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Polysialic acid (polySia) is a sugar homopolymer consisting of at least eight glycosidically
linked sialic acid units. It is a posttranslational modification of a limited number of proteins
with the neural cell adhesion molecule NCAM being the most prominent. As extensively
reviewed before, polySia-NCAM is crucial for brain development and synaptic plasticity but
also modulates tumor growth and malignancy. Functions of polySia have been attributed
to its polyanionic character, its spatial expansion into the extracellular space, and its
modulation of NCAM interactions. In this mini-review, we first summarize briefly, how the
modulation of NCAM functions by polySia impacts tumor cell growth and leads to
malformations during brain development of polySia-deficient mice, with a focus on
how the latter may be linked to altered behaviors in the mouse model and to
neurodevelopmental predispositions to psychiatric disorders. We then elaborate on the
implications of polySia functions in hippocampal plasticity, learning and memory of mice in
light of recently described polySia changes related to altered neurogenesis in the aging
human brain and in neurodegenerative disease. Furthermore, we highlight recent progress
that extends the range of polySia functions across diverse fields of neurobiology such as
cortical interneuron development and connectivity, myelination and myelin repair, or the
regulation of microglia activity. We discuss possible common and distinct mechanisms
that may underlie these seemingly divergent roles of polySia, and provide prospects for
new therapeutic approaches building on our improved understanding of polySia functions.

Keywords: protein glycosylation, schizophrenia, Alzheimer’s disease, interneuron migration, myelin maintenance
and remyelination, microglia and macrophage activation, immune balance, sialic acid-binding immunoglobulin-like
lectins (Siglecs).

INTRODUCTION

It is now 40 years ago, that α-2,8 glycosidically linked polymers of the sialic acid N-acetylneuraminic
acid, short polysialic acid (polySia), have been discovered as a unique posttranslational modification
of glycoproteins in the early postnatal rat brain (Finne, 1982). This was paralleled by realizing that the
remarkable differences between the neural cell adhesion molecule NCAM in embryonic and adult
chicken brain are due to a carbohydrate modification that is sensitive to treatment with a bacterial
neuraminidase (Rothbard et al., 1982). Since then, the modification of NCAM by polySia and its role
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during nervous system development and plasticity has been
studied in a plethora of papers and extensively reviewed,
implementing a major function of polySia as a steric
modulator of not only NCAM but also of other cell-cell and
cell-matrix interactions, which enables structural plasticity and
contrasts with a cell contact stabilizing role of NCAM devoid of
polySia (Edelman, 1984; Rutishauser et al., 1988; Rutishauser,
2008). While this is still the prevailing model, deciphering the
genetic basis of polysialylation helped tomore closely define a role
of polySia in controlling NCAM interactions and signaling, and
to separate this from polySia functions independent of NCAM
modulation. Although broadly reviewed elsewhere (Hildebrandt
et al., 2007; Mühlenhoff et al., 2013; Colley et al., 2014; Schnaar
et al., 2014), this lays the grounds for more recent studies and
therefore is briefly outlined in the following chapter. Although
NCAM is by far the major carrier of polySia, a few other
polysialylated proteins were detected in the nervous system
(Figure 1). One of them is the synaptic cell adhesion molecule
SynCAM 1. As detailed in Figure 1, polySia-SynCAM 1 has first
been described in the perinatal mouse brain and seems confined
to a subset of oligodendrocyte precursor cells (OPCs), the cell
population, whose main function is the generation of myelinating
oligodendrocytes (Galuska et al., 2010; Werneburg et al., 2015a).
While functions of polySia-SynCAM 1 are still elusive, recent
progress on the role of polySia on neuropilin-1 (NRP2) and E-
selectin ligand 1 (ESL-1) is summarized in the section “PolySia in
microglia and macrophage activation”. Concerning the long-
standing role of polySia in synaptic transmission, plasticity,
learning and memory, however, the reader is referred to other
expert reviews (Hildebrandt and Dityatev, 2015; Varbanov and
Dityatev, 2017).

