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Abstract

Background: Altered lipid metabolism is involved in the development of

many tumors. However, the role of dissimilar lipid metabolism in head and

neck squamous cell carcinoma (HNSCC) is not fully established.

Aims: Here, we sought to determine the prognostic value of lipid metabolism‐
related genes in HNSCC.

Methods: RNA‐seq data and clinical features of 545 HNSCC cases were

obtained from The Cancer Genome Atlas database. A regulatory network of

transcription factors‐lipid metabolism genes and a risk prognostic model of

lipid metabolism‐related genes was developed using bioinformatics and Cox

regression modeling. We used tumor immune estimation resource to analyze

immune cell infiltration in patients with HNSCC based on the prognostic index

(PI) of lipid metabolism‐related genes.

Results: A total of 136 differentially expressed lipid metabolism genes were

identified. Of these, 23 are related to prognosis. In addition to predicting

HNSCC prognosis, 11 lipid metabolism‐related genes (ARSI, CYP27B1,

CYP2D6, DGKG, DHCR7, LPIN1, PHYH, PIP5K1B, PLA2G2D, RDH16, and

TRIB3) also affect HNSCC clinical features (stage, gender, and pathological

stage). The PI of lipid metabolism‐related genes embodied the state of HNSCC

tumor immune microenvironment.
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1 | INTRODUCTION

Abnormal lipid metabolism is one of the most remark-
able tumor metabolic defects. Increased lipid synthesis or
absorption contributes to rapid cancer cell growth and

tumorigenesis.1 Fabian et al.2 showed that factors in-
volved in lipid metabolism can reduce cancer incidence.
Recently, the autotaxin‐lysophosphatidic acid axis has
been shown to promote pancreatic cancer progression by
inducing interstitial cancer signal.3 In addition, lipids
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mediate intercellular communication in tumor immune
microenvironment (TIME).4 Prostaglandin E2, produced
by cyclooxy‐genase‐2, has been shown to promote TIME
and block production of Type I interferon, preventing
tumor elimination.5

Head and neck squamous cell carcinoma (HNSCC) is
a multisite malignancy that affects about 600,000 patients
annually, worldwide.6 Despite advances in treatment
approaches, the 5‐year survival rate remains about 50%.7

In recent years, immunotherapy has gained a lot of in-
terest for cancer treatment. However, it is only effective
in 20%–30% of patients.8 Thus, it is necessary to study
multicomponent antitumor responses and develop new
anti HNSCC therapeutics. Current studies have con-
firmed that lipid metabolism promotes HNSCC invasion.9

However, other links between lipid metabolism and
HNSCC are unclear.

Here, we sought to determine the survival role of lipid
metabolism‐related genes and their therapeutic potential
against HNSCC. We also systematically assessed the re-
lationship between lipid metabolism‐related genes and
overall HNSCC survival, as well as the correlation be-
tween prognostic index (PI) and six types of immune cells
using bioinformatics. Findings from this study may
improve personalized HNSCC treatment.

2 | METHODS

2.1 | Data collection and clinical
specimens

RNA‐seq and clinical data on 501 HNSCC samples and
44 adjacent noncancer samples were downloaded from The
Cancer Genome Atlas (https://cancergenome.nih.gov/). Four
lipid metabolism‐related data sets (Reactome metabolism of
lipids and lipoproteins, Reactome phospholipid metabolism,
Hallmark fatty acid metabolism, and Kyoto Encyclopedia of
Genes and Genomes (KEGG) glycerophospholipid metabo-
lism) were obtained from the Molecular Signature Database
v7.1 (MSigDB; https://www.gsea-msigdb.org/gsea/msigdb).10

Upon duplicates deletion, 856 lipid metabolism‐related genes
remained. Next, 318 validated transcription factors (TFs)
were obtained from Cistrome Cancer (http://cistrome.org/
CistromeCancer/; p< .05). Immunohistochemistry (IHC)
validation data were obtained from The Human Protein
Atlas (HPA) database (https://www.proteinatlas.org/).

