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Abstract

Thrombolytic therapy in the treatment of cardiogenic acute cerebral embolism caused by

coagulated blood carries the risk of hemorrhagic complications, and there is a need to

develop safer and more reliable treatment methods. Laser thrombolysis therapy, which uti-

lizes the difference in energy absorption between the thrombus and the arterial wall, has

shown promise as a new treatment method because it can selectively act only on the throm-

bus. It has not been applied clinically, however, and one of the main reasons for this is that

its underlying mechanism has not been elucidated. We developed a pulse laser thromboly-

sis system for treating cerebral blood vessels that consists of a diode-pumped solid-state

neodymium-yttrium aluminum garnet laser, which has excellent stability and maintainability

and is suitable for clinical applications coupled to a small-diameter optical fiber. Moreover,

we analyzed the mechanisms that occur during pulsed laser irradiation of transparent glass

tubes and gelatin phantoms. We found that bubbles form as a thermal effect in addition to

ablation of the pulsed laser irradiation. Furthermore, we detected no shock waves or water

jets associated with the bubbles. We analyzed the bubbles’ dynamics and growth rate, and

their effect on a rabbit blood clot phantom. We concluded that the bubbles generated by the

laser irradiation physically cut the thrombus and thereby had a thrombectomy effect. We

believe that this study will clarify the mechanism of laser thrombolysis therapy and contrib-

ute greatly to the realization of its clinical application.

Introduction

According to a report by the Ministry of Health, Labour and Welfare, cerebrovascular disease

accounts for one in ten deaths in Japan. In particular, cardiogenic acute cerebral embolism, in

which blood flow to the brain is suddenly interrupted, often causes serious, if not fatal,
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symptoms [1, 2]. For this reason, blood flow during cerebral embolism needs to be restarted

before the brain tissue is irreversibly damaged (within approximately 4.5 hours), and thrombo-

lytic therapy with drugs (tissue plasminogen activator: tPA) is a first choice.

On the other hand, thrombolytic therapy increases the risk of hemorrhagic complications,

so safer and more reliable treatment methods need to be developed [3–7]. There have been

rapid advances in endovascular interventional techniques, such as embolectomy with mechan-

ical embolus removal using the cerebral ischemia (Merci) retrieval system (Concentric Medi-

cal, Mountain View, CA, USA) and mechanical clot aspiration with the Penumbra system

(Penumbra, Alameda, CA, USA). However, endovascular interventional techniques have clini-

cal issues, such as the risk of vascular injury.

At the same time, selective laser thrombolysis, which utilizes the difference in energy

absorption between the thrombus and the arterial wall in the 300–600 nm band, has been

attempted, and studies using a 577 nm dye laser and a 308 nm excimer laser have been

reported [8–15]. Notably, the difference in the range from 500 to 600 nm is expected to have a

selective effect on fibrin and redblood-cell-rich red thrombi, which cause cardiogenic cerebral

embolism [10]. For instance, Viator et al. reported laser thrombolysis using a pulsed laser with

a wavelength of 532 nm and a pulse width of 50–200 μs [16]. They reported that the irradiation

generated air bubbles and suggested that bursting bubbles caused a water jet effect that helped

remove the thrombus, although they did not clarify the underlying removal mechanism. Laser

thrombolysis, like any treatment in cerebral vasculature, involves a certain amount of risk and

it has not been used clinically even though many researchers have vigorously studied the

effects of laser thrombolysis therapy. This may be due in large part to the fact the mechanism

underlying thrombus removal has not yet been elucidated.

We are developing a diode-pumped all-solid-state neodymium-yttrium aluminum garnet

(Nd:YAG) laser system (wavelength: 532 nm, pulse width: 50–200 µs, repetition: 1–10 Hz) for

clinical applications. We believe that a fully solid-state laser is suitable because of its ease of

maintenance and stability. To enable irradiation of cerebral blood vessels, our system consists

of a low-peak-power pulse laser with and an optical fiber that has a core diameter of 100 µm.

