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Glycated lysine‑141 in haptoglobin 
improves the diagnostic accuracy for type 2 
diabetes mellitus in combination with glycated 
hemoglobin HbA1c and fasting plasma glucose
Sandro Spiller1,2, Yichao Li3, Matthias Blüher4, Lonnie Welch3 and Ralf Hoffmann1,2*

Abstract 

Background:  Recent epidemiological studies indicate that only 30–50% of undiagnosed type 2 diabetes mellitus 
(T2DM) patients are identified using glycated hemoglobin (HbA1c) and elevated fasting plasma glucose (FPG) levels. 
Thus, novel biomarkers for early diagnosis and prognosis are urgently needed for providing early and personalized 
treatment.

Methods:  Here, we studied the glycation degrees of 27 glycation sites representing nine plasma proteins in 48 
newly diagnosed male T2DM patients and 48 non-diabetic men matched for age (range 35–65 years). Samples were 
digested with trypsin and enriched for glycated peptides using boronic acid affinity chromatography. Quantification 
relied on mass spectrometry (multiple reaction monitoring) using isotope-labelled peptides as internal standard.

Results:  The combination of glycated lysine-141 of haptoglobin (HP K141) and HbA1c provided a sensitivity of 94%, 
a specificity of 98%, and an accuracy of 96% to identify T2DM. A set of 15 features considering three glycation sites in 
human serum albumin, HP K141, and 11 routine laboratory measures of T2DM, metabolic syndrome, obesity, inflam-
mation, and insulin resistance provided a sensitivity of 98%, a specificity of 100%, and an accuracy of 99% for newly 
diagnosed T2DM patients.

Conclusions:  Our studies demonstrated the great potential of glycation sites in plasma proteins providing an 
additional diagnostic tool for T2DM and elucidating that the combination of these sites with HbA1c and FPG could 
improve the diagnosis of T2DM.

Keywords:  Biomarker, Fasting plasma glucose (FPG), Glycation sites, HbA1c, Multiple reaction monitoring (MRM), 
Plasma proteins, Protein glycation, Type 2 diabetes mellitus

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Diabetes mellitus (DM) refers to a group of metabolic 
disorders characterized by elevated blood glucose con-
centrations. The majority (90–95%) of DM patients have 
type 2 DM (T2DM), which is characterized by peripheral 
insulin resistance and an inability of pancreatic beta cells 
to compensate for that by increasing insulin secretion [1]. 

Current diagnostic criteria of the World Health Organi-
zation (WHO) for the diagnosis of T2DM include gly-
cated hemoglobin (HbA1c) levels (≥6.5% (48 mmol/mol)), 
elevated fasting plasma glucose (FPG) concentrations 
(FPG ≥  7.0  mmol/L) and/or plasma glucose concentra-
tions 2  h after a 75  g oral glucose load (≥11.1  mmol/L) 
in the context of a standardized oral glucose tolerance 
test (OGTT) [2, 3]. The American Diabetes Association 
(ADA) defines a HbA1c level of ≥6.5% or a fasting plasma 
glucose (FPG) level of ≥126 mg/dL (≥7 mmol/L) or 2-h 
plasma glucose level of ≥200  mg/dL (≥11.1  mmol/L) 
during a 75-g oral glucose tolerance test (OGTT), or a 
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random plasma glucose of ≥200 mg/dL (≥11.1 mmol/L) 
as equally valid diagnostic criteria for type 2 diabetes 
[1]. However, epidemiological studies revealed that com-
pared to OGTT glucose values the use of either HbA1c or 
FPG only identifies ~30–50% of previously undiagnosed 
T2DM patients [4–8]. Moreover, categories of increased 
risk for diabetes (prediabetes) include a HbA1c level of 
5.7–6.4% or a FPG level between 100 and 125  mg/dL 
(5.6–6.9  mmol/L) or 2-h plasma glucose level between 
140 and 199 mg/dL (7.8–11.0 mmol/L) in the OGTT [1]. 
For the distinction of patients with prediabetes, HbA1c 
values have also been shown to be less sensitive compared 
to FPG and 2  h OGTT glucose [7]. HbA1c also plays a 
critical role in the management of diabetic patients, as it 
reflects the average plasma glucose level for the preced-
ing 3-month period and correlates well with micro- and 
macrovascular complications [4–6]. FPG is the pre-
ferred diagnostic parameter, because it is simple, inex-
pensive, relatively risk-free, and correlates with diabetic 
complications like retinopathy [7]. However, even using 
longitudinally measured HbA1c levels, the prediction 
or retrospective attribution of individual T2DM associ-
ated complications or mortality are not possible with this 
parameter of chronic hyperglycemia [8–12]. Therefore, 
there is an unmet need to better predict the individual 
chronic hyperglycemia-related diabetes outcomes.

Glycated proteins, such as hemoglobin in erythrocytes 
and serum albumin as major plasma protein, are recog-
nized as markers of hyperglycemia due to the high sensi-
tivity towards even slightly elevated plasma glucose levels 
[13, 14]. However, only methods determining global pro-
tein glycation degrees have been established, whereas 
recent evidence suggests specific glycation sites in plasma 
proteins as potential biomarkers for early diagnoses 
of DM [14–17]. In contrast to the long half-life time of 
hemoglobin in erythrocytes, plasma proteins vary in half-
life times from hours to several weeks, which might allow 
selecting a small set of protein glycation sites resem-
bling more closely short to medium term fluctuations of 
plasma glucose levels.

