly, it requires only a single DNase-seq track of any genotype, with
only moderate sequence coverage. Sasquatch uses all possible var-
iations of the four-letter DNA code to assess the potential of short
sequences (k-mers) to be bound directly by proteins, in a specific
cell type. Importantly this approach uses direct sampling of biolog-
ical data rather than in silico prediction. Preanalysis of all potential
5-, 6-, and 7-mers means that any sequence can be rapidly interro-
gated for protein binding within a user-friendly webtool (http
://apps.molbiol.ox.ac.uk/sasquatch/cgi-bin/foot.cgi). We prepro-
cessed all human ENCODE DNase-seq data sets (Maher 2012;
Romanoski et al. 2015) and other publicly available data to create
a large repository of cell- and tissue-specific DNase footprints.

Using Sasquatch to identify cell-specific binding motifs within

DNase I hypersensitive sites

Sasquatch searches for all 5-, 6-, and 7-mers that lie within the
DNase I hypersensitive sites (DHSs) present in a specific cell

type. It stores their occurrences, piles
up the surrounding DNase I cut sites
(Fig. 1B), and produces a footprint profile
for each k-mer. Importantly, the foot-
prints are normalized for DNase I se-
quence bias and strand specificity (see
Supplemental Methods; Supplemental
Fig. S1; Lazarovici et al. 2013; He et al.
2014; Sung et al. 2014; Yardimci et al.
2014).

Previously reported DNase foot-
prints for known DNA binding proteins
(Church and Gilbert 1984; Hesselberth
et al. 2009; Holwerda and de Laat 2012;
Sung et al. 2014) were faithfully repro-
duced in the Sasquatch analysis, with a
depletion of DNase I cuts over known
protein bound sequences (the footprint)
flanked by an increased frequency of cut-
ting (shoulders) at the edges of the
bound protein (Fig. 1B,C). The depth of
the footprint relative to the shoulders re-
flects occupancy of the bound site (Neph
et al. 2012; Sung et al. 2014). Henceforth,
we refer to the distribution of relative cut
frequencies as the profile and the charac-
teristic average footprint within a profile
as the footprint.

To quantify footprints, we imple-
mented an algorithm to detect the shoul-
ders within a profile. We then calculated
the shoulder-to-footprint ratio (SFR)—
the ratio of the relative cut frequency
of the shoulders to the footprint (Fig.
2A). Based on this method for calculat-
ing the SFR, profiles lacking a visible

Figure 1. Generation of k-mer-based, genome-wide average footprints. (A) The principle of generating
the digital DNase I footprints occurring in a single genomic location. Exposure of nuclei to DNase I causes
frequent double cuts in open chromatin regions, releasing small fragments that can be identified by se-
quencing. Deep sequencing allows for high-density mapping of the ends of these fragments, which rep-
resents the DNase I digestion points and reveals positions protected by TF binding. (B) Sasquatch
overview. Genome-wide cut frequency profiles are piled up over all occurrences of all possible short se-
quences (k-mers) within DNase I hypersensitive sites. For k-mers associated with TF binding, the resulting
average cut frequency profiles display average footprints characterized by a cut-depleted center flanked
by shoulders of enriched cut frequency. (C) Average profiles reflect tissue specificity of TF footprints as
demonstrated by an erythroid-specific TF GATA1 and by a ubiquitous TF NRF1. Average cut profiles
were calculated from DNase-seq of primary erythroid, breast cancer (MCF-7), and B-lymphocyte cells
(GM12878). The highlighted dotted black lines indicate the location of the motif within the footprint.
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footprint score around 1.0–1.2, while distinct footprints
score >1.4.

Sasquatch allows informative analysis of a wide range of DNase-

seq protocols sequenced to variable depths

To ensure usability across publicly available DNase-seq data,
we confirmed that the number of DHSs and the sequencing
depth do not affect the detection or the shape of footprints
(Supplemental Figs. S2, S3). Different DNase-seq protocols only af-
fect the shoulder shape (Supplemental Fig. S4). Sasquatch can even
be applied to low-input DNase-seq protocols (Lu et al. 2016) (liD-
Nase-seq, Supplemental Fig. S5), allowing evaluation of very low
cell numbers. Althoughwe found no general relationship between
frequency of k-mer occurrence and quality of footprint, for k-mers
with very low (<100) representation within DHSs, we observed a
significant increase in background noise due to undersampling.
Therefore, while care is requiredwhen interpreting average profiles
below this frequency, their underrepresentation in active regions
within a given cell type may suggest that such sequences may not
be of functional importance in such cells. Finally, it is important
to note that the SFRmay be influenced by the nature of the TF test-
ed. For example, we find the GATA1 core motif has a consistently
lower SFR than the NRF1 core motif (Fig. 1C), probably reflecting
the nature of their interactions with DNA and features of their
structures. Considering the increased use of ATAC-seq (Buenrostro
et al. 2013), we adapted Sasquatch for the use of ATAC-seq data.
However, intrinsic confounding factors in ATAC-seq, such as
Tn5 cutting preferences, are currently not well understood (Tsom-
pana and Buck 2014; Madrigal 2015). Using ATAC-seq data
(Supplemental Fig. S6) and matched background generated in pri-

mary erythroid cells, we observed that ATAC-seq recovers some
but not all footprints that are detectable in DNase-seq data over
known binding sites, and the footprint shapes differ strikingly
(Supplemental Fig. S7). Furthermore, we have reason to believe
that the transposase introduces different cutting biases (MC Suciu,
R Schwessinger, M Kassouf, J Telenius, DR Higgs, JR Hughes, in
prep.), suggesting there is aneed formore research into the transpo-
sase-based cleavage before it can be modeled reliably for footprint-
ing.Wemade the software adaption to ATAC-seq data available for
further investigation of the underlying differences in footprinting
but discourage its use for exhaustive variant screens at this stage.