POLYSIA MODULATES NCAM FUNCTIONS
IN BRAIN AND TUMOR DEVELOPMENT

In brain development, NCAM is implicated in axon guidance and
neural cell migration (Maness and Schachner, 2007). Almost all
NCAM is polysialylated in the embryonic and perinatal brain,
followed by a rapid decrease of polySia and the occurrence of
polySia-free NCAM during the early postnatal phase (Oltmann-
Norden et al., 2008). As reviewed in great detail elsewhere
(Bonfanti, 2006; Nacher et al., 2013), polySia-NCAM is
expressed by most neural precursors and immature neurons of
the developing brain but restricted to sites of ongoing
neurogenesis or plasticity in the adult, including newborn
neurons in the neurogenic niches of the subventricular zone
and the dentate gyrus, dendrites and axons (mossy fibers) of
mature dentate granule neurons, as well as some other cell types,
such as subpopulations of interneurons in the cortex and
amygdala.

NCAM-negative mice are almost completely devoid of
polySia, but show a surprisingly mild phenotype (Cremer
et al., 1994). Two prominent defects are the impaired
postnatal migration of interneuron precursors from the
neurogenic subventricular zone towards the olfactory bulb and
the incorrect lamination of hippocampal mossy fibers. Both could

be recapitulated by injections of the polySia-degrading enzyme
endosialidase into the early postnatal brain indicating that they
are caused by the loss of polySia independent of specific NCAM
functions (Ono et al., 1994; Seki and Rutishauser, 1998).
Although disputed, the most common explanation of these
findings is a steric hindrance of cell surface interactions in the
presence of polySia-NCAM (for a detailed discussion, see Schnaar
et al., 2014). Likewise, and again summarized in more detail
elsewhere, the anti-adhesive properties of polySia are considered
a major reason for metastatic or invasive growth of polySia-
positive tumors such as neuroblastoma, small and non-small cell
lung carcinomas or glioblastoma, to name just a few (Hildebrandt
et al., 2010; Colley et al., 2014).

Contrasting this rather unspecific mechanistic view, evidence
for a specific control of NCAM functions by polySia emerged
from studies on neuroblastoma cells and from the analysis of
mice with genetic ablation of polysialylation without affecting the
expression of NCAM. Both lines of studies were sparked by the
identification of the two mammalian polysialyltransferases
(polySTs), ST8SIA2 and ST8SIA4, which both are individually
able to produce polySia on NCAM (Eckhardt et al., 1995; Kojima
et al., 1995; Nakayama et al., 1995; Scheidegger et al., 1995).
Although their expression patterns indicate independent
transcriptional regulation, the two polySTs often occur
simultaneously in tumor cells and during brain development
(Hildebrandt et al., 1998a; Hildebrandt et al., 1998b; Ong et al.,
1998). In these cases, either both enzymes have to be deleted to
obtain polySia-negative cells without affecting NCAM
expression, or, as frequently applied to study cellular systems,
polySia can be removed by endosialidase treatment.

Bridging tumor cell growth and neuron-like differentiation,
polySia-NCAM positive neuroblastoma cells are a particularly
interesting model system. PolySia-NCAM levels in serum and on
tumors correlate with malignancy of neuroblastoma, but are low
after successful therapy (Glüer et al., 1998). Neuroblastoma and
most of the human neuroblastoma-derived cell lines use both
polySTs to produce polySia (Hildebrandt et al., 1998b;
Seidenfaden et al., 2000; Seidenfaden and Hildebrandt, 2001;
Valentiner et al., 2011). Based on the initial observation that
endosialidase treatment reduces neuroblastoma cell growth, these
cells were used to demonstrate that loss of polySia initiates
NCAM trans-interactions, leading to reduced proliferation in
favor of more robust survival and neuron-like differentiation due
to a sustained activation of the ERK signaling pathway
(Seidenfaden et al., 2003; Seidenfaden et al., 2006). NCAM
and polyST transfections of a polySia- and NCAM-negative
neuroblastoma cell line enabled combinatorial interaction
studies revealing that polySia is a negative regulator of
heterophilic NCAM trans-interactions at cell-cell contacts
(Seidenfaden et al., 2003). Further studies in this system
identified specific NCAM modules that induce FGF-receptor
signaling to activate ERK, or FGF receptor-independent
signaling causing reduced motility and enhanced focal
adhesion at the cell-substrate interface (Eggers et al., 2011). A
receptor for the latter, however, is still elusive.