Our device is easily portable and can be used in in vivo experiments. In this study reported

here, clear transmission images were obtained of transparent glass tubes and gelatin phantoms,

and a detailed analysis of the mechanism of thrombus removal was attempted in an experi-

ment on a rabbit blood clot phantom. We found that bubbles were generated as a thermal

effect of the pulsed laser irradiation. In particular, the growth rate of the bubbles did not

exceed the acoustic velocity, and there was no shock wave or water jet as had been suggested in

previous reports. Hence, we concluded that physical cutting by the bubbles themselves the

thrombus is removed in therapy. We believe that the results of this study will be an important

contribution to the realization of the clinical application of laser thrombolysis therapy.

Materials and methods

Laser system

A prototype laser system (LA1292; Hamamatsu Photonics, Shizuoka, Japan) was developed as

a pulse laser source for laser thrombolysis with a double enclosure structure for the purpose of

preventing light leakage. A block diagram and a photo of the system are shown in Fig 1, and its

specifications are listed in Table 1. This system has a diode-pumped second-harmonic all-

solid-state Nd:YAG laser (wavelength: 532 nm). Since the laser system has a relatively broad

pulse width in the microsecond range, a second harmonic can be efficiently obtained by plac-

ing a potassium titanyl phosphate (KTP: KTiOPO4) crystal inside the resonator. A pulse laser

was coupled into an optical fiber by a collimating lens installed in the cabinet. To treat the
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thrombus at the middle cerebral artery (MCA) M2 area (vessel diameter� 1 mm), a small-

diameter quartz fiber (F-MCB-T; Newport Corporation, Irvine, CA, USA) was used (core

diameter: 100 µm, cladding diameter: 110 µm, numerical aperture (NA): 0.22). Thus, the laser

system has more than 100 mW in average power at the tip of the fiber, with a pulse width of

50, 100, or 200 µs and a repetition rate of 1 to 10 Hz. The connector for the optical fiber was

placed at the apex of the arm at a sufficient height to accommodate the movements of a person

during surgery. The connector is a non-contact type that uses focusing optical system to pre-

vent damage during replacement of the fiber. The pulsed laser irradiation is controlled by a

foot switch that is linked to a mechanical shutter installed in the enclosure, allowing the sur-

geon to keep both hands-free during laser irradiation.

Dynamic analysis of laser irradiation

A high-speed camera (FASTCAM SAPHC; Photoron, Tokyo, Japan) was used to analyze the

single pulse reaction. A block diagram of the experimental setup is shown in Fig 2. We used

gelatin phantoms encapsulated in glass tubes to obtain detailed transmission images. A dye

(Direct Red 81; Sigma-Aldrich, St. Louis, MO, USA) was added to 10 wt% gelatin (G2500;

Sigma-Aldrich, St Louis, MO, USA) to make the phantom’s absorbance at 532 nm equal to

that of blood [15, 17]. The hardness of gelatin depends on its protein concentration, but it is

Fig 1. Laser system: LA1292. (a) External view and (b) block diagram. The transportable laser irradiation system for

laser thrombolysis therapy with a doddle enclosure for preventing light leakage. Width: 500 mm, Depth: 747 mm,

Height: 1847 mm (including the arm).

https://doi.org/10.1371/journal.pone.0262991.g001

Table 1. Specifications of LA1292.

Wavelength 532 nm

Pulse Width 50, 100, 200 μs (fixed value)

Frequency 1–10 Hz (variable)

Average Power Max 120 mW

Second-harmonic all-solid-state Nd:YAG laser system (wavelength: 532 nm). The repetition rate can be varied in the

range of 1–10 Hz in 1 Hz increments. The maximum average power is 120 mW (pulse width: 100 μs, repetition: 5

Hz).