Average profiles of protein–DNA interactions identify widely

expressed and cell-restricted TFs

Transcription factors such as NRF1 (Chan et al. 1993) show
clear, high-scoring footprints across all cell types analyzed
(Supplemental Fig. S8), while the profiles for GATA1, a known reg-
ulator in erythroid tissue, form a distinctive profile with a high-
scoring footprint only in erythroid cells (Fig. 1C). Based on such
profiles, we can infer details about TF binding across cell types.
For example, GATA1 binding is frequently associated with binding
of its partner protein (TAL1) to a half E-box motif 8 base pairs (bp)
5′ of the GATA core motif (Kassouf et al. 2010). This is mirrored by
the one-sided expansion of the average GATA footprint in the 5′

direction and consequently reducedprominence of the 5′ shoulder
(Supplemental Fig. S9).

Assessing the potential effects of DNA variants on TF binding

By changing a specific consensus sequence scored as a footprint,
Sasquatch can report how well a variant of this sequence would

Figure 2. Predicting the damage potential of single nucleotide variants. (A) The average footprint strength is quantified by calculating the shoulder-to-
footprint ratio (SFR). The damaging potential (Dmg) is quantified as the difference between the reference and the variant SFR and also expressed as the
relative change (Rel. Change) in footprint strength with respect to the higher SFR. (B) The damaging potential of a SNP, for example, rs9566899, is then
assessed by summing the pairwise damage using a sliding window (shown below). The average profiles of the highest scoring k-mer pair are plotted (blue =
reference, red = variant). Green dotted lines bracket the automatically detected shoulder regions. The number of occurrences of the respective k-mer within
DHSs is indicated by #. (C) Illustration of extending the approach to perform in silico mutation by predicting the impact of every possible mutation at every
position in a region of interest. The resulting in silico mutation plots highlight potentially severe mutations and reveal sequences associated with strong TF
binding potential in an unbiased and tissue-specific manner. The rs9566899 A allele is indicated (red circle in lower plot).
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also act as a binding site for its cognate protein in that cell type.
The difference between the reference and variant footprint is cal-
culated as a “damage-score” (Dmg), which quantifies the relative
ability of the variant sequence to form a footprint and so its effect
on TF binding (Fig. 2A). A positive total damage score predicts
that a variant will damage the average footprint, while a negative
score predicts a positive influence on protein binding. To increase
robustness, we consider each variant in its 13-bp context.
Additionally, Sasquatch provides a visual assessment illustrating
the potential of each nucleotide change to damage the predicted
footprint. (Fig. 2B) and can quickly score 1000s of variants in batch
mode as all k-mer data are precalculated.

Because sampling true neutral variants from binding site-rich
open chromatin is difficult, we devised a simulation strategy to cal-
ibrate the damage score thresholds empirically at 0.5 and 1.0 for a
relaxed and stringent cutoff, respectively (Supplemental Fig. S10;
Supplemental Methods). The meta-footprinting approach can
also be used within k-mers covering a known binding motif to
dissect the relative importance of each base at each position by
in silico mutating and predicting the severity of base changes
(Supplemental Fig. S11). Furthermore, changes in the footprint
shape can indicate differential factor binding (e.g., differential E-
box usage). This approach can also be applied to longer genomic
sequences (up to 1000s of bp) limited only by run time. For exam-
ple, Sasquatch can analyze a complete DHS in the form of in silico
mutation, predicting the impact of every possible base substitution
at every genomic position. These in silico mutation plots (Fig. 2C)
can reveal clusters of single positions within a DHS that are partic-
ularly sensitive to variationwhich, in turn, can reveal the positions
of known TF binding sites. As a guide to which TFs might bind the
k-mers identified, we integrated the JASPAR 2016 (Mathelier et al.
2016) motif database into the analysis.

Sasquatch validation in erythroid tissues

Many regulatory elements, as well as the TFs and cofactors binding
them, have been well characterized in erythroid cells; we therefore
initially tested Sasquatch using data generated from human and
mouse erythroid cells. Interestingly, when we tested all k-mers
perfectly matching the binding motifs of several TFs active in ery-
throid cells (GATA1, NRF1, E-box, and NFE2), we surprisingly
found thatwe could detect strong evidence of footprints in thema-
jority of occurrences inDHSs, suggesting that the presence of a per-
fect motif is sufficient to allow binding of that TF as long as the
chromatin is accessible (Supplemental Fig. S12).

We then took advantage of the existence of deeply character-
ized regulatory elements within the erythroid system and the
observation that the large majority of in silico mutations within
open chromatin regions do not alter binding potential
(Supplemental Fig. S13) to test the ability of Sasquatch to identify
the positions of potential TF binding sites in regulatory regions.

The alpha-globin promoters interact with five distal regulato-
ry elements with the signatures of enhancers and bindmanyof the
known erythroidmaster transcription factors, of which two (called
R1 and R2) act as strong enhancers in vivo (Hay et al. 2016).
Sasquatch in silico mutation plots derived from mouse erythroid
cells effectively identified the known conserved TF bindingmotifs
within these elements with one notable exception.

The R1 element was initially identified using sequence con-
servation analysis across 23 species (Hughes et al. 2005) and ap-
peared to be a simple structure containing just two conserved
GATA1 binding sites which were presumed to direct all of the

GATA1 and TAL1 binding at this element (Fig. 3). However, anal-
ysis of DNase-seq data frommouse primary erythroid cells (Ter 119
+) (Hosseini et al. 2013; Marques et al. 2013) shows that the DHS
extends beyond these conserved GATA binding sites, incorpo-
rating two additional GATA sites. All four sites are associated
with strong DNase footprints. Aligning the damage plot from
Sasquatch with both the conservation analysis and DNase
footprinting shows that it detects all four E-box-GATA1 binding
motifs, two of which were initially discarded on the basis of
their lack of conservation. These results emphasize the unique
ability of high-resolutionDNase-seq assays to reveal species-specif-
ic regulatory features. Our meta-analysis approach can detect the
same functional elements where data of sufficient depth are not
publicly available or difficult to generate due to cell number
limitations.