Notably, the control of heterophilic NCAM trans-interactions
by polySia could also be demonstrated for neural precursor cells.
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Removal of polySia from cell-cell contacts promotes
differentiation of subventricular zone-derived neuroblasts, and
when exposed to polySia-free NCAM, neuroblasts from wildtype
and NCAM knockout mice both respond in the same way by
increased formation of neurites and enhanced differentiation
towards a calretinin-positive phenotype (Röckle et al., 2008).

Complementary to these cellular studies, the combined
analysis of polyST- and NCAM-negative mouse models
enabled the dissection of polySia and NCAM functions during
mouse brain development. Each of the two polyST knockout lines
shows specific phenotypic traits but retains substantial amounts
of polySia (Eckhardt et al., 2000; Angata et al., 2004). Their

FIGURE 1 | PolySia carriers in the nervous system. (A) PolySia structure and schematic representation of polysialylated NCAM, synaptic cell adhesion molecule 1
(SynCAM 1), neuropilin-2 (NRP2) and E-selectin ligand 1 (ESL-1). Involved polySTs, glycosylation sites, type of the core glycan (N- or O-glycosylation) and selected
characteristics are indicated. (B) In cultured OPCs, polySia-SynCAM 1 is detected in NCAM-negative OPCs comprising a subpopulation of about 20% of all polySia-
positive OPCs. In these cells, polySia-SynCAM 1 accumulates in the Golgi-compartment, but is depleted in response to depolarization (Werneburg et al., 2015a).
So far, the possible functions of polySia-SynCAM 1 in OPC differentiation and myelination remain elusive. Notably, polySia-SynCAM 1 was not detected during OPC
expansion and remyelination in the cuprizone model (Werneburg et al., 2017; see section “PolySia in myelin maintenance and repair”). (C) In cultured microglia (stained
with the microglia/macrophage marker CD11b), polySia is also confined to the Golgi compartment, identified by the marker giantin, but rapidly depleted in response to
inflammatory activation with bacterial lipopolysaccharide (LPS). See also Figure 2D and section “PolySia in microglia and macrophage activation”. Information on
polysialylation of SynCAM 1, NRP2 and ESL-1 is based on Curreli et al., 2007, Galuska et al., 2010, Rollenhagen et al., 2012, 2013, Werneburg et al., 2015a, 2015b,
2016, 2017, and Thiesler et al., 2021. Images in Panels B and C are reproduced from Werneburg et al., 2015a and 2016 with permission from Wiley.
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polySia patterns indicate a predominant role of ST8SIA2 during
embryonic brain development and in immature neurons of the
adult brain, switching towards ST8SIA4-driven polySia synthesis
in mature neurons that retain polySia (Eckhardt et al., 2000;
Angata et al., 2004; Oltmann-Norden et al., 2008; Nacher et al.,
2010). In contrast, St8sia2/St8sia4 double knockout mice are
completely devoid of polySia (Weinhold et al., 2005; Angata
et al., 2007). These mice recapitulate the major features of
NCAM knockout mice that could be phenocopied by
endosialidase injections, i.e., impaired migration of olfactory
interneuron precursors causing smaller olfactory bulbs, and
delamination of mossy fibers (Weinhold et al., 2005; Röckle
and Hildebrandt, 2016). In addition, polyST-negative mice
show a severe phenotype with postnatal growth retardation,
precocious death and major defects in brain development,
including a high incidence of progressive hydrocephalus and
malformations of major brain axon tracts. All of these severe
defects could be rescued by the additional ablation of NCAM in
St8sia2/St8sia4/Ncam triple knockout mice indicating that the
regulation of NCAM interactions is a vital developmental
function of polySia (Weinhold et al., 2005). This was
substantiated by showing that not the loss of polySia per se,
but the amount of polySia-negative NCAM present during brain
development is directly correlated with the hypoplasia of, e.g.,
corpus callosum, anterior commissure or internal capsule
(Hildebrandt et al., 2009). Combined with the cellular studies
described above, the data make a compelling case that the tight
regulation of NCAM signaling is a key function of polySia.