https://doi.org/10.1371/journal.pone.0262991.t001
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difficult to obtain a correlation between the mechanical strength of a gelatin phantom and that

of an actual thrombus [11]. Therefore, we determined the concentration of gelatin on the basis

of animal studies and experience. A glass tube with inner and outer diameters of 2 mm and 3

mm (FPT-300; Fujirika, Osaka, Japan) was filled with a 10 wt% aqueous solution of gelatin,

cooled until the gelatin coagulated, and then filled with saline. An optical fiber was inserted

into the glass tube, and pulsed laser irradiation was performed. The surface of the gelatin phan-

tom was bent into a U-shape along the glass wall due to surface tension. Therefore, the posi-

tions of the fiber tip and the surface of the gelatin phantom were judged visually using the

camera image, and the distance between the tip of the fiber and the surface of the gelatin phan-

tom was controlled within a micrometer of 0.5 mm. The camera frame rate and the exposure

time were set at 2 µs/f and 10 µs, respectively. The amount of incident energy was 4–16 mJ/

pulse (N = 5 in each irradiation condition). Bubble size was calculated from the measured

length of major and minor axes at the maximum size, considering the bubble’s cross section to

be elliptical. To prevent heat dissolution of gelatin before irradiation, room temperature dur-

ing the experiment was set at 25˚C.

Evaluating the size of debris

Male New Zealand White (NZW) rabbits (11 to 12 weeks old) purchased from Japan SLC (Shi-

zuoka, Japan) were used in the present study. All surgery was performed under isoflurane

inhalation anesthesia (Pfizer, New York, NY, USA) under strictly standardized conditions. All

animal experiments were approved by the animal care and use committee of the Hamamatsu

University School of Medicine (No. 2017025).

The size of debris generated by irradiation was evaluated using a rabbit blood clot phantom.

Whole blood was collected from the carotid artery of NZW rabbits under isoflurane anesthe-

sia. After the blood was collected, the rabbits were sacrificed with an overdose of pentobarbital.

Blood clots in a polyethylene tube were made by incubation for 40 to 50 min. at 37˚C. As with

the gelatin phantom, a glass tube with an inner diameter of 2.0 mm was filled with clot phan-

tom along with saline. Average power was 0, 20, 40, 60, and 80 mW, pulse width was 100 μs,

frequency was 5 Hz, and irradiation time was 10 s (0 mW: N = 3, 20–80 mW: N = 5 each).

When blood clots were continuously irradiated with a pulsed laser, the tip of the optical fiber

Fig 2. Block diagram of the in vitro experiment using a high-speed camera for dynamic analysis of the pulsed

laser irradiation reaction.

https://doi.org/10.1371/journal.pone.0262991.g002
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was scorched due to coagulation of blood cell components. The optical fiber was inserted in a

polyethylene tube (inner diameter: 0.40 mm, outer diameter: 0.80mm, KN-392-SP 28; Nat-

sume Seisakusho, Tokyo, Japan), which resembled a catheter, and heparinized saline (concen-

tration: 20 U/mL, flow rate: 6 mL/h) was continuously administered during the irradiation to

prevent scorching of the blood clots. After irradiation, saline containing debris was collected

by a pipette, and images of debris were taken using a phase-contrast microscope (ECLIPS

E200, Nikon, Tokyo, Japan) without using Giemsa staining. The open-source image-process-

ing software ImageJ was used to evaluate the particle size.

Statistical analysis

An independent-samples t-test was used to determine significant differences in the data. IBM

SPSS Statistics version 26 (IBM, Armonk, NY, USA) was used.

Results

Dynamic analysis of laser irradiation

Fig 3 shows a typical reaction to one pulse laser irradiation (irradiation energy: 16 mJ/pulse,

pulse width: 100 μs) in a gelatin phantom. When the laser pulse irradiated the gelatin phantom,

a bubble formed at the tip of the optical fiber (Fig 3, 10 μs). The bubble (indicated by white

arrow in Fig 3) was generated within 10 μs after the start of irradiation, and the rest of the

pulse light irradiated the inside of the growing bubble. The generated bubbles infiltrated into

the gelatin phantom and an ellipsoidal shape growing in the irradiation direction was formed.