Here we quantified 27 glycation sites in nine plasma 
proteins after tryptic digestion by mass spectrometry 
and evaluated their diagnostic value alone and in com-
bination with current WHO criteria of HbA1c and FPG 
levels. Selection of glycation sites relied on a list of 52 
candidates we previously identified and studied [17], 
by judging each for the biomarker potential and ease 
of peptide synthesis. A single-blind study using plasma 
samples from 48 newly diagnosed T2DM patients and 
48 non-diabetic individuals clearly indicated differ-
ent glycation degrees characteristic of each glycation 
site with glycated Lys141 of haptoglobin providing 
the best sensitivities (~94 and ~78%) and specificity 

(~98%) when combined with HbA1c and FPG levels, 
respectively.

Methods
Blood samples
Blood samples were obtained from 48 newly diagnosed 
male T2DM patients and 48 non-diabetic men matched 
for age (range 35–65  years) in the context of a study of 
parameters of insulin resistance (Additional file 1: Table 
S1). Anthropometric and laboratory chemistry parame-
ters were measured or calculated as previously described 
[18, 19]. The study was approved by the Ethics Committee 
of Universität Leipzig (approval no: 159-12-21052012), 
and performed in accordance to the declaration of Hel-
sinki. All subjects gave written informed consent before 
taking part in this study. In our study, we defined individ-
uals with T2DM according to the criteria of the Ameri-
can Diabetes Association [1]:

• • A HbA1c level of 6.5% or higher, or
• • A fasting plasma glucose (FPG) level of 126   

mg/dL (7 mmol/L) or higher (fasting was defined as 
no caloric intake for at least 8 h), or

• • A 2-h plasma glucose level of 200  mg/dL 
(11.1  mmol/L) or higher during a 75-g oral glucose 
tolerance test (OGTT), or

• • A random plasma glucose of 200  mg/dL 
(11.1  mmol/L) or higher in a patient with classic 
symptoms of hyperglycemia (i.e., polyuria, polydip-
sia, polyphagia, weight loss) or hyperglycemic crisis

The group of T2DM patients has been further cat-
egorized into those with HbA1c levels patients below 
(n =  23) and equal or higher than 6.5% (48 mmol/mol) 
(n = 25). For those patients with HbA1c < 6.5% (48 mmol/
mol), the diagnosis of T2DM has been established on the 
basis of repeated measurements of fasting plasma glucose 
(>7.0 mmol/L) or 2 h oral glucose tolerance test glucose 
concentrations >11.1  mmol/L [1]. Since patients were 
newly diagnosed, none of the individuals in the T2DM 
receive anti-hyperglycemic medication. All men had a 
body mass index (BMI) larger than 25.0 kg/m2 and were 
grouped in overweight (BMI 25–30  kg/m2; 15 without 
and 10 with T2DM) and obese individuals (BMI ≥ 30 kg/
m2). EDTA blood samples were collected between 
8 a.m. and 9 a.m. after a 12-h fasting period, centrifuged 
(500×g, 5 min) and analyzed within 1 h after blood draw-
ing for routine laboratory parameters or stored at −80 °C 
after the cell debris was removed by filtration (Rotilabo® 
syringe filter) for the analyses of the glycation sites. 
Plasma insulin and proinsulin were measured with an 
enzyme immunometric assay for the IMMULITE auto-
mated analyzer (Diagnostic Products Corporation, Los 
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Angeles, CA, USA). Serum high-sensitive CRP (C-reac-
tive protein) was measured by immunonephelometry 
(Dade-Behring, Milan, Italy). HbA1c, plasma glucose, 
serum total- high-density lipoprotein (HDL)-, low-den-
sity lipoprotein (LDL)-cholesterol, triglycerides, and free 
fatty acids were measured as previously described [18].

Peptide quantification
Glycation sites previously identified in plasma samples 
of patients with diabetes [17] were quantified by elec-
trospray ionization mass spectrometry (ESI–MS) on a 
QTRAP 4000 (AB Sciex, Darmstadt, Germany) coupled 
on-line to reversed-phase high-performance liquid chro-
matography (RP-HPLC) using timed multiple reaction 
monitoring (MRM) (Table 1 and Additional file 1: Table 
S2). Briefly, small molecules and peptides were removed 

from plasma by ultrafiltration (5 kDa cut-off). The con-
centrated sample was digested with trypsin (37 °C, 18 h, 
5% w/w), spiked with a concentration-balanced mixture 
of 13C,15N-labelled glycated peptides as internal stand-
ard, enriched for glycated peptides by boronic acid affin-
ity chromatography (BAC), and desalted by solid phase 
extraction (SPE) using optimized protocols [15, 20–22]. 
The internal standard was added after tryptic digestion to 
provide the highest accuracy by compensating variations, 
such as nonspecific degradation, during sample prepara-
tion [23], especially as trypsin could cleave some stand-
ard peptides at Lys/Arg-Pro-motifs or glycated residues.

Peptides were loaded on a C18-column (Advance-
Bio Peptide Mapping column, pore size 120  Å, length 
150, 2.1 mm internal diameter, 2.7 µm particles, Agilent 
Technologies, Böblingen, Germany) coupled on-line to 

Table 1  Glycated peptides of  different plasma proteins quantified in  tryptic digests of  type 2 diabetes and  control 
plasma samples

The timed multiple reaction monitoring relied on the retention time of each peptide in RP-HPLC and a specific precursor/fragment ion pair (Q1/Q3 mass range)

tR retention time, C, M, and K carbamidomethylated cysteine, methionine sulfoxide, and fructosamine lysine, HSA human serum albumin, IGKC Ig kappa chain c region, 
FGB fibrinogen beta chain, A2M alpha-2-macroglobulin, TF serotransferrin, IGLC Ig lambda chain C region, APOA1 apolipoprotein A-I precursor, HP haptoglobin, FGA 
fibrinogen alpha chain

# Sequence Protein symbol (Accession num-
ber, glycation site)

tR (min) Q1 m/z (±0.2) Q3 m/z (±0.2)