ALTERED POLYSIALYLATION AND
NEURODEVELOPMENTAL
PREDISPOSITION TO PSYCHIATRIC
DISEASE

Reduced numbers of polySia-positive cells in the hilus region of
the hippocampus (Barbeau et al., 1995) and reduced polySia
immunoreactivity in the prefrontal cortex (PFC) were detected in
schizophrenic patients (Gilabert-Juan et al., 2012). In contrast,
polySia in the amygdala was reduced in depressive and increased
in bipolar disorder patients (Varea et al., 2012). Furthermore,
increased polySia-NCAM levels in the serum of schizophrenic
patients have been linked to negative symptoms and cognitive
performance. Strikingly, the serum levels were inversely
correlated to grey matter reductions in Brodmann area 46 of
the left prefrontal cortex, a region implicated in cognitive
functions and frequently reported to show early alterations in
schizophrenia (Piras et al., 2015).

By genetic studies, variations in ST8SIA2 have been
associated with schizophrenia (Arai et al., 2006; Tao et al.,
2007; Gilabert-Juan et al., 2013a; Yang et al., 2015), autism
(Anney et al., 2010; Kamien et al., 2014), bipolar disorder (Lee
et al., 2011; McAuley et al., 2012; Shaw et al., 2014; Yang et al.,
2015) and depression (Kautzky et al., 2015). Arguably, these
diseases have common genetic risk factors and
neurodevelopmental predispositions creating a possible link

between genetic variation of ST8SIA2 and altered brain
development in these disorders.

In schizophrenia, reductions of the internal capsule appear to
be linked to thalamocortical dysconnectivity, decreased size of the
thalamus, and ventricular enlargement. Based on the correlation
of internal capsule hypoplasia with polySia-negative NCAM and
severe developmental deficits of thalamocortical connectivity in
St8sia2/St8sia4 double knockout mice (Hildebrandt et al., 2009;
Schiff et al., 2011), this system was re-evaluated in St8sia2 and
St8sia4 single knockout mice, together with a comparative
behavioral analysis (Kröcher et al., 2015). The
neuroanatomical assessment revealed a variable degree of
ventricular dilatation as well as size reductions of the thalamus
and the internal capsule in St8sia2- but not St8sia4-deficient mice.
This was accompanied by a severely disordered pattern of fibers
connecting thalamus and cortex, and reduced glutamatergic
thalamic input to the frontal/prefrontal cortex. In a novel
object recognition task, both lines showed signs of impaired
memory, whereas working memory, prepulse inhibition and
amphetamine-induced hyperlocomotion were only affected in
the St8sia2-deficient mice indicating that compromised brain
development caused by the loss of ST8SIA2-dependent
polysialylation can lead to schizophrenia-like psychotic
behavior (Kröcher et al., 2015). Along the same lines, it has
been shown that cognitive deficits of adult St8sia2-deficient mice
are aggravated by exposure to tetrahydrocannabinol (THC), the
main psychoactive compound of cannabis, during adolescence
(Tantra et al., 2014). A synergistic negative effect was observed
3 months after the end of THC injections and was accompanied
by an imbalance between polySia-positive and -negative NCAM
in the hippocampus and altered polySia immunoreactivity in the
outer molecular layer of the dentate gyrus. In light of the
prominent effects of polySia on synaptic transmission (for
reviews, see Hildebrandt and Dityatev, 2015; Varbanov and
Dityatev, 2017), altered polysialylation in this synaptic input
region of the hippocampus could indeed be a mechanism by
which THC acts as an environmental second hit to further
disturb a genetically predisposed and neurodevelopmentally
vulnerable system. Similarly, in a double hit mouse model of
schizophrenia, changes of polySia were detected in
hippocampus and PFC together with a marked reduction of
the parvalbumin (PV)-positive population of inhibitory
interneurons indicating altered excitatory–inhibitory balance
in the PFC (Gilabert-Juan et al., 2013b).