2.2 | Bioinformatic analysis

Differentially expressed genes (DEGs) were analyzed using
“limma” package on R V3.6.1 (https://www.r-project.org;

log2 | fold change |>1, (FDR) < 0.05). Volcano plots and
DEGs heatmap analyses were done using ggplot2 and
pheatmap package, respectively.11 Database for annotation,
visualization and integrated discovery v6.8 (https://david.
ncifcrf. gov), was used for gene ontology (GO) and KEGG
enrichment analyses. Ggplot2 package was used to visualize
GO term and KEGG enrichment results. Mutation analyses
were done on CBioportal (https://www.cbioportal.org/).12

The TFs‐lipid metabolism‐related genes regulatory network
was mapped using Cytoscape v 3.7.0 (cor = .4, p< .001).13

2.3 | Prognostic analysis

The R survival package was used to assess relationships
between lipid metabolism‐related genes and overall sur-
vival (p< .05) and to plot survival curves. Prognosis related
lipid metabolism genes were visualized on forest maps.
Multivariate Cox analysis was used to select signature
genes and determine the PI for each patient (p< .05). Risk
curves were drawn using the pheatmap package. ROC
maps were created using the survival ROC package. Uni-
variate and multivariate independent prognostic analysis
by the survival package were used to determine if PI could
be used as an independent prognostic indicator.

2.4 | Correlation analyses

Correlation maps between clinical features and signature
genes were drawn using beeswarm package. Tumor in-
filtration immune cells data were obtained from tumor im-
mune estimation resource (TIMER; https://cistrome.
shinyapps.io/timer/) and included data on B‐cells, CD4+

T‐cells, CD8+ T‐cells, neutrophils, macrophages, and den-
dritic cells.14 These raw data were used to construct a re-
lationship landscape between PI and six immune cell
types (p< .05).

2.5 | Statistical analysis

R software was used for results visualization. Differences
between two groups were compared using independent
t test. p< .05 indicated statistically significant differences.

3 | RESULTS

3.1 | Summary of results

Our analysis identified 4783 DEGs. Of these, 136 are asso-
ciated with lipid metabolism and 63 are TFs. Differentially
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FIGURE 1 (A) Heatmap of DEGs between tumor and matched adjacent normal tissue. (B) Heatmap of lipid metabolism‐related
DEGs between tumor and matched adjacent normal tissue. (C) Volcano map of DEGs. Red represent 3602 upregulated DEGs. Green
represent 1181 downregulated DEGs. (D) Volcano map of lipid metabolism‐related DEGs. Red represent 64 upregulated lipid
metabolism‐related DEGs. Green represent 72 downregulated lipid metabolism‐related DEGs. (E) GO term enrichment analysis of
lipid metabolism‐related DEGs. (F) KEGG pathway enrichment analysis of lipid metabolism‐related DEGs. DEGs, differentially
expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes
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expressed lipid metabolism‐related genes were subjected to
GO term and KEGG pathway analysis. We then assessed
the mutations of the prognosis‐related lipid metabolism
genes and constructed a regulatory network of TFs and lipid
metabolism‐related genes. We further established a prog-
nosis model of lipid metabolism‐related genes and divided
all patients into two groups based on PI. The gene set was
validated on HPA database and their relationship to clinical
traits and immune cells determined.

3.2 | Identification of differentially
expressed lipid metabolism‐related genes

There were 4783 HNSCC DEGs, of which 136 are lipid
metabolism‐related genes. A total of 3602 DEGs were
highly expressed and 1181 lowly expressed (Figure 1A–C).
64 differentially expressed lipid metabolism‐related genes
were upregulated and 72 downregulated (Figure 1D). GO
term analysis of these lipid metabolism‐related DEGs re-
vealed that “fatty acid metabolic process,” “lipid droplet,”
and “cofactor binding” were commonest in biological
progress, cellular components, and molecular functions
(MF), respectively (Figure 1E). The KEGG pathway ana-
lysis confirmed that glycerol phospholipid metabolism was
the most abundant pathway (Figure 1F).