1 TCVADESAENCDKSLHTLFGDK HSA (P02768; K64) 13.8 887.1 869.1

2 SLHTLFGDKLCTVATLR HSA (P02768, K73) 17.9 698.7 680.7

3 ETYGEMADCCAKQEPER HSA (P02768, K93) 8.8 746.0 136.1

4 ETYGEMADCCAKQEPER HSA (P02768, K93) 7.9 751.3 136.1

5 AAFTECCQAADKAACLLPK HSA (P02768, K174) 15.9 763.0 120.0

6 AACLLPKLDELRDEGK HSA (P02768, K181) 16.2 664.0 646.0

7 AEFAEVSKLVTDLTK HSA (P02768, K233) 18.6 907.0 880.0

8 ADLAKYICENQDSISSK HSA (P02768, K262) 13.6 1052.5 1025.5

9 TYETTLEKCCAAADPHECYAK HSA (P02768, K359) 9.9 670.8 237.1

10 VFDEFKPLVEEPQNLIK HSA (P02768, K378) 18.6 1104.1 1077.1

11 KVPQVSTPTLVEVSR HSA (P02768, K414) 14.9 601.3 900.5

12 KQTALVELVK HSA (P02768, K525) 13.1 645.9 603.9

13 EQLKAVMDDFAAFVEK HSA (P02768, K545) 18.7 668.3 120.1

14 KLVAASQAALGL HSA (P02768, K574) 16.3 652.4 501.8

15 VQWKVDNALQSGNSQESVTEQDSK IGKC (P01834, K41) 12.7 947.1 941.1

16 DSTYSLSSTLTLSKADYEK IGKC (P01834, K75) 16.4 757.7 751.7

17 VYACEVTHQGLSSPVTKSFNR IGKC (P01834, K99) 12.6 848.1 830.1

18 QVKDNENVVNEYSSELEK FGB (P02675, K163) 12.8 762.7 72.1

19 SKAIGYLNTGYQR A2M (P01023, K1003) 10.5 816.9 1255.6

20 ALLAYAFALAGNQDKR A2M (P01023, K1162) 18.5 628.7 86.1

21 KCSTSSLLEACTFR TF (P02787, K683) 13.8 911.4 884.4

22 ADSSPVKAGVETTTPSK IGLC (P01842, K50) 8.7 613.0 70.1

23 AKVQPYLDDFQK APOA1 (P02647, K120) 12.5 807.4 765.4

24 KWQEEMELYR APOA1 (P02647, K131) 10.1 530.6 524.6

25 AVGDKLPECEAVCGKPK HP (P00738, K141) 9.4 674.0 656.0

26 MKGLIDEVNQDFTNR FGA (P02671, K71) 14.9 653.3 894.4

27 SSSYSKQFTSSTSYNR FGA (P02671, K581) 8.7 664.6 658.6
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ESI–MS. Eluents A and B were water and acetonitrile, 
respectively, containing both formic acid (0.1%, v/v). Elu-
tion was achieved by a linear gradients starting 3  min 
after sample injection from 3 to 10% eluent B within 
1 min, to 20% eluent B within 10 min and to 95% eluent 
B in 7  min. The flow rate was 0.3  mL/min and the col-
umn temperature was set to 60 °C. Quantification relied 
on timed MRM using specific transitions of each targeted 
peptide and isotope-labelled internal peptide standards 
synthesized on solid phase in-house. Quantification was 
performed by integrating individual peaks in extracted 
ion chromatograms (XICs) using Analyst 1.6 software 
(AB Sciex) relative to the coeluting isotope-labelled 
peptides.

Statistics and bioinformatics
The samples from individuals with or without T2DM 
were evaluated by different statistical tests (Kolmogorow-
Smirnow, Mann–Whitney, and t test) and calculation 
of Spearman rank correlation coefficients using Prism 
6 (GraphPad software; La Jolla, USA). Receiver oper-
ating characteristic (ROC) analysis and screening for 
variable combination relied on the Excel-add-in Multi-
base 2015 (Numerical Dynamics) and Prism 6 software, 
respectively.

The 48 diabetic and 48 samples were classified by a 
decision tree algorithm using HbA1c in combination 
with each glycated peptide (Additional file  1: Table S6). 
The same technique was also applied to FPG (Addi-
tional file  1: Table S7). The decision tree algorithm was 
implemented using Scikit-Learn [24]. Accuracies were 
evaluated using nested tenfold cross validation [25]. To 
find the best feature set for classification, a support vec-
tor machine-recursive feature elimination (SVM-RFE) 
method [26] was applied on all glycated peptides and 
clinical parameters, including HbA1c, FPG, BMI, etc. Fea-
ture normalization and missing value imputation were 
performed using WEKA toolkit [27]. The support vec-
tor machine was implemented using Scikit-Learn [24]. 
Accuracies and area under the curve (AUC) values were 
evaluated using nested tenfold cross validation [25]. 
Hierarchical clustering was performed on 48 diabetic 
samples using the “hclust” function in R software version 
3.2.1 [28]. To find the subclasses in diabetic samples, the 
expectation–maximization algorithm in Scikit-Learn [24] 
was applied. The clustering stability score [29] and elbow 
criterion [30] were used to find the optimal number of 
subclasses.

Results
The timed MRM method optimized for quantification 
of the targeted 27 glycated peptides (Table  1) obtained 
by tryptic digestion from plasma provided limits of 

detection (LODs) and quantification (LOQs) in the low to 
high nanomolar range (Additional file 1: Table S3). Intra- 
and interday precisions showed typically coefficients of 
variation (CVs) below 20% (Additional file  1: Table S3). 
The quantities of all 27 glycated peptides normalized to 
the total protein content of each plasma sample were 
significantly higher in T2DM than in the control group 
(P < 0.05, Additional file 1: Figure S1). However, the nor-
malized quantities of all glycated peptides showed a nota-
ble overlap. Interestingly, diabetic groups subdivided by 
an HbA1c threshold of 6.5% (48 mmol/mol) showed very 
similar average glycation degrees for all peptides, indicat-
ing that the glycation degree of hemoglobin in erythro-
cytes showed only a weak correlation with the glycation 
levels of serum proteins providing a rationale that they 
may have different diagnostic and prognostic values.