Analysis of sequence variation underlying loss or gain of TAL1

binding

To demonstrate the effectiveness of Sasquatch, we interrogated the
effect of two well-characterized binding site mutations and SNPs
within regions previously shown to variably bind the transcription
factor TAL1 (Lower et al. 2013) using tissue-matched DNase-seq
data generated from human primary erythroid cells.

The expression of the Duffy blood group protein is known to
be highly polymorphic due to the linked resistance to Plasmodium
vivax (de Carvalho and de Carvalho 2011). The T-to-C substitution
in theACKR1 gene promoter abrogates its expression (Tournamille
et al. 1995), which Sasquatch detects as a strong damage
score of 1.98 (Fig. 4A). The block of potential damage overlies a
known GATA1 binding site and causes complete loss of binding
of the GATA1 cofactor TAL1 in a homozygous individual
(Supplemental Fig. S6).

Similarly, we analyzed 16 SNPs previously shown to also be
associated with the loss or gain of TAL1 binding in erythroid tis-
sues (Lower et al. 2013). Twelve of the 16 variants show intermedi-
ate or high damage scores (five intermediate: absolute total
damage >0.5; seven high: absolute total damage >1.0). These 12
SNPs were associated with altered footprints either in the reference
or in the variant profiles (Fig. 4B,C; Supplemental Table S1). The
disrupted footprints included GATA1 sites, a known partner of
TAL1, but also additional erythroid TF binding sites such as KLF1
(Kassouf et al. 2010).

In one illustrative example, three variants lie within the same
intergenic hypersensitive site upstream of the DGKH locus on Chr
13 (Fig. 4B), which shows polymorphic binding of TAL1. The
rs11619622 variant is found in two individuals (C1 and C3) posi-
tive for TAL1 binding in this region; rs11617432 is also found in
one of these individuals (C1), and a third SNP rs9566899 is found
in an individual negative for TAL1 binding (C2). As these data
stand, it is not possible to prioritize a mechanism where
rs11619622 promotes binding of TAL1 over a mechanism where
rs9566899 disrupts binding of TAL1. The lack of any negative dam-
age scores for SNPs rs11619622 and rs11617432 (gain of binding
potential) and the high damage score of rs9566899 (2.11) strongly
suggest that loss of binding potential is due to rs9566899 (marked
“iii” in Fig. 4B; Supplemental Fig. S14). In silico analysis shows
rs9566899 to be in a region of high potential damage (Fig. 4B) in-
dicative of a TF binding site, which ismost similar to KLF1, a cofac-
tor of TAL1 (Supplemental Fig. S9; Kassouf et al. 2010; Tallack et al.
2010), suggesting that TAL1 binding to this element is KLF1-
dependent.
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Formation of new elements can be as detrimental to gene reg-
ulation as their disruption (De Gobbi et al. 2006). However, with-
out regulatory data from the correct cells and genotype, these
events are undetectable and so of unknown frequency. Sasquatch
can prioritize the investigation of such events by detecting an en-
hanced footprint (negative damage value) associated with a se-
quence variant.

In a study by De Gobbi et al. (2006), the down-regulation of
the alpha-globin genes in an alpha-thalassemia patient was caused
by the formation of a cryptic promoter element in the alpha-glo-
bin locus. The position of this element between the alpha-globin
genes and enhancers suggested that it was interfering with the in-
teraction of the enhancers and promoters, leading to gene down-
regulation.Of the seven variants associatedwith this newelement,
six could be discounted by analysis of unaffected family members
to leave a single SNP 195 as the causative variant. Sasquatch anal-
ysis of these seven variants clearly identifies SNP 195 as the stron-
gest change in footprint formation and, importantly, shows it to
be a strong gain of function (Fig. 5; Supplemental Fig. S15), coher-
ent with the genetics and proposed mechanism. Motif analysis in
the original publication and in Sasquatch showed the 195 variant
to form a newGATA1 site, and GATA1 and TAL1 were shown to be
recruited only in the affected individual. The in silico analysis of
this region in both the affected and reference haplotype showed
the existence of clusters of potential binding sites around thenovel
GATA1 site (Fig. 5), providing insight into what other motifs may
be required for the gain of function.

Prioritizing variants identified by GWAS for functional analysis

GWAS have identified large numbers of SNPs that are significantly
associated with common disease. Considering the very large num-
ber of variants usually found in LD with single GWAS hits
(Maurano et al. 2012), functional validation of causal changes is lo-
gistically and financially prohibitive. To address this, we applied

Sasquatch to prioritize GWAS hits for multiple blood cell traits
(van der Harst et al. 2012) to rank variants by impact on average
TF footprints (Fig. 6).

The GWAS hits (van der Harst et al. 2012) were further imput-
ed to identify all variants in strong linkagedisequilibriumusing the
latest releaseof 1000Genomesdata. A total of 5714variantswere in
LD (r2 > 0.8, 500 kb) with the reported SNPs. All variants were fil-
tered for their location in open chromatin (DHSs), and the damage
scores were calculated for the resulting 100 candidate SNPs (Fig.
6A). The damage scores ranged from 4.14 to −3.11, suggesting
some variants damage, while others enhance footprints. The vari-
ant footprints range from clear loss or gain (98% relative change)
to weaker, quantitative changes in footprint strengths (25%).
Using this workflow, we prioritized all the candidates into neutral
and loss or gain of binding potential, bothwith two levels of confi-
dence depending on the strength of the damage (Supplemental
Table S2). Two of the strongest variants are illustrated in Figure 6B
(variants rs1369312 G>T and rs13069307 G>A). The rs1369312
SNP shows a loss of anNRF1 or EGR family TF, with a relative chan-
geof87%,oneof thehighest scores.At theopposite endof the spec-
trum, rs13069307 G>A appears to introduce a new binding site for
KLF1, with a relative change of 77% in the negative damage score.
The result of the Sasquatch workflow is a sorted list of candidate
variants (100) with intuitive visualization providing fast and effi-
cient prioritizationof thousandsof variants for functional analysis.