The bubbles reached a maximum size of 2.53 mm in the long-axis direction (average

Fig 3. Typical example of a bubble generated by one pulsed laser irradiation in a gelatin phantom (incidence energy: 16 mJ/pulse, pulse width: 100 μs,

frame rate: 10 μs/f, exposure time: 2 μs). A bubble (white arrow) in the gelatin phantom was generated within 10 μs after the irradiation onset and grew over

time. The inner wall of the growing bubble was irradiated with pulsed light for 100 µs. The pulsed light was scattered and reflected within the bubble. The

bubbles continued to grow even after the pulsed light irradiation ended, reaching a maximum size (long-axis direction: 2.53 mm, short-axis direction: 1.35

mm) after 420 µs. At 1280 μs, the bubble disappeared and cutting marks were observed in the gelatin (yellow arrow). No bubble bursts were observed.

https://doi.org/10.1371/journal.pone.0262991.g003
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2.64 ± 0.19 mm, N = 5) at 420 μs after the start of the irradiation. After that, the bubbles did

not burst but shrank and disappeared, and cutting marks on the gelatin phantom were found

around the tip of the optical fiber at 1280 μs after the irradiation onset. The maximum size in

the short-axis direction was 1.35 mm (average: 1.42 ± 0.10 mm). After the bubble had disap-

peared by pulsed laser irradiation and cutting marks were observed in the gelatin phantom,

the bubbles reappeared several times due to the elasticity of the gelatin phantom. This bubble

generation, expansion, shrinkage, disappearance, and reappearance completely stopped after

about 3300 μs (see S1 Movie). The growth rate of the bubble showed a maximum value of

69.1 ± 15.3 m/s (N = 5) at 10μs after the irradiation onset (Fig 4).

Fig 5 shows the relationship between the amount of incident energy and the bubble size

(projected area). As the amount of incident energy increased, the size of the bubbles also

increased. However, for the same amount of incident energy, the bubbles generated with a

pulse width of 200 μs for both 8 mJ/pulse and 16 mJ/pulse were significantly smaller than

those generated with a pulse width of 100 μs (�, ��; p< 0.05).

Evaluating the size of debris

The blood clot phantom was irradiated with a pulsed laser, and the size of the generated debris

was evaluated. Debris leakage from the clot phantom was observed even before pulsed laser

irradiation because of the effects of heparinized saline being continuously administered. How-

ever, significant debris generation was observed only after laser irradiation (Fig 6(A) and S2

Movie). Fig 6(B) shows a typical example of debris. [9] Debris consisted mainly of single red

blood cells and aggregates of red blood cells. [18] The size of the largest piece of debris detected

was 44 μm, but the sizes of more than 98% of the pieces of debris were less than 20 μm. There

was little change in the morphology of the red blood cells. Fig 6(C) and Table 2 shows the aver-

age ratio of debris observed under each condition of average power from 0 to 80 mW (0 mW:

N = 3, 20–80 mW: N = 5). More than 93% of the debris sizes were smaller than 6 μm in irradia-

tion conditions with an average power of no more than 20 mW. On the other hand, the

Fig 4. Growth velocity of bubbles generated by laser irradiation in gelatin phantom. Horizontal axis: Elapsed time

after pulse laser irradiation. Vertical axis: Growth velocity of bubble in the long axis direction. The bubble growth

velocity reached a maximum of 69.1 ± 15.3 m/s (N = 5) at 10 µs after the start of irradiation.

https://doi.org/10.1371/journal.pone.0262991.g004
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Fig 5. Relationship between irradiation energy and bubble projection area. �: pulse width = 100 μs (N = 5), ♦: pulse

width = 200 μs (N = 5). Horizontal axis: incident energy per pulse. Vertical axis: projected area of the bubble assuming

it to be an ellipse. At both 8, 16 mJ/pulse, the bubbles that were generated with a pulse width of 200 μs were

significantly smaller than those generated with a pulse width of 100 μs (�, ��; p< 0.05).

https://doi.org/10.1371/journal.pone.0262991.g005

Fig 6. Typical response of the clot phantom to pulsed laser irradiation. (a) Block diagram and real images of the in vitro clot phantom experiment.