Spearman’s correlation coefficients (rS) calculated 
for each glycated peptide amount and the established 
diagnostic parameters indicated moderate correlations 
between a few glycation sites and BMI (−0.54 < rS < −0.38, 
P  <  0.001), body fat (−0.49  <  rS  < −0.36, P  <  0.01), and 
C-peptide levels (−0.45  <  rS  < −0.37, P  <  0.001) (Addi-
tional file  1: Table S4). Correlations between peptide 
glycation levels and HbA1c were weak (0.11  <  rS  <  0.34, 
0.001 < P < 0.3) to moderate (0.37 < rS < 0.46, P < 0.001) 
and also weak (−0.08  <  rS  <  0.30, 0.001  <  P  <  0.65) for 
FPG (Additional file 1: Table S4). Besides FPG (rS = 0.40, 
P < 0.001) and free fatty acids (FFA, (rS = 0.57, P < 0.001) 
HbA1c showed for further diagnostic parameters only 
weak correlations (−0.35  <  rS  <  0.35, 0.001  <  P  <  0.95). 
However, FPG showed moderate correlations with fast-
ing plasma insulin (FPI, rS =  0.40, P  <  0.001), proinsu-
lin (rS =  0.38, P  <  0.01), homeostasis model assessment 
as an index of insulin resistance (HOMA-IR, rS =  0.56, 
P  <  0.001), and fasting plasma free fatty acids (FFA) 
(rS = 0.56, P < 0.001).

A ROC curve analysis for samples from T2DM patients 
relative to HbA1c (cut-off 6.5% (48 mmol/mol)) and FPG 
(cut-off 7.0  mmol/L) provided for all glycated peptides 
maximal sensitivities and specificities of 79 and 88%, 
respectively, and AUCs larger than 79% for certain cut-off 
concentrations (Additional file 1: Table S5). In compari-
son, sensitivities, specificities, and AUCs of HbA1c were 
52, 100, and 86%, respectively, as well as 40, 100, and 84% 
for FPG using the aforementioned cut-offs. A ROC curve 
analysis determined the best cut-off values maximiz-
ing sensitivity and selectivity as 6.0% (42 mmol/mol) for 
HbA1c (77 and 94%) and 5.69  mmol/L for FPG (75 and 
81%).

As the diagnostic accuracies of HbA1c (76% for cut-off 
6.5% (48  mmol/mol), 86% for cut-off 6.0%), FPG (70% 
for cut-off 7.00  mmol/L, 78% for cut-off 5.69  mmol/L), 
and the evaluated glycated peptides (60 to 73%) were 
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insufficient, the data sets were screened by decision tree 
algorithm for variable combinations of HbA1c or FPG 
with any glycated peptide for optimal sensitivity, specific-
ity, and accuracy using different cut-off points. HbA1c in 
combination with glycated peptides yielded mostly sen-
sitivities from 75 to 81%, specificities from 96 to 100%, 
and accuracies from 87 to 90% (Additional file  1: Table 
S6). Most interestingly, analyses revealed a haptoglobin 
peptide glycated at Lys141 (HP K141; sequence No. 25) 
which provided in combination with HbA1c a sensitivity 
of 94%, a specificity of 98%, and an accuracy of 96% for 
cut-off points 6.0% (42 mmol/mol, HbA1c) and 30 fmol/mg  
(HP K141) (Fig.  1a). When HP K141 was combined  
with FPG (6.0 mmol/L), sensitivity to detect T2DM was 
78%, specificity 98%, and accuracy 88% (Fig. 1b), whereas 
the other glycated peptides typically provided slightly 
lower accuracies (Additional file  1: Table S7). Since the 
decision tree algorithm did not deliver all cut-off values 
for all combinations, manual confirmation was carried 
out. Combining manually HbA1c or FPG with glycated 
peptides provided slightly enhanced diagnostic accu-
racies for all combinations and could confirm all cut 
points provided by the algorithm with only small varia-
tions (Additional file  1: Tables S8 and S9). Noteworthy, 
the combination of HP K141 and FPG (6.0 mmol/L) was 
improved to a sensitivity of 83%, a specificity of 98%, and 
an accuracy of 91%.

The SVM-RFE method was applied to find a set of diag-
nostic parameters and peptide amounts for maximiz-
ing the classification of T2DM patients and controls. It 
revealed a set of 15 features providing a sensitivity of 98%, 
a specificity of 100%, and an accuracy of 99% (Fig. 2).

The cluster analysis of the 48 T2DM plasma sam-
ples was applied to an expectation–maximation (EM) 
algorithm considering all glycated peptides and clinical 

parameters available (27 glycated peptides +  38 clinical 
parameters). The result showed two or maximal three 
clusters (Fig.  3). Glycated peptide levels were distinct 
among different groups, however, clinical parameters, 
including HbA1c and FPG, were similar. This suggests 
that glycated peptides can be more useful to detect 
subtle differences among diabetic patients. A principle 

Fig. 1  Scatter plots of HbA1c values (a) and fasting plasma glucose (FPG) levels (b) against peptide levels corresponding to Lys141 of haptoglobin 
(HP K141). Numerical values of 48 type 2 diabetes patients (black triangles) and 48 control persons (black circles) are shown. Dashed lines illustrate the 
cut point chosen for each feature

Fig. 2  Principle component plot shows the clear separation between 
T2DM patients and controls using the 15 diagnostic parameters: 
HbA1c, fasting plasma glucose (FPG), free fatty acids (FAA), triglycer-
ide levels, leukocytes levels, C-reactive protein levels, HOMA-IR, age, 
waist, waist-to-hip ratio, diastolic blood pressure, and glycated pep-
tides 4, 8, 11, and 25 (Table 1). Values for 48 type 2 diabetes patients 
(black triangles) and 48 control persons (black circles) are shown. PC1 
first principle component, PC2 second principle component
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component plot is used to visualize the distribution of 
clusters (Fig.  3). A cluster stability test considering the 
elbow criterion identified three clusters as optimal num-
ber. This was further confirmed by hierarchical cluster-
ing that also suggested three groups of T2DM patients 
(Additional file 1: Figure S2).