PolyST-deficient mice also show severe reductions and altered
synaptic connectivity of PV-positive interneurons in the PFC
(Kröcher et al., 2014; Curto et al., 2019). This phenotype can be
segregated by specific ablation of St8sia2 in cortical interneurons
that are born in the medial ganglionic eminences of the
embryonic telencephalon and migrate into the developing
cortex (Schuster et al., 2020). PV-positive interneurons are
firmly linked to cognitive performance and loss of these cells
in the PFC is a frequently reported neuropathological finding in
schizophrenia, autism and related disorders (Lewis et al., 2012;
Marin, 2012). Therefore, the reduction of PV neurons alone or
together with impaired glutamatergic thalamocortical input on
inter- and/or projection neurons of the PFC (Bygrave et al., 2016;

Frontiers in Cell and Developmental Biology | www.frontiersin.org April 2022 | Volume 10 | Article 8717574

Thiesler et al. News and Views on PolySia

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


FIGURE 2 | Implications of polysialylation for the neurodevelopmental basis of psychotic behavior, hippocampal neurogenesis, myelin repair and Siglec-mediated
immunomodulation. (A) Schematic overview of mammillary body (MB) connectivity affected by conventional or conditional knockout of St8sia2 and its behavioral
consequences. (A1) The MB is a group of hypothalamic nuclei, which receives its major input from the subiculum of the hippocampus via the postcommissural fornix
(pcf), and sends projections to the anterior thalamic nuclei (ATN) via the mammillothalamic tract (mt). Themt is formed by collaterals of the principal mammillary tract
(pm), which continues asmammillotegmental tract (mtg) towards the ventral and dorsal tegmental nuclei of Gudden in themidbrain (VTg, DTg). Reversely, themammillary
peduncle (mp) projects from these tegmental nuclei to the MB. St8sia2−/− mice show hypoplasia of MB and VTg, and of all afferent and efferent MB connections. As
indicated by the lightning symbols, both Emx1-Cre;St8sia2f/f (EcKO) and Foxb1-Cre;St8sia2f/f (FcKO) showmt hypoplasia, but less pronounced than in St8sia2−/−mice,
whereas EcKO and St8sia2−/− mice show the same hypoplasia of the pcf, and FcKO fully reproduce all other deficits of MB, VTg and their reciprocal connections. (A2)
Summary of the neurodevelopmental morphological deficits and behavioral traits inSt8sia2−/−mice that are fully (✓), largely (✓), partially (✓), or not (-) reproduced in FcKO,
EcKO or Lhx6-Cre;St8sia2f/f (LcKO) mice. cc, corpus callosum. Assessed behavioral traits are (i) increased sensitivity of the locomotor response to the psychotropic drug
MK-801 (hyperlocomotion), (ii) exacerbated apomorphine-induced impairment of prepulse inhibition of the acoustic startle response (impaired PPI), (iii) reduced anxiety in
the elevated plus maze (hypoanxiety), and (iv) impaired spatial working memory in a delayed nonmatch-to-place T-maze task. Data compiled from Küçükerden et al.
(2022). (B) Scheme of neurogenesis, occurrence of polySia and doublecortin, and expression of polySTs in the dentate gyrus of the hippocampal formation. (B1) In the
subgranular zone of the dentate gyrus (SGZ), slowly dividing astrocytic, GFAP-positive radial glia-like progenitors give rise to dividing intermediate progenitors, which
migrate into the granule cell layer (GCL) while differentiating towards unipolar immature and finally mature granule neurons with polySia-negative somata, but polySia on

(Continued )
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Bolkan et al., 2017) may contribute to the psychotic behavior of
St8sia2-deficient mice.

Altered fear behavior, increased aggression, reduced anxiety,
and deficits in social interactions are other behavioral traits of
St8sia2-deficient mice (Angata et al., 2004; Calandreau et al.,
2010). As shown recently, local knockdown of St8sia2 in the early
postnatal amygdala was sufficient to reproduce increased
aggression and impaired fear learning (Bacq et al., 2020). Both
changes in behavior seem to be linked to developmentally
impaired glutamatergic synaptic transmission and could be
normalized by administration of the partial NMDA-receptor
agonist D-cycloserine to the amygdala. In contrast, the local
silencing had no effect on anxiety, and the hypoanxiety of
St8sia2 knockout mice could not be normalized by local
application, but by ventricular delivery of D-cycloserine. Thus,
selected behavioral traits of St8sia2-deficient mice could be
assigned to developmental alterations in the amygdala.