Using Sasquatch to analyze functionally validated variants from

nonerythroid tissues

To demonstrate Sasquatch’s utility in nonerythroid tissues, we as-
sessed the impact of previously described functionally validated
variants from either prostate (Huang et al. 2014) or breast cancer
(Hsiung et al. 2014) GWAS where both publicly available DNase-
seq data sets (He et al. 2014) and functional validation in matched
cell types were available.

Figure 3. Overlay of DNase I footprints, Sasquatch in silico mutation predictions, and sequence conservation. The top panel shows deep DNase I foot-
prints in mouse primary erythroid cells over the mouse alpha-globin locus R1 enhancer, which is present within an intron of NPRL3. Sasquatch’s in silico
mutation analysis using the same DNase-seq data reveals clusters of predicted high-damaging variants overlapping the footprints and knownGATA1 bind-
ing motifs (middle panel). While sequence conservation analysis can identify the two leftmost binding sites, the in silico mutation analysis can also identify
themurine-specific binding sites. Sequence conservation analysis adapted fromHughes et al. (2005). The conservation panel was trimmed to visualize both
conserved sites (red arrows).
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The common SNP rs339331was identified bymultiple GWAS
as highly associatedwith a risk of prostate cancer. The T-to-C chan-
ge disrupts a potential HOXB13 binding site in intron 4 of RFX6
(Huang et al. 2014). Using ChIP-seq and allele-specific expression
analysis, Huang and coworkers functionally validated this variant
and demonstrated that it affects HOXB13 binding and modulates
RFX6 expression in an allele-specific manner. Sasquatch analysis
using DNase-seq in a prostate cancer cell line (LNCaP) showed a
severe reduction in the score of the variant footprint and a relative
changeof62%(Fig. 7A). TwoSNPs, rs2839494and rs1078272,have
been identified as significantly associatedwithhigher survival rates
in breast cancer patients (Hsiung et al. 2014). Hsiung and col-
leagues functionally validated the SNPs using ESR1-responsive lu-
ciferase assays and proposed rs2839494 C>G to alter ESR1
bindingdirectly and rs1078272A>T to alter binding of the cofactor
RAD21. Sasquatch predicts only rs1078272 as having a damaging
effect inMCF-7 cells (Fig. 7B), with a damage score of 1.04 (72% rel-
ative change) and a clear disruption of the footprint (rs2839494:
Dmg = 0.039). In silico mutation over the locus places rs1078272
in a cluster of damaging variants in close proximity to other poten-

tially strong binding sequences. The predicted disruption of a po-
tential JUN binding site emphasizes rs1078272 A>T as a likely
causal variant, as JUN overexpression has been linked with overall
tumor cell aggressiveness in breast cancer cells (Smith et al. 1999).

We could not detect the proposed alteration of ESR1 binding
of rs2839494 using Sasquatch and the in silico mutation plot
shows no strikingly damaging variants over that specific region
(Fig. 7B). This highlights a limitation of the k-mer based approach
for detecting binding events over large motifs due to low numbers
of matches for long sequences in DHS sites. Although such large
TF binding motifs are uncommon, they represent a source of false
negatives in Sasquatch and may be better addressed using alterna-
tive approaches.

Benchmarking Sasquatch against current state-of-the-art neuronal

network approaches

Direct benchmarking for the identification of variants that alter
TF binding is difficult, as no gold standard validated sets exist.
Recent approaches for prioritizing causal variants have used: (1)

Figure 4. Prioritizing SNPs associatedwith differential TAL1 binding at single base-pair resolution. Several SNPs associatedwith differential TAL1ChIP-seq
peaks between three individuals (Lower et al. 2013) (C1, C2 and C3) were analyzed using Sasquatch. (A) A known T-to-C substitution at position −33 in the
promoter region of the ACKR1 gene that abrogates its expression causing a form of the Duffy-negative genotype (de Carvalho and de Carvalho 2011).
Sasquatch identifies a distinct depletion of a GATA1 footprint in the variant sequence. The variant lies within a cluster of damaging variants, strongly in-
dicating a TF binding site, and is associatedwith abolishment of TAL1 binding in C3. (B) Three SNPs (rs11619622, rs11617432, and rs9566899) have been
identified within a DHS on Chromosome 13 overlapping with TAL1 binding in C1 and C3 but not C2. Analysis of the rs11619622 A>G SNP present in C1
and C3 did not show striking differences between the reference and variant profile. The rs11617432 G>A SNP present only in C1 appears to disrupt a less
common GATA binding motif, is predicted to have an intermediate damaging potential, but appears insufficient to abolish TAL1 binding. In contrast, the
rs9566899 G>A SNP, foundwithin a potential C2H2 zinc finger motif and present only in C2, shows the strongest predicted damage and appears sufficient
to abrogate TAL1 binding in C2. (C) Sasquatch is able to predict the introduction of potential novel binding sites. Two SNPs (rs9929936 and rs9937638)
have been found in an intragenic DHS associated with TAL1 binding only in C2. The rs9929936 T allele present in C1 potentially shows weak binding po-
tential, but no alteration is caused by the variant. In contrast, the rs9937638 C>A SNP present in C2 shows the potential to introduce a novel GATA site. The
sliding window approach identifies rs9937638 C>A to have a strong negative damaging potential in line with the observed TAL1 binding. Interestingly, the
in silico mutation plot identifies nearby peaks of damage, potentially indicating bound motifs within the DHS that may support TAL1 binding.
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expression or DNase I hypersensitive quantitative trait loci (eQTL,
dsQTLs); (2) sets of regulatory element-associated variants or non-
coding GWAS lead SNPs; (3) correlation with the output of other
prediction tools; and (4) massively parallel reporter assays, all of
which do not directly imply a change in TF binding associated
with the SNP. Additionally, negative sets are commonly derived
from random sampling and assumed to be true negatives while
the positive sets are often usedwithout consideration of the poten-
tially causal SNPs being in high LD with the sentinel SNPs.

To this end, we have developed a novel benchmark data set
that, as directly as possible, addresses the core functionality of
Sasquatch, the alteration of TF binding, and yet provides a fair
and appropriate comparison with existing relevant approaches.