Discussion
Protein glycation as diagnostic criterion has been 
addressed in many studies for decades [13–17]. Sur-
prisingly, only glycation of intracellular hemoglobin is 
currently considered as biomarker to monitor patients 
assuming that HbA1c levels closely reflect average glucose 
blood levels over the previous 3  months. Plasma pro-
teins have been mostly analyzed for their global glycation 
degrees [especially human serum albumin (HSA)], which 
can be attributed to the lack of specific immunoassays, 
i.e. antibodies recognizing individual glycation sites. As 
an example, measurement of fructosamine determines 
the fraction of total serum proteins (mainly serum albu-
min) that have undergone glycation. Because albumin 
has a half-life of approximately 3 weeks, the plasma fruc-
tosamine concentration reflects relatively recent changes 
in blood glucose and is therefore not commonly used to 
monitor diabetes treatment [31].

Additionally, mass spectrometry has been typically 
applied for mapping glycation sites in serum proteins, 
whereas quantitative studies on distinct glycation sites in 
larger patient cohorts are missing. Besides the analytical 

challenges, this is probably attributed to the general 
assumption that glycation as a non-enzymatic reaction 
depends only on the glucose concentration and thus the 
glycation levels of individual sites will change at similar 
degrees and thus can be judged from global glycation 
degrees. Here, we could show that the glycation levels of 
27 sites in nine plasma proteins provide significantly dif-
ferent sensitivities, specificities and accuracies for clas-
sifying T2DM patients and controls. Most importantly, 
these glycation degrees correlated only slightly to HbA1c 
and other clinical parameters like FPG. Additionally, 
sensitivities of the newly identified glycation sites were 
mostly better than for HbA1c, while specificities were 
lower demonstrating that T2DM diagnosis might ben-
efit from combining currently applied clinical parameters 
with plasma protein glycation sites analyzed in the con-
text of this study. Despite studying 27 glycation sites, it 
was our aim to identify the diagnostically most relevant 
modification to keep the number of biomarkers and thus 
the costs of the envisaged diagnostic tools low. Differ-
ent statistical analyses identified glycation of Lys141 in 
haptoglobin as the best parameter in combination with 
HbA1c and FPG. The obtained sensitivity (94%), specific-
ity (98%), and accuracy (96%) of HP K141 in combination 
with HbA1c exceeded the corresponding values of HbA1c 
significantly. This suggests that in addition to HbA1c 
measurements, glycation of Lys141 in haptoglobin could 
be used as a diagnostic tool in patients with T2DM and 
those with a high risk to develop T2DM (Fig. 1a). Further 

Fig. 3  Principle component plot of the clustering of 48 T2DM patients into two (a) or three (b) clusters based on all available patient information, 
i.e. diagnostic parameters and glycated peptide levels. Missing values were imputed using Weka. The ellipses are drawn at 95% confidence interval 
using the level parameter in ggplot. PC1 first principle component, PC2 second principle component
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studies are necessary to test whether combination of 
these two parameters of chronic hyperglycemia may bet-
ter predict individual risk for the development of diabetes 
complications. However, an earlier diagnosis of T2DM 
may be important for individual patients’ outcomes, as 
it has been demonstrated that a “bad glycemic memory” 
may contribute to a higher risk of diabetes complications 
even after periods of well-controlled hyperglycemia [32]. 
The negative correlation between HP K141 and both BMI 
and C-peptide appears interesting, as it might indicate 
higher glycation levels in T2DM patients are caused by 
both diabetes-specific, but also obesity-associated meta-
bolic alterations, which subsequently may cause chronic 
hyperglycemia. Negative correlations between glycation 
levels and BMI suggest that adipose tissue in patients 
with obesity may have a higher capacity to take up excess 
glucose before it contributes to glycation of circulating 
proteins. However, this hypothesis has to be formally 
proven by glucose distribution studies in lean versus 
obese animal models under hyperglycemic conditions.

Although our initial intention was to identify a single 
biomarker, statistical evaluation of the data revealed a 
promising features selection matrix using three glyca-
tion sites in HSA (K93, K262, and K414) besides HP K141 
representing short-to-medium term glucose fluctuations 
in combination with twelve routine parameters typically 
used to characterize T2DM (FPG, HbA1c, fasting insulin), 
metabolic syndrome (triglycerides and blood pressure), 
obesity (BMI, waist circumference, waist-to-hip ratio), 
inflammation (leukocytes, C-reactive protein), and insu-
lin resistance (HOMA-IR), and age [33]. This feature set 
provided an extremely high accuracy of 99% for the sam-
ple cohort providing the best diagnostic value that has 
been reported to the best of our knowledge. For example, 
a feature set reported in 2009 relied on 160 individuals 
(Danish Inter99 prospective study), who progressed from 
initially non-diabetic to diabetes during the following five 
years. The predictive values of 58 biomarkers (selected 
from presumed diabetes-associated pathways) together 
with six routine clinical parameters were evaluated by 
statistical learning methods [34]. The best features, i.e. 
six biomarkers (adiponectin, C-reactive protein, ferritin, 
interleukin-2 receptor A, glucose, and insulin), were used 
in a PreDx diabetes risk score (DRS) model providing an 
AUC of 0.76 that increased to 0.78 when family history, 
age, BMI, and waist circumference were added. A later 
report indicated an AUC of 0.838 [35]. The PreDx DRS 
model outperformed single variables like FPG (~0.73) 
and HbA1c (~0.66) significantly. In this respect the 15 
feature set selected here considering only four new bio-
markers besides routine laboratory measures, provides a 
better diagnostic accuracy with on the AUC of 0.99375 
(accuracy 99%).