3.3 | Mutation of prognosis‐associated
lipid metabolism‐related DEGs

Univariate analysis identified 23 prognosis‐related lipid
metabolism genes (Table 1). Forest map analysis found
that 14 prognosis‐related lipid metabolism genes were
high‐risk genes (Figure 2). Mutation analysis revealed
that many prognosis‐related lipid metabolism genes had
missense mutations (Figure 3).

3.4 | Transcriptional regulation of
prognosis‐associated lipid
metabolism‐related genes

A total of 63 DEGs were TFs (Figure 4A), of which 46 were
highly expressed and 17 lowly expressed (Figure 4B).
Transcription regulation results showed that eigth high‐
risk lipid metabolism‐related genes (GLA, ACAT1, DGKG,
TXNRD1, PTDSS1, SMS, PIP5K1B, and CAV1) and eight
TFs (PPAPG, MYH11, H2AFX, HEY1, CBX2, SNAI2,
SPDEF, and FOXA2) were strongly associated with poor
HNSCC prognosis. Moreover, five low‐risk lipid
metabolism‐related genes, including LIPE, CYP2D6,

ACACB, FLA2G2D, and ACSM3, were regulated by 13
TFs (FOXP3, HOXB13, LIN9, EZH2, E2F7, E2F1, DNMT1,
CDK2, BRCA1, POU5F1, FBX1, MEF2C, and LMNB1;
Figure 4C).

3.5 | Establishment of a lipid
metabolism‐related genes model

The PI of each patient was calculated using a Cox re-
gression model as follows: [Expression level of ARSI ×
(0.0174)] + [Expression level of CYP27B1 × (0.0351)] +
[Expression level of CYP2D6 × (−0.7896)] + [Expression
level of DGKG× (0.2370)] + [Expression level of

TABLE 1 Characteristics of prognostic‐associated lipid
metabolism‐related DEGs in HNSCC

Gene symbol logFC FDR HR p‐value

ACACB −1.91283 2.06E‐08 0.695329 .021644

ACAT1 −1.07091 1.03E‐09 1.076735 .000427

ACSM3 −1.81226 6.40E‐13 0.332704 .026772

ARSI 1.845219 1.59E‐09 1.018558 .00167

CAV1 2.022183 7.76E‐12 1.001701 .005342

CYP27B1 2.655062 2.14E‐17 1.039416 .025136

CYP2D6 1.038407 0.000924 0.31642 .001544

DGKG 1.650183 4.49E‐05 1.216316 .033068

DHCR7 1.201921 4.21E‐08 1.003386 .00505

GLA 1.011635 5.67E‐16 1.020917 .023121

LGALS1 1.756956 1.18E‐13 1.000487 .008192

LIPE −1.07213 1.53E‐08 0.794247 .00126

LPIN1 −1.35084 4.47E‐13 0.829065 .010292

PHYH −1.81438 0.00023 1.059175 .021776

PIP5K1B −1.17052 0.001633 1.096121 .004707

PLA2G2D 1.915179 0.010662 0.888622 .006509

PNPLA7 −1.7196 2.77E‐13 0.42771 .007787

PTDSS1 1.049457 1.72E‐18 1.012456 .042013

RDH16 2.101086 1.06E‐11 0.92112 .020293

SMS 1.264379 6.68E‐18 1.006017 .000451

SQLE 1.050198 1.72E‐10 1.007276 .033865

TRIB3 1.478643 1.10E‐12 1.020547 .000329

TXNRD1 1.252268 7.86E‐06 1.004885 .018553

Abbreviations: DEGs, differentially expressed genes; FC, fold change; FDR,
false discovery rate; HNSCC, Head and neck squamous cell carcinoma; HR,
hazard ratio.
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FIGURE 2 Prognosis‐associated lipid metabolism‐related differentially expressed genes