To further dissect neurodevelopmental defects and behavioral
consequences of St8sia2 deficiency, mice with conditional
knockout (cKO) of St8sia2 in cortical interneurons (Lhx6-Cre;
St8sia2f/f) were compared to mice with cKO in the cortical
environment (Emx1-Cre;St8sia2f/f), in the di- and
mesencephalon (Foxb1-Cre;St8sia2f/f), or both (Foxb1-Cre;
Emx1-Cre;St8sia2f/f) (Küçükerden et al., 2022). Unexpectedly,
disturbed thalamocortical connectivity could not be observed
in any of these cKO lines. However, the same hypoplasia of
corpus callosum and fornix was detected in St8sia2−/− and Emx1-
Cre driven cKO mice, while Foxb1-Cre driven cKO mice fully
reproduced deficits of the mammillary body (MB) and its
connectivity, including a prominent reduction of PV-positive
mammillary projection neurons and hypoplasia of
mammillothalamic and mammillotegmental connections
(Figure 2A). Largely consistent with behavioral consequences
of MB lesions (Field et al., 1978; Beracochea and Krazem, 1991;
Vann, 2009), only mice with these mammillary deficits
reproduced a number of psychosis-like symptoms of St8sia2-
deficient mice (Figure 2A). Linking altered MB connectivity and
mental disorders, abnormal neuron densities, reduced numbers
of PV neurons, or smaller volumes of the MB have also been
observed in schizophrenic, depressive or bipolar patients (Briess
et al., 1998; Bernstein et al., 2007). In contrast, only St8sia2−/− but
none of the cKO mice showed impaired working memory, which

therefore seems not to be caused by the mammillary deficits and
also not by reductions of cortical interneurons, as these are
equally pronounced in St8sia2−/− and Lhx6-Cre;St8sia2f/f mice.
Instead, the working memory deficits may arise from impaired
thalamocortical circuits, possibly in combination with altered
interneuron functions.

Taken together, the available data in mice and humans
support the idea that imbalanced polysialylation can lead to a
neurodevelopmental predisposition to psychiatric diseases.

POLYSIA AND NEUROGENESIS IN
LEARNING AND MEMORY, AGING AND
NEURODEGENERATION
Together with doublecortin (DCX), polySia is one of the most
frequently used markers to identify intermediate progenitor
stages during adult neurogenesis (Lledo et al., 2006;
Kempermann et al., 2018) (Figure 2B). Concerning polySia
functions in this context, in vitro findings on its role in
regulating differentiation of subventricular zone-derived
neuroblasts (Röckle et al., 2008; see section 2) received
support by a concomitant study describing that enzymatic
polySia removal leads to less migration in favor of enhanced
maturation of progenitors in the neurogenic subgranular zone
(SGZ) of the dentate gyrus in vivo (Burgess et al., 2008). A related
finding is the increase of DCX-positive progenitors in the SGZ of
St8sia4-deficient mice (Nacher et al., 2010). More recently, it
could be demonstrated that memory deficits of St8sia4 knockout
mice in a novel object recognition task could be overcome by
environmental enrichment (Zerwas et al., 2016). St8sia4
deficiency had no effect on neurogenesis per se, but
environmental enrichment was associated with an increased
number of polySia-positive cells in the SGZ, i.e., of early
progenitors with an ST8SIA2-dependent polySia production.
Possibly, a larger pool of newborn polySia-positive progenitors
supports the beneficial effects of enhanced neurogenesis on
memory performance by mice housed in an enriched
environment.

In light of these findings, it is intriguing that a recent study on
human aging found no age-related decline of hippocampal
neurogenesis, but a clear correlation of age with a decrease in