Another intriguing result of statistical evaluation and 
hierarchical clustering was the separation of diabetes 
patients in three subgroups based on all patient infor-
mation including all 27 glycation sites (Fig. 3; Additional 
file  1: Figure S2). At this stage, the clinical relevance 
remains open, but it is compelling to speculate that the 
subgroups might represent distinct subgroups of T2DM. 
This hypothesis is supported by a recent report that three 
T2DM subgroups have been dissected through topologi-
cal analysis of patient similarity [36]. In this analysis, one 
T2DM subtype was characterized by diabetic nephropa-
thy and retinopathy, another showed enriched risk for 
malignancies and cardiovascular diseases, whereas the 
third subtype correlated most strongly with cardiovascu-
lar diseases, neurological diseases, allergies, and specific 
infections. Based on this data, future longitudinal stud-
ies, which assess the risk of these disease entities in addi-
tion to the glycation sites described in our study should 
be performed to test the hypothesis that these three 
subtypes could be distinguished by protein glycation 
markers.

These subgroups may also respond differently to mul-
tifactorial T2DM treatment strategies or may predict 
the progression of the disease itself and the individual 
risk for developing diabetes complications. Noteworthy, 
our study has some limitations with regard to the small 
size of our discovery cohort and the limited transfer-
ability into clinical practice. Although we only included 
newly diagnosed T2DM patients at the earliest possible 
time point and without antidiabetic treatment, we can-
not relate the time point of diagnosis to a defined meta-
bolic state. In addition, we could not exclude individual 
differences in the duration and severity of the prediabetic 
phase including chronic effects of intermittent glucose 
and lipid toxicity. Moreover, the suggestion that glycated 
Lys141 in haptoglobin may improve diagnostic accuracy 
for T2DM needs to be tested in prospective studies and 
cohorts representing the common population.

In conclusion, the 27 glycation sites quantified here 
provided sensitivities up to 79% and specificities of up 
to 88% to distinguish T2DM samples relative to age- and 
BMI-matched control samples using specific cut-offs for 
each glycation site. The cut-off values of HbA1c (6.5% 
(48 mmol/mol)) and FPG (7.0 mmol/L) recommended by 
the WHO showed better specificities of 100%, but lower 
sensitivities of only 52 and 40%, respectively. Interest-
ingly, lowering the cut points to 6.0% (42 mmol/mol) and 
5.69 mmol/L improved the sensitivity significantly to 77 
and 75%, respectively, while the selectivity was reduced 
to 94 and 81%, respectively. This is in good agreement 
with recent reports suggesting that lower HbA1c and FPG 
cut points will dramatically increase diagnostic sensitiv-
ity [37–41]. Remarkably, plasma proteins appeared to 



Page 8 of 9Spiller et al. Clin Proteom  (2017) 14:10 

follow other glycation kinetics than hemoglobin, which 
might be related to their different environment (i.e. blood 
versus erythrocytes). Thus, glycation sites in plasma pro-
teins may provide an additional diagnostic tool, as con-
firmed here by combining the glycation levels HbA1c and 
HP K141 providing high sensitivity (94%) and specificity 
(98%). The advantage of combining these two markers are 
the different half-life times of the corresponding proteins, 
i.e. 3–4 months for intracellular hemoglobin and two to 
four days for haptoglobin (t1/2 =  2–4) [42] being sensi-
tive to long- and short-term fluctuations of blood glu-
cose concentrations. Furthermore, the combination of 
15 features consisting of established clinical parameters 
and several glycated plasma proteins allowed dividing the 
newly diagnosed patients with T2DM into three different 
subgroups supporting the hypothesis that heterogeneity 
of T2DM phenotypes maybe due differentially affected 
pathways including significant differences in protein 
glycation.

Abbreviations
ADA: American Diabetes Association; AUC: area under the curve; BAC: boronic 
acid affinity chromatography; BMI: body mass index; CRP: C-reactive protein; 
CV: coefficient of variation; DM: diabetes mellitus; EM: expectation–maxima-
tion; ESI–MS: electrospray ionization mass spectrometry; FFA: free fatty acids; 
FPG: fasting plasma glucose; HbA1c: glycated hemoglobin; HDL: high-density 
lipoprotein; HOMA-IR: homeostasis model assessment as an index of insulin 
resistance; HP K141: glycated lysine-141 of haptoglobin; HSA: human serum 