FIGURE 3 Mutation analysis of prognosis‐associated lipid metabolism‐related differentially expressed genes
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DHCR7 × (0.0038)] + [Expression level of LPIN1 ×
(−0.1588)] + [Expression level of PHYH× (0.0667)] +
[Expression level of PIP5K1B × (0.0959)] + [Expression
level of PLA2G2D × (−0.0737) + [Expression level of
RDH16 × (−0.1001)] + [Expression level of TRIB3 ×
(0.0138)]. Next, patients were divided into high‐ and low‐
risk group based on median PI and a risk curve con-
structed (Figure 5A–C). Figure 6A shows that low‐risk
patients had higher survival rates relative to high‐risk
patients. The PI based on lipid metabolism‐related genes
can distinguish patients with HNSCC based on potential
discrete clinical outcomes. Thus, we established that PI
effectively and accurately stratifies patients with HNSCC.
Area under the curve values of the 1‐, 3‐, and 5‐year were
0.664, 0.724, and 0.623, respectively (Figure 6B–D), in-
dicating a high prognostic value. Univariate and multi-
variate analyses were used to estimate the value of the
acquired PI (Figure 7). Univariate risk analysis identified
clinical stage, N stage and PI, as independent prognosis
predictors. However, comprehensive analysis of all

clinical information indicated that only PI was an in-
dependent predictor (p< .001). HPA database IHC data
validated the risk model, except for CYP27B1 and
PLA2G2D (Figure 8).

3.6 | Correlation analysis of clinical and
immune cell infiltration

Multivariate Cox regression analysis of the relationship
between lipid metabolism‐related genes and clinical
characteristics like age, sex, pathological stage, clinical
stage, T stage, and N stage (Table 2) revealed statistically
significant association with different genes (Figure 9).
Analysis of the relationship between risk genes and
clinical features revealed that CYP2D6, LPIN1, and
PLA2G2D were highly expressed in G3&4 relative to
G1&2 (p= .014, p= .005, and p= .022). PIP5K1B was
highly expressed in females (p= .048). DGKG, PHYH,
TRIB3, and risk score positively correlated with clinical

FIGURE 4 Transcriptional regulation of lipid metabolism‐related genes. (A) Heatmap of differentially expressed TFs between
tumor and matched adjacent normal tissue. (B) Forty‐six upregulated DEGs (red) and 17 downregulated DEGs (green). (C) TFs and
prognosis related lipid metabolism genes regulatory network. DEGs, differentially expressed genes; TFs, transcription factors

XIONG ET AL. | 201



stage (p= .008, p< .001, p< .001, and p= .007). Risk
score and TRIB3 were positively correlated with T stage
(p= .006 and p= .015), while RDH16 negatively corre-
lated with T stage (p= .038). DGKG, LPIN1, and PHYH
positively correlated with N stage (p= .017, p= .022, and
p= .008). Examination of the relationship between PI
and immune cell infiltration to determine if these risk
genes precisely reflect HNSCC immune environment
revealed that lipid metabolism‐related genes PI nega-
tively correlated with CD4+ T‐cells, CD8+ T‐cells, neu-
trophils cell, B‐cells, and dendritic cells (p= .002,
p= .004, p= .025, p< .001, and p= .005; Figure 10).

4 | DISCUSSION

HNSCC is characterized by a low cure rate and easy re-
currence. Multiple studies have shown that aberrant lipid

metabolism influences HNSCC tumorigenesis. In
HNSCC models, cetuximab resistance has been linked to
lipid metabolism alterations.15 Reduced expression of
metabolism‐related genes may improve survival of HPV‐
positive patients with head and neck cancer (HNC).16

FADS1 has emerged as mediator of lipid metabolism
gene and drives laryngeal squamous cell carcinoma pro-
gression by activating AKT/mTOR signaling pathway.17

In oral squamous cell carcinoma (OSCC), the Kennedy
signaling pathway is upregulated by cholesterol and gly-
cerophospholipid (GPL) metabolic changes.18 While lipid
metabolism is vital for HNC, its role is not completely
understood in HNSCC.