This data set is based on a genome-wide study of TF binding
QTLs (bQTLs) for five transcription factors in lymphoblastoid
cell lines (Tehranchi et al. 2016). As these cell lines have been ex-
tensively studied in the ENCODE Consortium, DNase-seq data as
well as a large number of histone modification and TF ChIP-seq
data are publicly available. These data sets allow for a fair compar-
ison of Sasquatch’s performance against the neuronal network
(NN) approaches (Basset and DeepSEA), whose performance is de-
pendent on suchmatched deep data sets and include the lympho-
blastoid GM12878 cell line in both their training regimes (Zhou
and Troyanskaya 2015; Kelley et al. 2016).

For each factor addressed in the bQTL study (JUND, RELA,
POU2F1, SPI1), we retrieved the 25 most significant bQTLs, and

pooled and matched them against
dbSNP. After imputation, we grouped
the SNPs into high-confidence LD blocks
and predicted the impact of each SNP
with Sasquatch, Basset, and DeepSEA
and measured the fraction of LD blocks
that could be explained by one or more
SNPs from each tool. For Sasquatch, we
used the total damage, for Basset the
SNP accessibility difference (SAD), and
for DeepSEA we used the functional sig-
nificance score (funsig), which combines
sequence conservation with the NN out-
put, GM12878 DNase I predictor alone,
and the smallest E-value across all
GM12878 predictors (TF, histone marks,
and DNase I). We used a set of stringent
and relaxed thresholds for comparison
(Supplemental Fig. S16).

Compared to DeepSEA’s funsig
score, Sasquatch achieved more explain-
able blocks using stringent and slightly
less using the relaxed thresholds, with
Sasquatch showing comparable perfor-
mance to DeepSEA’s DNase I predictor.
Interestingly, the majority of blocks
that were flagged by Sasquatch but not
by both of DeepSEA’s DNase I and funsig
score were, in fact, flagged up by one of
the latter two.

Therefore, scanning exhaustively all
cell-type–associated predictors for any
changemight be a valid approach for pri-
oritizing causal SNPs and, in fact, taking
the smallest E-value across all predictors
flags up the largest proportion of LD

blocks in our test set, although it is difficult to know the number
of false positives without a concerted effort by the field to test
this enriched data set with in-depth ChIP experiments.

Changes in TF binding may not necessarily always coin-
cide with changes in DNase I hypersensitivity, and as Basset
has been specifically trained to predict the latter, its poor perfor-
mance in predicting changes in TF binding could be expected
(Supplemental Fig. S16). However, as it is only trained on
ENCODE DNase-seq, we included it in the comparison to demon-
strate the capabilities of learningNNs onDNase-seq data alone and
as a comparator for the two other approaches.

It is important to note that, while DeepSEA has been simulta-
neously trained on large collections of ENCODE data, Sasquatch
requires only a single data set. Therefore, when diverse genomic
data are available for a specific cell type, neuronal network ap-
proaches may represent the method of choice, which can, of
course, be performed in conjunction with Sasquatch analysis.
However, if such resources are limited, as is most often the case,
Sasquatch can yield comparable results from a single DNase-seq
data set.

Discussion

An important current challenge in molecular genetics is to under-
stand how genome variation alters gene expression and how this
defines genetic traits and predisposition to disease. However,

Figure 5. Characterizing a gain-of-function SNP. Sasquatch is capable of identifying a gain-of-function
SNP associated with down-regulation of the HBA genes (De Gobbi et al. 2006) and characterizing its reg-
ulatory context using in silico mutation analysis. The black arrow indicates the position of the regulatory
SNP (r_SNP). The in silico mutation plot identifies an introduction of a novel TF binding site (red panel) in
the patient haplotype. Furthermore, the novel peak appears to lie adjacent to other potentially active
binding sites, possibly contributing to the rSNP’s regulatory context. Weaker dotted lines indicate known
SNPs in the patient, neither of which appears to be associatedwith a strong change in footprint potential
(see Fig. 5; Supplemental Fig. S1). The gain of a novel GATA footprint is captured both in 7-mer and 6-
mer analysis, while 6-mers excel at capturing the characteristic shape of the GATA footprint.
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most variants found in GWAS studies lie in noncoding DNA, and
therefore, being able to discriminate between true regulatory SNPs
and variants in LD with them is a major roadblock in interpreting
GWAS.

Most regulatory elements can be identified by DNase-seq
and/or ATAC-seq (Schaub et al. 2012; Levo and Segal 2014). The
patterns of chromatin accessibility vary greatly between cell types
and regulatory SNPs and thus need to be investigated in the appro-
priate cell type. Simple intersectionwith these data does not differ-
entiate between causal SNPs and nonfunctional linked sequence
variants within these regions. To address this, we have developed
Sasquatch to rank and prioritize SNPs lying within regions of
open chromatin for their potential to cause changes in gene ex-
pression based on their likelihood of causing a change in TF bind-
ing. Sasquatch combines the power of comprehensive and
unbiased k-mer-based analysis with the single base-pair resolution
of DNase digital footprinting.

Other approaches proposed to predict regulatory SNPs in-
clude (1) prioritization based on overlaps with functional annota-
tions like ENCODE data (Kircher et al. 2014; Gulko et al. 2015); (2)
changes in PWM matching scores (Coetzee et al. 2015; Schmidt

et al. 2015); (3) TF-centric approaches,
via DNase footprints or allelic skewed
DNase-seq reads over precomputed
PWMs (Pique-Regi et al. 2011; Maurano
et al. 2015; Moyerbrailean et al. 2016);
and (4) sequence-based machine learn-
ing approaches using defined training
sets of TF ChIP-seq and/or chromatin ac-
cessibility as a proxy (Arvey et al. 2012;
Alipanahi et al. 2015; Lee et al. 2015;
Svetlichnyy et al. 2015; Zhou and
Troyanskaya 2015; Kelley et al. 2016;
Zeng et al. 2016). Specifically, the recent
convolutional neuronal network-based
approaches show promise for integrating
a wider sequence context into their pre-
dictions (Alipanahi et al. 2015; Zhou
and Troyanskaya 2015; Kelley et al.
2016). This would complement the Sas-
quatch’s k-mer-based approach. Never-
theless, no clear consensus has been
reached about which approaches are
able to accurately and efficiently priori-
tize regulatory SNPs. Since the number
of sufficiently validated regulatory vari-
ants is still limited and a gold standard
set is missing, benchmarks vary largely
between publications (Li et al. 2017) de-
pending on how the test data sets have
been constructed.