Significant generation of debris was observed after pulsed irradiation. Incidence energy: 16 mJ/pulse, pulse width: 100 μs, frequency: 5Hz, frame rate:

60fps, exposure time: 250 μs. A glass tube (inner diameter: 2 mm) was filled with a blood clot phantom and saline solution, and pulsed laser irradiation

was performed continuously for 10 seconds (total: 50 shots). The optical fiber was inserted in a polyethylene tube (inner diameter: 0.40 mm, outer

diameter: 0.80mm), which resembled a catheter, to prevent scorching of the blood clots, and heparinized saline (concentration: 20 U/mL, flow rate: 6

mL/h) was continuously administered during the irradiation to prevent scorching of the blood clots. Upper group of photos: before irradiation and

after irradiation by one pulse. Lower group of photos: after irradiation by five pulses. The boundary between the blood clot phantom and the saline

solution became unclear as the number of irradiations increased. (b) Debris collected after 10 s of irradiation and observed under a phase-contrast

microscope (without staining). The average power was 0 mW (left) and 80 mW (right). (c) Size of debris (�; p> 0.05, ��; p< 0.05, Vertical axis: size of

debris observed after irradiation).

https://doi.org/10.1371/journal.pone.0262991.g006
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number of red blood cell aggregates larger than 6 μm was significantly higher at an average

power of 40 mW or more (p< 0.05).

Discussion

Laser thrombolysis during laser pulse irradiation has been suggested to involve cutting by the

generated bubbles and the generation of water jets as well as laser ablation, [16] and the

dynamic analysis in our study showed that bubbles formed after laser irradiation. Bubbles

were generated within 10 μs after the onset of pulsed laser irradiation (Fig 3). The pulse width

was 100 μs, and 1.6 mJ (10% of the total incident energy of 16 mJ) was estimated to have con-

tributed to the generation of bubbles. The absorbance A [log10] of blood (hemoglobin 4 hem,

HbO2: 43,876 [cm−1/M], Hb: 40,584 [cm−1/M]) at 532 nm for one cell is 0.93. Assuming that

0.1 mm from the tip of the optical fiber is filled with blood, the absorbance is A0 =
93.0×0.01ffi1, and there is no scattering in the gelatin phantom, the pulsed laser irradiation vol-

ume V is defined as a frustum of a cone in accordance with the NA of the optical fiber. Since

the concentration of the gelatin phantom is 10 wt%, which can be assumed to be almost water,

the amount of heat required to raise an amount of water corresponding to the volume of the

irradiation area from 25˚C to the boiling point (100˚C) is approximately 0.25 mJ. After the

bubbles had formed, the pulsed laser irradiated the inside of the growing bubbles. Since the

thermal containment time in gelatin phantom is estimated to be 35 ms [16], it was presumed

the pulses between 10 and 100 μs long also had a thermal effect.

However, no bubbles were generated between 10 to 100 μs after the first bubble was gener-

ated. In the case of pulse laser irradiation with the same incident energy, the bubbles generated

under irradiation conditions with a pulse width of 100 µs were larger than the bubbles gener-

ated under irradiation conditions with a pulse width of 200 μs (Fig 5). That is, the peak power

of the pulsed laser affected the generation and growth of bubbles. We used an optical fiber

with a core diameter of 100 μm. When a single laser pulse irradiated with an average power 80

mW (pulse width: 100 μs), we can calculate that the power density at the tip of the fiber was 2.1

MW/cm2. At 1 mm from the tip of the fiber, the spot size was about 0.5 mm (fiber NA: 0.22)

and the power density was 81.5W/cm2. Moreover, the power density at an average power 20

mW was 4.1 W/cm2, suggesting that ablation occurred in the irradiated area of the gelatin and

blood clot phantom due to the small spot size of the optical fiber irradiation [15]. At the same

time, Viator et al. reported that the ablation effect was limited [16]. In this study, we used glass

tubes and transparent gelatin phantoms to perform a dynamic analysis of pulsed laser irradia-

tion by using detailed transmission images. We observed the dynamics of bubbles and the

removal effect of bubbles on the thrombus immediately after laser irradiation. We found that

the bubbles contracted and disappeared without bursting. The observed bubbles all formed

Table 2. Ratio of aggregated pieces generated under each irradiation condition.