Here, we used bioinformatics to comprehensively
study lipid metabolism‐related genes in HNSCC. Our
data highlight the value of these genes in anti‐HNSCC
therapy. We confirmed that some lipid metabolism‐
related genes are involved in HNSCC progression and

FIGURE 5 Establishment of a prognosis‐associated lipid metabolism‐related genes model. (A) Rank and distribution of
prognostic index. (B) Survival status of patients in two groups. (C) Heatmap of the signature genes
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constructed individualized lipid metabolism prognostic
indicators to assess immune cells infiltration and survival
rate. Thus, lipid metabolism‐related genes are potential
tumor biomarkers.

RNA‐seq analysis of lipid metabolism‐related genes in
HNSCC tumor tissue versus adjacent noncancer tissue
found that lipid metabolism‐related genes are altered in
HNSCC. These DEGs exhibit enrichment for fatty acid
metabolic processes. Elevated fatty acid synthesis has
been observed in various cancers. Multiple studies have
confirmed that lipogenesis is important for tumor
growth.19 The MFs analysis revealed cofactor binding
enrichment. An active RNA editing complex is formed by
APOBEC1 cytosine deaminase and cofactor A1CF. This

complex acts on APOB RNA to regulate lipid
metabolism.20 The KEGG pathway analysis revealed GPL
metabolism as the most enriched pathway. In OSCC,
GPL metabolism is the most abundant form of lipid
metabolism.18 These data indicated the molecular me-
chanism underlying lipid metabolism in HNSCC.

Univariate Cox analysis revealed that 23 lipid
metabolism‐related genes correlate with HNSCC prognosis.
Of these, acetyl‐coA acetyltransferase 1 (ACAT1), diacylgly-
cerol kinase gamma (DGKG), and phosphatidylinositol‐4‐
phosphate 5‐kinase type 1 beta (PIP5K1B) genes had higher
hazard ratios. These genes have been reported to influence
carcinoma tumorigenesis, proliferation, and migration.21–28 It
has been reported that missense mutations are common in

FIGURE 6 Survival prediction and model validation. (A) Prediction of outcome of stratified patients. (B–D) 1‐, 3‐, and 5‐year
AUCs were 0.664, 0.724, and 0.623, respectively. AUC, area under the curve; ROC, receiver operating characteristic
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FIGURE 7 Risk score independent
prognostic analysis. (A) Univariate
regression analysis of HNSCC. (B)
Multiple regression analysis of HNSCC.
HNSCC, head and neck squamous cell
carcinoma

FIGURE 8 Immunohistochemistry of the gene set on HPA. Representative images showing the expression of each gene in HNSCC
tissues versus normal oral cavity mucosal tissues. HNSCC, head and neck squamous cell carcinoma; HPA, The Human Protein Atlas
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HNSCC cell lines.29 Fatty acid and cholesterol metabolism
are regulated by TFs.1 Thus, we developed a regulatory
network of TFs‐lipid metabolism genes and identified thior-
edoxin reductase‐1, phosphatidylserine synthase 1, and
DGKG as the key regulatory TFs genes. These findings are
consistent with past studies,30–35 indicating the reliability of
our study.

Cox regression analysis revealed 11 lipid metabolism‐
related genes associated with HNSCC prognosis. ROC
indicated that our results are highly accurate. Lipid
metabolism‐related genes PI had a high prognosis value
and were related to age, pathological tumor stage, TN
stage, and gender. It is reported that CYP27B1, CYP2D6,
and TRIB3 are directly or indirectly involved in HNSCC

development and progression.36–39 DGKG, DHCR7,
LPIN1, PIP5K1B, PLA2G2D, and RDH16 are involved in
the development of other tumors.26,28,40–43 However,
ARSI and PHYH have not been previously studied in
cancers. In addition, the gene set was validated using
HPA data on HNSCC and other tumors. Further analysis
of the relationship between these genes will offer theo-
retical basis for HNSCC treatment.