All of these methods have inherent
limitations. ChIP-seq or chromatin
accessibility peaks frequently contain
common and presumably neutral poly-
morphisms, and so presence within a
peak alone is not evidence of disruption.
Additionally, the number of TFs current-
ly amenable to ChIP-seq is only a fraction
of the total number (2000–3000) and
cannot cover the complete regulatory
landscape of even a single cell type.

Similarly, due to the current incomplete understanding of the se-
quences used by transcription factors across human development,
any dependence on PWM collections will necessarily be skewed
and contain many false negatives. Machine learning approaches
do away with the limitation of PMWs, learning directly from the
underlying sequences, but are highly dependent on the availabil-
ity of extensive training sets, are complex, computationally de-
manding, and only indirectly predict the effect on protein
binding.

Sasquatch provides a relatively simple and yet informative ap-
proach, requiring only a single DNase-seq data set from the appro-
priate cell type. Furthermore, it can use data from any genotype to
assess variants that are appropriate to that cell type. Sasquatch can
use publicly available data of any reasonable depth and quality,
generated by any of the existing DNase-seq protocols, including
low-input DNase-seq protocols (Lu et al. 2016), giving access to
analysis of data from small cell numbers (Supplemental Fig. S5).
The approach allows for the reuse of any existing data from the ap-
propriate cell type, and the current implementation gives access to
all of the current human ENCODE data that has been preprocessed
and is available to the scientific community via a rapid user-

Figure 6. Prioritization of GWAS variants with Sasquatch. (A) The workflow for assessing and prioritiz-
ing GWAS variants according to their footprint-damaging potential is shown on the left. We employed
Sasquatch using variants found to be significantly associated with red blood cell phenotypes (van der
Harst et al. 2012). Starting from 75 GWAS-identified SNPs, variants were imputed and filtered for occur-
rence within genome-wide DHSs in primary erythroid tissue. For the 100 intersecting SNPs, damage
scores were calculated and visualized using Sasquatch. (Note that variants not overlapping DHSs might
still be interesting because of the potential introduction of novel TF-binding sites.) The top-ranked foot-
print-damaging (rs1369312 G>T) and enhancing variants (rs13069307 G>A) from this analysis are
shown in B.
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friendly webtool. Within this platform, the average profiles of the
footprints are automatically plotted and quantified relative to ref-
erence genome plots and within the context of the whole regula-
tory elements using in silico mutation plots. To enable custom
analysis of unpublished data, all analysis tools have been made
available via GitHub and as Supplemental Software.

One limitation of the k-mer-based approach is its inability to
evaluate the influence of cobinding factors or the genomic context
on the average footprint of the sequences interrogated. However,
as our implementation of the algorithm is rapid and computation-
ally efficient, this can potentially be overcome in the future by de-
velopments that involve longer (gapped) k-mers (Ghandi et al.
2014). Another limitation of Sasquatch arises from the inherited
properties of DNase footprints. TFs that yield only weak footprints
will result in weaker average footprints and TFs that do not have a
DNase footprint in the first place will be impossible to detect. This
consequently translates into the ability to infer potential binding
changing variants and the current implementationmight disfavor
certain TFs with weak footprints. Furthermore, if a variant would
exchange the TF bound to a sequence rather than abolishing bind-
ing, the damage-based predictionmight not be able to pick this up.
However, investigating the associated profiles with such changes

can prove useful for probing differential
factor occupancy (see E-box usage exam-
ple, Supplemental Fig. S11D). It is impor-
tant to note that some changes in
transcription factor binding may not be
associated with a change in an underly-
ing binding site if the binding event is
dependent on long-range interactions
with other elements in the manner of
promoters and regulatory elements,
which would fit with observations that
variations in ChIP-seq signal are fre-
quently not explainable by very local
SNPs (Karczewski et al. 2011). However,
in this case, one would assume that any
genetic association (such as in GWAS)
would have highlighted this distal site
and so be tractable by the Sasquatch
approach.

In summary, driven by the current
challenges in the GWAS field, we have
developed an approach to quickly and
effectively prioritize sequence changes
based on their ability to bind protein in
vivo using cell- and tissue-specific data.
We have provided this as a public inter-
face which removes any major computa-
tional barriers and gives access to a large
and ever increasing repository of public
data with the aim of improving our un-
derstanding of how noncoding variants
affect gene expression and predisposi-
tion to human disease.

Methods

Cell source, culture, preparation,

and DNase-seq protocol (tissue

and background)

Human primary erythroid stem cell progenitors were isolated from
peripheral blood, using CD34 coupled magnetic beads. Fifty mil-
lion cells were used for the DNase-seq protocol.

The DNase-seq protocol was performed as previously pub-
lished (Hosseini et al. 2013). For the background libraries, 100 ng
of genomic DNA were incubated with DNase I for 3 min, and li-
braries were created as described in Supplemental Methods.

ATAC-seq protocol

ATAC-seqwas performed as previously published (Buenrostro et al.
2013). For details, see also Supplemental Methods. For the ATAC-
seq background, 100 ng of genomic DNA was incubated with the
Tn5 transposase and the librarywas generated following the proto-
col described in Supplemental Methods.