FIGURE 2 | their mossy fiber axons running through the hilus, as well as on their dendritic arbors in the molecular layer (mol). Stages with doublecortin- and polySia-
positive somata are indicated. (B2) Coronal mouse brain section with polySia (green) and doublecortin (DCX, red) double-positive intermediate progenitors (arrows) and
unipolar immature granule neurons (arrowheads). Nuclear counterstain with DAPI (blue). Detection of polyST mRNAs by in situ hybridization indicates expression of
St8sia2 and St8sia4 in the neurogenic subgranular zone (SGZ) but only St8sia4 expression persists in the neurons of the granule cell layer (GCL). Immunofluorescent
color image reproduced from Tantra et al. Behav Brain Res. 275 (2014), p.173 (Figure 4B) with permission from Elsevier, microscopic greyscale images reproduced from
Hildebrandt et al. J Neurochem. 71 (1998), p. 2343 (Fig. 3M,N) with permission from Wiley. (C) Remyelination depends on polysialylation of NCAM by ST8SIA2. (C1)
Course of myelination, oligodendrocyte precursor expansion and microglia activation in the corpus callosum during demyelination induced by cuprizone treatment for
5 weeks followed by remyelination during 1 week after cuprizone withdrawal (based on data reviewed by Skripuletz et al., 2011). (C2) Comparison of remyelination in
wildtype (+/+), St8sia2−/−, and Ncam−/−mice by immunohistochemical staining and evaluation of myelin basic protein (MBP; reproduced fromWerneburg et al., 2017).
(D) Simplified working model of the proposed feedback regulation of microglia and macrophage activation by polysialylated proteins. Inflammatory activation by pattern
recognition receptors (PRRs), responding to damage- and pathogen-associated molecular patterns (DAMPs, PAMPs), leads to ectodomain shedding of polysialylated
ESL-1 and NRP2 produced by the polysialyltransferase ST8SIA4 in the Golgi compartment. Shed protein-bound polySia then interacts with murine Siglec-E or human
Siglec-11 to inhibit inflammatory activation via signaling through cytoplasmic inhibitory domains (ITIMs, red squares). In humans capable of producing Siglec-16 (see text
for details), polySia binding to Siglec-16 can possibly counteract the Siglec-11-mediated inhibition by triggering the association of Siglec-16 with the activating adaptor
protein DAP12. PolySia-NCAM in the cellular environment, if present, may exert the same Siglec-mediated effects.
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the number of polySia-positive, unipolar immature granule cells
in the SGZ and the adjacent granule cell layer, which was
interpreted as an indicator of reduced neuroplasticity (Boldrini
et al., 2018). Furthermore, an early decline in the percentage of
DCX-positive cells that express polySia has been reported during
progression of Alzheimer’s disease (Moreno-Jimenez et al., 2019).
In contrast, this specific cell population was increased in
Huntington’s disease and not altered in patients with
frontotemporal dementia, alpha-synucleinopathies (Parkinson’s
disease and dementia with Lewy bodies), or amyloid lateral
sclerosis, each of which, however, displayed specific alterations
of other cellular features in the dentate gyrus (Terreros-Roncal
et al., 2021).

POLYSIA IN MYELIN MAINTENANCE AND
REPAIR

In the brain, the insulating sheath of myelin around axons is
formed by oligodendrocytes, which are generated from
oligodendrocyte precursor cells (OPCs). PolySia levels
decrease during OPC differentiation and myelination (Trotter
et al., 1989; Nait Oumesmar et al., 1995). In vitro data indicate a
dual role of polySia in promoting OPC chemotaxis but inhibiting
myelin formation (Charles et al., 2000; Zhang et al., 2004).
Correspondingly, in multiple sclerosis lesions polySia has been
detected on OPCs and on chronically demyelinated axons
(Charles et al., 2002; Nait-Oumesmar et al., 2007). However,
it seems that the downregulation of polySia during OPC
differentiation is a major prerequisite for efficient myelin
formation, because mice with forced expression of St8sia4 in
the oligodendrocyte lineage, but not in neurons, displayed a
reduced myelin content and formed less compact myelin (Fewou
et al., 2007; Bakhti et al., 2013; Fewou et al., 2019). St8sia2-
deficient mice show axonal damage and aberrant myelin
maintenance linked to deficits in oligodendrocyte
development, possibly caused by altered PDGF receptor
signaling (Szewczyk et al., 2017). A dual role of polySia for
myelin repair has been derived from analyses of remyelination
after cuprizone-induced demyelination. Remyelination was
slightly accelerated in the absence of ST8SIA4, but equally
impaired in St8sia2- and in Ncam-deficient mice
(Koutsoudaki et al., 2010; Werneburg et al., 2017)
(Figure 2C). These seemingly discrepant findings might be
explained by a cell autonomous impairment of OPC
differentiation in the absence of ST8SIA2 or NCAM, but
premature differentiation in ST8SIA4-negative cultures. This
opposing role of the two polySTs is supported by their
sequential expression during OPC differentiation. The
importance of polySia regulation is reinforced by showing that
retinoic acid, a potent promoter of OPC differentiation and
remyelination (Huang et al., 2011), enhances St8sia2
expression and that artificial polysialylation of the cell surface
accelerates OPC differentiation (Werneburg et al., 2017).