Average Power

0 mW 20 mW 40 mW 60 mW 80 mW 100 mW

Less than 6 μm 96.1% 93.5% 70.1% 85.7% 82.5% 77.3%

6–10 μm 3.0% 6.1% 17.8% 13.4% 9.2% 14.2%

10–20 μm 0.4% 0.4% 10.3% 0.9% 7.3% 7.4%

20–50 μm 0.0% 0.0% 1.8% 0.0% 0.9% 1.1%

50–100 μm 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Results of irradiation of rabbit blood clot phantom. Pulse width: 100 μs. Repetition: 5 Hz. Debris less than 6 μm was considered to be single red blood cells. The

percentage of aggregated red blood cells larger than 6 μm was recorded for each size.

https://doi.org/10.1371/journal.pone.0262991.t002
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elliptical shapes that grew in the irradiation direction. The growth velocity of the bubbles was

69.1 ± 15.3 m/s (N = 5), which was much smaller than the velocity of sound in water. T. Hirano

et al. reported thrombus removal by the water-hammer effect of the laser-induced liquid jet

without the generation of shock waves [19, 20]. In our experiment, the distance between the

optical fiber tip and the phantom surface was set within 0.5 mm. Therefore, depending on the

irradiation conditions, water may have entered between the optical fiber tip and the surface of

the phantom, and may have been pushed by bubbles.

However, the sheath structure is important for the generation and control of water jets. In

our study, although a certain directionality was observed in the growth direction of the bub-

bles, the majority of the bubbles grew in the form of infiltration into the phantom, and the

effect of the water jet, which may or may not have occurred, was considered to be limited. It

has also been reported that the repetitive mechanical action of water jets or an ultrasound-

induced cavitation mechanism can cause fragmentation of the thrombus and increase the con-

tact area of a fibrinolytic agent [21]. As shown in Fig 4, bubbles were generated even under

irradiation conditions with an average power of 20 mW. And more than 93% of the debris was

single red blood cells. Correspondingly, the percentage of erythrocyte aggregates in the debris

was significantly increased under irradiation conditions with an average power of 40 mW or

higher. The amount of incident energy correlates with the size of the bubbles generated, and

our experimental results suggested that the deformation that the thrombus undergoes due to

the generation of bubbles in an important factor in the thrombus removal effect. The blood

clot phantom used in this study was coagulated whole blood with fibrin clot, which may par-

tially reflect the structure of red blood clots targeted by laser thrombolysis therapy [22, 23]. As

shown in Fig 6 (B), the phase contrast microscopy images of the debris generated by the laser

irradiation showed that the red blood cells existed as discrete single cells or aggregates. In addi-

tion, there was little change in the morphology of the red blood cells. That is to say, the genera-

tion of debris, which were aggregates of red blood cells, indicates that the deformation of the

thrombus phantom by air bubbles cuts the fragile part of the fibrin net. Fibrin nets are known

to be fibrin glues used in surgery and other applications and have been reported to have a cer-

tain mechanical strength [24]. Although ablation occurred even at an average power of 20

mW, the result that erythrocyte aggregates did not increase significantly unless the average

power was 40 mW or higher may well indicate the existence of a threshold for physical action

(Fig 6 (C)). Naturally, it is thought that when bubbles are generated in a blood vessel rather

than a glass tube, the vessel wall may be deformed by the pressure of the bubble generation.