Data preprocessing

Paired-end reads were processed using our in-house DNase-
seq pipeline. In brief, reads were mapped using Bowtie (v0.12.8)
(Langmead et al. 2009). Sequencing adapters of unmapped
reads were trimmed using Trim Galore! (v0.3.1) (http://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/) and re-
mapped. Duplicates were removed using SAMtools (v0.1.19)

Figure 7. Assessing the footprint-damaging potential of functionally validated SNPs in nonerythroid
tissues. Sasquatch-predicted damaging potential recapitulates functionally validated SNPs identified
from GWAS studies in prostate and breast cancer. (A) SNP rs339331 T>C has been identified as signifi-
cantly associated with prostate cancer risk and functionally validated to impair RFX6 expression by dis-
rupting a HOXB13 binding site (Huang et al. 2014). Comparison of Sasquatch average profiles reflects
the binding impairment and predicts a high damaging potential. (B) Two intronic SNPs (rs2839494
and rs1078272) found within an estrogen response element have been identified as significantly associ-
ated with survival in breast cancer patients and are functionally validated (Hsiung et al. 2014). Sasquatch
predicts rs1078272 A>T to damage a potential JUN binding site, associated with a clear abolishment of a
footprint in the average profile. In silico mutation identified rs1078272 to be located within a cluster of
damaging variants. In contrast, rs2839494 C>G, proposed to directly alter ESR1 binding, is not detected.
This is most likely because Sasquatch is limited in detecting large motifs spanning multiple noninforma-
tive bases, due to the use of short k-mers, which is also reflected in the lack of signal in the in silico mu-
tation plot at that region. For the in silico mutation analysis, the T base at SNP rs107827 A>T retrieved
from the hg18 reference genome has been changed from the minor to the major SNP allele.
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(Li et al. 2009), and regions blacklisted for mappability issues
were removed (Source: ENCODE, http://hgdownload.cse.
ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/
wgEncodeDukeMapabilityRegionsExcludable.bed.gz).

DHSs were then called as peaks from the DNase-seq signal.
Peak-calling was performed using a SeqMonk (http://www.
bioinformatics.babraham.ac.uk/projects/seqmonk/)-like contig
generatorwithmanually optimized parameters according to visual
inspection. Detailed information and parameters for mapping and
peak-calling are listed per data set in Supplemental Table S3. For fil-
tering GWAS variants, we used a slightly relaxed stringency peak
call using MACS2 (Zhang et al. 2008) with default settings
(v2.0.10.20131216, default options include -q 0.05). MACS2 peaks
were also used for mouse data.

From the aligned reads, strand-specific DNase I cut sites were
extracted by assigning only the 5′ end of each mapped read to the
respective reference strand. Thus, each DNase I cut is attributed to
the first base of the read, which is the first base after the expected
cut site. Minus strand cut positions were corrected by subtracting 1
from each mapped 5′ end.

ATAC-seq data were processed as described for the DNase-seq
data, but the mapped cut sites were corrected by offsetting plus
strand reads by +4 and minus strand reads by −5 bp (Buenrostro
et al. 2013). Henceforth, ATAC-seq footprints were processed and
analyzed as described for DNase-seq below.

Retrieving and processing publicly available data

We retrieved DNase-seq data from three different publicly avail-
able sources (DFCI, Dana-Farber Cancer Institute [He et al. 2014],
GSE51915; Duke, ENCODE, DNase I HS, Duke University; UW,
ENCODE, DNase I HS, University of Washington). Details for pre-
processing public data are listed in Supplemental Methods. When
available, replicates were processed separately, and their cut pro-
files were merged afterwards by averaging the k-mer occurrences
and DNase I cut profiles.

Previously published mouse Ter119+ DNase-seq data are
available under accession number GSE49460.

Recording k-mer-based DNase I cut profiles

For every possible k-mer with (5-, 6-, 7-mers), the average DNase I
cut profile of the 300-bpwindow surrounding the k-mer was calcu-
lated. Only k-mer occurrences within DHSs were considered.
DHSs (extended by 150 bp to each side) were scanned with a slid-
ing window of length 300 bp + k-mer length. At every position, the
mapped DNase I cut sites within the window were recorded, mul-
tiplied with a sequence bias weighting factor, and attributed to the
center k-mer. Sequence bias weight factors were calculated accord-
ing to the 6-mer (Neph et al. 2012; Lazarovici et al. 2013; He et al.
2014; Sung et al. 2014; Yardimci et al. 2014)-based DNase I cutting
preference on genomic DNA (see Supplemental Methods for de-
tails). The total number of k-mer occurrences and the summed
up surrounding cut profiles were stored. The cut profiles were re-
corded in a strand-specific fashion.

Calculating relative cut probability profiles and estimating

shoulders and SFR

For every selected tissue and k-mer, the number of occurrences and
the associated cut profile can be retrieved from the stored files. For
downstream analysis, only the 250-bp window surrounding the k-
mer of interest was used. The relativeDNase I cut probability in the
250-bp window was calculated by dividing the weighted cut sites
per position by the sum of all weighted cuts within the window.

The profiles were not explicitly normalized for k-mer occurrence
as this is captured in the relative cut probability.

Strand-specific profiles were merged while accounting for the
DNase-seq strand-imbalance (Piper et al. 2015). Relative cut prob-
abilities upstream of the centric k-mer were retrieved solely from
the plus-strand profile, while downstream probabilities were de-
rived only from the minus strand. In the centric k-mer region,
the profiles were averaged. ATAC-seq-derived profiles were equally
merged from both strands. For downstream quantitative analysis,
the profiles were smoothed using a normal kernel smoothing
with a bandwidth of 5 bp (R ksmooth stats base package v3.2.3).
To define average footprints in the profiles, footprint shoulders
were estimated and the region in between was defined as the foot-
print. Therefore, edgeswithin the cut profileswere estimated by fil-
tering the profiles with a 1D Sobel operator to approximate the
second derivative where zero-crossings correspond to turning
points. Zero-crossings were detected and separated into upstream
and downstream. To speed up the analysis of noisy profiles, only
zero-crossingswith amaximumdistance of 50 bp to the k-mer cen-
ter were considered. Optimal shoulder positions and shoulder sizes
were estimated by maximizing the SFR. To speed up the analysis,
only shoulder sizes of 4, 6, 8, or 10 bpwere considered. To quantify
the footprint strength, the SFRwas calculated as the ratio of the av-
erage relative cut probability of both shoulder regions to the aver-
age probability in the footprint region. Thismeasure is comparable
to the footprint-occupancy score employed by ENCODE-related
footprint analysis (Neph et al. 2012). However, the SFR is simpli-
fied, as no pseudocounts are required for average profiles and the
SFR was chosen to maximize the score for strong footprints rather
than minimizing it.