Additional file

Additional file 1. Table S1. Characterization of type 2 diabetes patients 
and matched non-diabetic persons enrolled in this study. Table S2. 
Parameters and settings used for the RP-HPLC-ESI-QqLIT-MS operating in 
scheduled multiple reaction monitoring (MRM) mode. Table S3. Precision, 
sensitivity and linearity parameters for glycated peptides. Table S4. Spear-
man rank correlation coefficients (rS) and corresponding P values (P) of 
the statistical relation between glycated peptides and several diagnostic 
parameters. Table S5. Receiver operating characteristic (ROC) parameters 
for peptide levels of all 27 glycated peptides quantified in tryptic digests 
of plasma samples obtained from 48 type 2 diabetes patients and 48 
controls. For comparison, ROC parameters of HbA1C and fasting plasma 
glucose (FPG) are listed. Table S6. Evaluation metrics for classification of 
type 2 diabetes patients and controls by combining the levels of 27 gly-
cated peptides in tryptic plasma digests and corresponding HbA1c levels 
calculated by Decision Tree classifier from Scikit-learn package.  
Table S7. Evaluation metrics for classification of type 2 diabetes patients 
and controls by combining the levels of 27 glycated peptides in tryptic 
plasma digests and corresponding FPG levels. Table S8. Evaluation met-
rics for classification of type 2 diabetes patients and controls by combin-
ing the levels of 27 glycated peptides in tryptic plasma digests and cor-
responding HbA1c levels. Variable cut points were optimized manually for 
best classification. Table S9. Evaluation metrics for classification of type 
2 diabetes patients and controls by combining the levels of 27 glycated 
peptides in tryptic plasma digests and corresponding fasting plasma 
glucose (FPG) levels. Variable cut points were optimized manually for best 
classification. Figure S1. Quantification of glycated peptides in tryptic 
plasma digests obtained from type 2 diabetes patients and non-diabetic 
controls using internal calibration. Figure S2. Dendrogram resulting from 
a hierarchical clustering of 48 type 2 diabetes patient samples considering 
all available patient information, i.e. diagnostic parameters and glycated 
peptide levels.

albumin; LDL: low-density lipoprotein; LOD: limit of detection; LOQ: limit 
of quantification; MRM: multiple reaction monitoring; OGTT: oral glucose 
tolerance test; ROC: receiver operating characteristic; RP-HPLC: reversed-
phase high-performance liquid chromatography; SPE: solid phase extraction; 
SVM-RFE: support vector machine-recursive feature elimination; T2DM: type 
2 diabetes mellitus; WHO: World Health Organization; XIC: extracted ion 
chromatogram.

Authors’ contributions
SS researched data, contributed to discussion, wrote the manuscript, and 
reviewed/edited the manuscript. YL and LW researched data, contributed to 
discussion and reviewed/edited the manuscript. MB and RH contributed to 
discussion, wrote the manuscript, and reviewed/edited the manuscript. All 
authors read and approved the final manuscript.

Author details
1 Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, 
Universität Leipzig, Leipzig, Germany. 2 Center for Biotechnology and Biomedi-
cine (BBZ), Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany. 
3 School of Electrical Engineering and Computer Science, Ohio University, 
Athens, OH, USA. 4 Department for Internal Medicine, Clinic for Endocrinol-
ogy and Nephrology, University Hospital Leipzig, Universität Leipzig, Leipzig, 
Germany. 

Acknowledgements
We thank Uta Greifenhagen, Dr. Andrej Frolov, and Dr. Ravi Chand Bollineni 
for the help with sample preparation and helpful discussions and Dr. Daniel 
Knappe, Dr. David Singer, and Tina Goldbach for their support in synthesizing 
the peptides.

Competing interests
The authors declare that they have no competing interests.

Availability of supporting data
The datasets during the current study are available from the corresponding 
author on reasonable request.

Ethics approval and consent to participate
The study was approved by the Ethics Committee of Universität Leipzig 
(approval no: 159-12-21052012), and performed in accordance to the declara-
tion of Helsinki. Written informed consent was obtained from all participants 
in this study.

Funding
Financial support from Deutsche Forschungsgemeinschaft (HO-2222/7-1 to 
RH and SFB 1052: Obesity Mechanisms, B01 to MB) is gratefully acknowledged.

Received: 5 November 2016   Accepted: 18 March 2017

References
	1.	 American Diabetes Association (ADA). Diagnosis and classification of 

diabetes mellitus. Diabetes Care. 2013;36:67–74.
	2.	 World Health Organization (WHO) and International Diabetes Federation 

(IDF). Definition and diagnosis of diabetes mellitus and intermediate 
hyperglycaemia: report of a WHO/IDF consultation. Geneva: World Health 
Organization; 2006.

	3.	 World Health Organization (WHO). Abbreviated report of a WHO consul-
tation. Use of glycated hemoglobin (HbA1c) in the diagnosis if diabetes 
mellitus. Geneva: World Health Organization; 2011.

	4.	 Little RR, Rohlfing CL, Sacks DB. Status of hemoglobin A1c measurement 
and goals for improvement: from chaos to order for improving diabetes 
care. Clin Chem. 2011;57:205–14.

	5.	 Tanaka S, Tanaka S, Iimuro S, Yamashita H, Katayama S, Akanuma Y, 
Yamada N, Araki A, Ito H, Sone H, Ohashi Y. Predicting macro- and micro-
vascular complications in type 2 diabetes: the Japan Diabetes Complica-
tions Study/the Japanese Elderly Diabetes Intervention Trial risk engine. 
Diabetes Care. 2013;36:1193–9.

http://dx.doi.org/10.1186/s12014-017-9145-1


Page 9 of 9Spiller et al. Clin Proteom  (2017) 14:10 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

	6.	 Leal J, Hayes AJ, Gray AM, Holman RR, Clarke PM. Temporal validation of 
the UKPDS outcomes model using 10-year posttrial monitoring data. 
Diabetes Care. 2013;36:1541–6.

	7.	 Cox ME, Edelman D. Tests for screening and diagnosis of type 2 diabetes. 
Clin Diabetes. 2009;27:132–8.

	8.	 Qiao Q, Dekker JM, de Vegt F, Nijpels G, Nissinen A, Stehouwer CD, Bouter 
LM, Heine RJ, Tuomilehto J. Two prospective studies found that elevated 
2-hr glucose predicted male mortality independent of fasting glucose 
and HbA1c. J Clin Epidemiol. 2004;57:590–6.