The bubbles did not reach the walls of the glass tube in this study, so the effect of the glass

material hardness is expected to have been small [9, 17]. The glass-tube phantom model does

not completely recreate an in vivo vascular situation. The absolute value of the actual duration

of the bubble in vivo is thought to be variable. Similarly, it is very difficult to obtain a correla-

tion between the mechanical strength of the phantom and the thrombus [11]. This is because

the mechanical properties of thrombi formed in vivo are affected by various factors such as the

passage of time and individual differences. Thus, in this paper, the mechanism of laser throm-

bolysis has been elucidated by using glass tubes and clear gelatin phantoms to obtain detailed

transmission images, but the amount of cutting has not been examined. These problems need

to be solved by constructing more detailed in vitro models in the future.

We consider that the debris generated by the laser irradiation will be released into the

bloodstream and become smaller aggregates or single red blood cells through the fibrinolytic

effect in vivo, similarly to what happens to small fragments generated by thrombolytic agents

that act enzymatically on fibrin nets. Furthermore, we found that the bubbles infiltrate into the

thrombus. This suggests that the bubbles could be used in combination with a thrombolytic
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agent that acts on the surface of the thrombus to enhance their effects mutually on a larger vol-

ume of thrombus.

Conclusion

In order to elucidate the detailed mechanism of laser thrombolysis, a detailed dynamic analysis

of bubbles generated by pulsed laser irradiation was carried out using transparent gelatin

phantoms and clot phantoms. Our results showed that in laser thrombolysis, the thrombus

could be removed by cutting by the bubbles generated by laser irradiation. In the future, we

will analyze the mechanism of the reaction in more detail, including evaluating the amount of

cutting, in order to determine optimal and safe irradiation conditions. In addition, we will fur-

ther investigate laser thrombolysis by conducing in vivo experiments to obtain the optimal

conditions for irradiation necessary for treatment and will research and develop peripheral

technologies.

Supporting information

S1 Movie. Typical example of a bubble generated by one pulsed laser irradiation in a gela-

tin phantom. Incidence energy: 16 mJ/pulse, pulse width: 100 μs, frame rate: 10 μs/f, exposure

time: 2 μs. A glass tube (inner diameter 2 mm) was filled with a gelatin phantom and saline

solution, and pulsed laser irradiation was performed once using an optical fiber strand. 48914f

(0 μs): Irradiation started. 48915f (10 μs after irradiation): The bubble was observed in the gela-

tin phantom. 48925f (100 μs): The bubble grew into an elliptical shape in the direction of the

pulsed laser irradiation, and the inner wall of the growing the bubble was irradiated by the

pulsed laser light. 48956f (420 μs): The bubble grew to their maximum size (The major axis:

2.53mm, the minor axis: 1.35 mm). After that, the bubble started to shrink. 49042f (1280 μs):

The bubble disappeared. No bubble burst was observed. 49047f (1330 μs): The bubble reap-

peared due to the elasticity of gelatin. A total of four bubble reappearances and disappearances

were observed since then. 49277f (3300 μs): The reaction of a one pulsed laser irradiation

ended.

(AVI)

S2 Movie. Typical response of the clot phantom to pulsed laser irradiation. Incidence

energy: 16 mJ/pulse, pulse width: 100 μs, frequency: 5 Hz, frame rate: 60 fps, exposure time:

250 μs. A glass tube (inner diameter: 2 mm) was filled with a blood clot phantom and saline

solution, and pulsed laser irradiation was performed continuously for 10 seconds (total: 50

shots). The optical fiber was inserted into a polyethylene tube (inner diameter: 0.40 mm, outer

diameter: 0.80mm), which resembled a catheter, to prevent scorching of the blood clots, and

heparinized saline (20 U/mL, 6 mL/h) was continuously administered during the irradiation.

Pre-irradiation: Red blood cells on the surface of the blood clot phantom were observed to be

discharged by continuous administration of heparinized saline. From the first shot, debris was

flowed from the surface of the blood clot phantom into the saline. Thereafter, the boundary

between the blood clot phantom and the saline solution became blurred as the number of irra-

diations increased.

(AVI)

S1 Dataset. Data on which Figs 3–6C, and Table 2 were based.

(XLSX)
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