Together, the data identify polysialylation and polySTs as
promising therapeutic targets to support myelin repair in
demyelinating diseases.

POLYSIA IN MICROGLIA AND
MACROPHAGE ACTIVATION

Following a first description of neuroprotective effects by
polySia interactions with microglia transduced with the
human-specific inhibitory immunoreceptor Siglec-11 (Wang
and Neumann, 2010), the potent inhibition of inflammatory
microglia and macrophage activation by soluble, free or
protein-bound polySia was demonstrated in murine
microglia and human THP-1 macrophages (Shahraz et al.,
2015; Werneburg et al., 2015a; Kallolimath et al., 2016;
Werneburg et al., 2016). Concomitantly, NRP2 and ESL-1
(gene name Glg1) were identified as polySia carriers in
cultured microglia and THP-1 macrophages as well as in
injury-induced microglia in brain slice cultures (Werneburg
et al., 2015a; Werneburg et al., 2016). Remarkably, the two
polysialylated proteins accumulated in the Golgi
compartment, but in response to LPS-induced inflammatory
activation they rapidly were translocated to the cell surface and
released by ectodomain shedding (see Figure 1C). Based on
the effect of soluble polySia, it was assumed that polySia on the
released proteins is involved in negative feedback regulation of
microglia activation. This could be confirmed by identifying
Siglec-E as the receptor responsible for polySia-mediated
inhibition in murine microglia (Thiesler et al., 2021)
(Figure 2D). This study also revealed that the shedding of
polysialylated proteins continues for at least 24 h after LPS-
induction and provided first evidence for accumulation and
shedding of polySia by injury-induced microglia in vivo.

A first indication of the potential for therapeutic application of
soluble polySia came from its beneficial effects on laser-induced
retina damage in transgenic mice expressing human Siglec-11 in
microglia and macrophages (Karlstetter et al., 2017). Although
the interpretation might be hampered by concurrent effects of
transgenic Siglec-11 and intrinsic murine Siglec-E, this pioneer
study demonstrated a potent reduction of injury–induced
microglia/macrophage activation and complement deposition.
With regard to any therapeutic application of polySia, it also
has to be considered that humans have a second polySia-binding
immunoreceptor, Siglec-16, with essentially the same
extracellular domain as Siglec-11, but activating immune
signaling, which may have evolved to balance responses to
polySia-presenting pathogens (Cao et al., 2008; Schwarz et al.,
2017). However, the majority of the human population is
homozygous for an inactive pseudogene, SIGLEC16P, with a
four base pair deletion disrupting the open reading frame,
and, therefore, not able to express functional Siglec-16
(Hayakawa et al., 2005; Wang et al., 2012; Hayakawa et al.,
2017). So far, virtually nothing is known about the role of
Siglec-16 in the brain, in part because there is no known
counterpart of Siglec-16 in non-primates.

CONCLUSION AND PERSPECTIVES

Despite increasing evidence for specific polySia interactions,
the modulation of NCAM is still the major developmental
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function of polySia. A neglected topic of this review is the long
history of proposed interactions of polySia with BDNF and
other growth factors or chemokines, mainly because their
relevance in the brain is largely speculative
(comprehensively reviewed by Colley et al., 2014; Schnaar
et al., 2014). The recently described cell autonomous role of
polySia in the migration of cortical interneuron progenitors
might be based on binding of BDNF or chemokines (Schuster
et al., 2020). Hence, this system would be suited to test, e.g., for
similarities to the mode of polySia interactions with the
chemokine CCL21 in chemotactic migration of dendritic
cells (Kiermaier et al., 2016). Quite a few intriguing
questions relate to the role(s) of the two different polySia-
carriers shed by activated microglia/macrophages and the
relevance of the polySia-Siglec axis for innate immune
responses in the brain, ranging from injury-induced
activation to modulation of inflammatory processes in

aging, neurodegeneration, or demyelinating disease, and
their future exploration may lead to new therapeutic avenues.
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