Calculating damage and comparing sequences

To compare footprint characteristics of two profiles, for example
from a reference and a variant k-mer in the same tissue, the differ-
ence in their SFR was calculated (SFRvariant, SFRreference) as the
damage in footprinting potential introduced by that variant.
Thus, a positive damage reflects a weakened footprint and a nega-
tive damage an enhanced footprint. To ensure robustness over a
larger (13-bp) sequence context, every single base-pair variant
was analyzed as part of multiple 7-mers, occupying different posi-
tions (1–7) in a sliding window over the 13-bp sequences centered
on the variant of interest. After calculating the reference, variant
SFRs, and their pairwise damage scores for every sliding 7-mer win-
dow, the total damagewas then calculated as the sumof all damage
scores from the k-mer comparisons. Per default, a 7-mer scheme
was employed, querying the 13-bp sequence window centered
on the variant position. In addition, the pairwise relative change
was calculated for the highest scoring k-mer pair as the percentage
reduction in the SFR with respect to the highest SFR (reference or
variant): 100%− [100%/(SFRmax – 1)] × (SFRmin− 1).

In silico mutation

In silico mutation of genomic sequences was performed by com-
paring at every genomic position, every possible variant against
the reference base. For that, the respective 13-bp sequence win-
dows centered on the variant were queried, dissected, compared,
and summed up as described above. Output was a single
summed-up damage score per possible mutation.

SNP prioritization workflow

For prioritizing SNPs associatedwith red blood cell phenotypes, we
retrieved the list of 75 GWAS-identified SNPs from van der Harst
et al. (2012). The SNPs were imputed using the rAggr proxy search
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online tool (http://raggr.usc.edu/) with default values and the
1000 Genomes (The 1000 Genomes Project Consortium 2015) pi-
lot 1 database (r2 = 0.8, distance limit = 500 kb, population panels
= CEU, SA). The resulting 5714 variants were intersected with
DHSs from the human primary erythroid cells DNase-seq data
called with MACS2 (default settings with relaxed q-value cut off
0.05). One hundred SNPs intersected with DHSs. Reference and
variant sequences of the respective 13-bp windows centered on
the SNP position were retrieved. The DHSs intersecting SNPs
were than processed with the batch query mode of Sasquatch’s se-
quence comparison, and the total damage per variant was estimat-
ed. Afterward, SNPs were sorted and classified into neutral or
strong and weak gain or loss according to their total damage
with cutoffs of 1.0, 0.5, −0.5, and −1.0.

Benchmarking against Basset and DeepSEA

The full model of DeepSEA (v0.94) was downloaded and run with
default parameters. The Basset frameworkwas cloned fromGitHub
(accessed on August 10, 2017) and the full training data set was
downloaded and reconstructed according to the manual. The in-
ternal primary erythroid DNase-seq set was processed and added
to the training set, and the network was trained from scratch fol-
lowing the online manual.

For benchmarking, binding QTLs of five distinct transcrip-
tion factors identified from pooled Yoruban lymphoblastoid cell
lines were downloaded from Tehranchi et al. (2016). For each fac-
tor, the 25 most significant SNPs were extracted and queried
against dbSNP (Sherry et al. 2001) (build 149 - GRCh37p13).
Only SNPs for which an rsID could be extracted were kept. These
SNPs were imputed using plink (v1.9) against the YRI individuals
from 1000 Genomes (v3 release 20130502). SNPs with an R2≥
0.8 were queried against dbSNP, and all SNPs with rsID and the
sentinel SNP were grouped into LD blocks and their reference
and alternative allele extracted.

The impact of every SNP in GM12878 was predicted with all
three tools. For each tool, a set of stringent and a set of relaxed
thresholds was defined and the fraction of explainable LD blocks
calculated. For Sasquatch, we used the absolute value of the total
damaging score (stringent: 1.0, relaxed 0.5). For Basset, we used
0.1 SAD for both. For DeepSEA, we extracted the functional signifi-
cance score, the E-value of hypersensitive predictor alone, and the
minimum E-value across all GM12878 predictors (histone modifi-
cation, TFs, hypersensitivity), and used 0.05 as relaxed and 0.01 as
stringent cutoffs.

Additional R packages

Additional R (R Core Team2016) packages used for analysis and vi-
sualization are the following:

• Biostrings (v2.36.4, http://bioconductor.org/packages/release/
bioc/html/Biostrings.html)

• BSgenome (https://rdrr.io/bioc/BSgenome/)
• cowplot (v0.6.2, https://github.com/wilkelab/cowplot)
• ggplot2 (Wickham 2009)
• JASPAR 2016 (Mathelier et al. 2016)
• RColorBrewer (v1.1.1-2, https://CRAN.R-project.org/package=
RColorBrewer)

• reshape2 (v1.4.2, https://github.com/hadley/reshape)
• rtracklayer (v1.30.4) (Lawrence et al. 2009)
• TFBSTools (v1.6.1) (Tan and Lenhard 2016)

Software availability

The webtool is available under http://apps.molbiol.ox.ac.uk/
sasquatch/cgi-bin/foot.cgi. The R implementation and source

code for preprocessing novel data is available via GitHub (https
://github.com/rschwess/sasquatch) and as Supplemental Software.

Data access

Raw data sets of deep DNase-seq and ATAC-seq from human ery-
throid cells and the appropriate backgrounds have been submitted
to the NCBI Gene Expression Omnibus (GEO; https://www.ncbi.
nlm.nih.gov/geo/) under accession number GSE86393. The repos-
itory of preprocessed publicly available DNase-seq data is available
via the webtool.
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