27‐hydroxyl cholesterol indirectly affects breast can-
cer metastasis by increasing the number of metastasizing
immune cells and suppressing CD8+ T‐cells.44 Increased
TIME cholesterol may cause CD8+ T‐cell exhaustion.45

Together, these findings indicate that abnormal lipid
metabolism may affect the number and function of tumor

TABLE 2 Relationship between risk genes and HNSCC clinical features

Age Gender Grade Stage T N

Gene
symbol

(≤ 60/>60) (Male/Female) (1&2/3&4) (I&II/III&IV) (1&2/3&4) (0/1–3)
t(p) t(p) t(p) t(p) t(p) t(p)

ARSI 0.233 −0.028 1.051 −0.324 −0.528 −0.19

(0.816) (0.978) (0.295) (0.747) (0.598) (0.849)

CYP27B1 −0.749 1.221 −0.391 1.401 −0.293 0.617

(0.455) (0.224) (0.696) (0.164) (0.770) (0.537)

CYP2D6 1.218 −1.074 −2.485 −1.346 0.643 −1.408

(0.224) (0.284) (0.014) (0.181) (0.521) (0.160)

DGKG −0.709 0.058 −0.741 −2.69 −1.767 −2.407

(0.479) (0.954) (0.460) (0.008) (0.078) (0.017)

DHCR7 1.733 −0.498 −0.047 −0.69 −1.78 −1.563

(0.084) (0.619) (0.963) (0.492) (0.076) (0.119)

LPIN1 0.665 −0.672 −2.9 −0.638 −0.912 −2.295

(0.507) (0.502) (0.005) (0.524) (0.362) (0.022)

PHYH −0.782 −0.803 −1.942 −3.975 0.126 −2.678

(0.435) (0.423) (0.055) (9.266e‐05) (0.900) (0.008)

PIP5K1B 0.838 −1.981 −0.996 −1.95 −1.399 −1.443

(0.403) (0.048) (0.322) (0.052) (0.163) (0.150)

PLA2G2D 1.287 −1.377 −2.324 0.787 1.793 −0.312

(0.199) (0.169) (0.022) (0.434) (0.075) (0.756)

RDH16 0.117 −0.512 0.101 1.06 2.093 0.219

(0.907) (0.609) (0.920) (0.292) (0.038) (0.827)

TRIB3 −0.351 −1.077 −0.329 −3.793 −2.759 −0.632

(0.726) (0.283) (0.743) (1.807e‐04) (0.006) (0.528)

Risk score 0.912 −0.316 −0.881 −2.701 −2.438 −1.537

(0.363) (0.752) (0.381) (0.007) (0.015) (0.126)

Note: The bold values represent the significant t and P value of the comparison between the two groups. t, t value of Student's t test; p: p‐value of Student's t test.
Abbreviation: HNSCC, head and neck squamous cell carcinoma.
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immune cells. Thus, we designed a simple protocol for
monitoring immune status in patients with HNSCC
based on lipid metabolism‐associated genes. The results
indicated that CD4+ T‐cells, CD8+ T‐cells, neutrophils,
B‐cells, and dendritic cells had a higher degree of in-
filtration in low‐risk patients with HNSCC. Consistent
with past studies,46–49 we found that CD4+ T‐cells and
CD8+ T‐cells were necessary for antitumor immunity and
improved prognosis outcome. Neutrophils, B‐cells, and
dendritic cells were comprised of different subpopula-
tions with pro‐ and antitumor function. Here, we found
that these three immune cell types have antitumor roles
in HNSCC.50–58 In addition, tumor associated macro-
phages may be polarized into M1‐like macrophages with

anticancer activity, or M2 macrophages with pro‐cancer
roles.59 We found that macrophages (predominantly M1)
have a higher degree of infiltration in low‐risk HNSCC.
Our findings validate and enhance the recognition of
immune cells functions in HNSCC.

In summary, we conducted a comprehensive analysis
of HNSCC mutations, the regulatory mechanisms of lipid
metabolism‐related genes, the relationship between these
genes and clinical prognosis and immune infiltration,
and determined the genes' prognostic value. The risk
score of lipid metabolism‐related genes may reflect the
prognosis and immune status of patients. However, the
prognostic value of lipid metabolism‐related genes in
HNSCC needs further experimental verification.

FIGURE 9 Relationship between risk genes and head and neck squamous cell carcinoma clinical features
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