	9.	 Ray KK, Seshasai SR, Wijesuriya S, Sivakumaran R, Nethercott S, Preiss D, 
Erqou S, Sattar N. Effect of intensive control of glucose on cardiovascular 
outcomes and death in patients with diabetes mellitus: a meta-analysis 
of randomised controlled trials. Lancet. 2009;373:1765–72.

	10.	 Currie CJ, Peters JR, Tynan A, Evans M, Heine RJ, Bracco OL, Zagar T, Poole 
CD. Survival as a function of HbA(1c) in people with type 2 diabetes: a 
retrospective cohort study. Lancet. 2010;375:481–9.

	11.	 McEwen LN, Karter AJ, Waitzfelder BE, Crosson JC, Marrero DG, Mangione 
CM, Herman WH. Predictors of mortality over 8 years in type 2 diabetic 
patients: translating research into action for diabetes (TRIAD). Diabetes 
Care. 2012;35:1301–9.

	12.	 Faerch K, Vistisen D, Johansen NB, Jorgensen ME. Cardiovascular risk 
stratification and management in pre-diabetes. Curr Diabetes Rep. 
2014;14:493.

	13.	 Lyons TJ, Basu A. Biomarkers in diabetes: hemoglobin A1c, vascular and 
tissue markers. Transl Res. 2012;159:303–12.

	14.	 Rondeau P, Bourdon E. The glycation of albumin: structural and functional 
impacts. Biochimie. 2011;93:645–58.

	15.	 Frolov A, Hoffmann R. Identification and relative quantification of 
specific glycation sites in human serum albumin. Anal Bioanal Chem. 
2010;397:2349–56.

	16.	 Zhang Q, Monroe ME, Schepmoes AA, Clauss TRW, Gritsenko MA, Meng 
D, Petyuk VA, Smith RD, Metz TO. Comprehensive identification of gly-
cated peptides and their glycation motifs in plasma and erythrocytes of 
control and diabetic subjects. J Proteome Res. 2011;10:3076–88.

	17.	 Frolov A, Blüher M, Hoffmann R. Glycation sites of human plasma proteins 
are affected to different extents by hyperglycemic conditions in type 2 
diabetes mellitus. Anal Bioanal Chem. 2014;406:5755–63.

	18.	 Kloting N, Fasshauer M, Dietrich A, Kovacs P, Schon MR, Kern M, Stumvoll 
M, Bluher M. Insulin-sensitive obesity. Am J Physiol Endocrinol Metab. 
2010;299:E506–15.

	19.	 Kannt A, Pfenninger A, Teichert L, Tonjes A, Dietrich A, Schon MR, Kloting 
N, Bluher M. Association of nicotinamide-N-methyltransferase mRNA 
expression in human adipose tissue and the plasma concentration of 
its product, 1-methylnicotinamide, with insulin resistance. Diabetologia. 
2015;58:799–808.

	20.	 Anderson L, Hunter CL. Quantitative mass spectrometric multiple reac-
tion monitoring assays for major plasma proteins. Mol Cell Proteomics. 
2006;5:573–88.

	21.	 Frolov A, Hoffmann R. Analysis of amadori peptides enriched by boronic 
acid affinity chromatography. Ann N Y Acad Sci. 2008;1126:253–6.

	22.	 Spiller S, Frolov A, Hoffmann R. Quantification of specific glycation sites in 
human serum albumin as prospective type 2 diabetes mellitus biomark-
ers. Protein Pept Lett. 2017;24. doi:10.2174/0929866524666170202124120.

	23.	 Kuzyk MA, Smith D, Yang J, Cross TJ, Jackson AM, Hardie DB, Anderson NL, 
Borchers CH. Multiple reaction monitoring-based, multiplexed, absolute 
quantitation of 45 proteins in human plasma. Mol Cell Proteomics. 
2009;8:1860–77.

	24.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blon-
del M, Prettenhofer P, Weiss R, Dubourg V. Scikit-learn: machine learning 
in Python. J Mach Learn Res. 2011;12:2825–30.

	25.	 Chen L, Xuan J, Wang C, Shih Ie M, Wang Y, Zhang Z, Hoffman E, Clarke 
R. Knowledge-guided multi-scale independent component analysis for 
biomarker identification. BMC Bioinform. 2008;9:416.

	26.	 Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classifica-
tion using support vector machines. Mach Learn. 2002;46:389–422.

	27.	 Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The 
WEKA data mining software: an update. ACM SIGKDD Explor Newsl. 
2009;11:10–8.

	28.	 R Development Core Team. R: A Language and Environment for Statistical 
Computing. Vienna: The R Foundation for Statistical Computing; 2011. 
ISBN: 3-900051-07-0. http://www.R-project.org/.

	29.	 von Luxburg U. Clustering stability: an overview. Found Trends Mach 
Learn. 2009;2:235–74.

	30.	 Ketchen DJ, Shook CL. The application of cluster analysis in strategic 
management research: an analysis and critique. Strateg Manag J. 
1996;17:441–58.

	31.	 Danese E, Montagnana M, Nouvenne A, Lippi G. Advantages and pitfalls 
of fructosamine and glycated albumin in the diagnosis and treatment of 
diabetes. J Diabetes Sci Technol. 2015;9:169–76.

	32.	 Bianchi C, Del Prato S. Metabolic memory and individual treatment aims 
in type 2 diabetes–outcome-lessons learned from large clinical trials. Rev 
Diabetes Stud. 2011;8:432–40.

	33.	 Meigs JB. Multiple biomarker prediction of type 2 diabetes. Diabetes Care. 
2009;32:1346–8.

	34.	 Kolberg JA, Jørgensen T, Gerwien RW, Hamren S, McKenna MP, Moler E, 
Rowe MW, Urdea MS, Xu XM, Hansen T, et al. Development of a type 2 
diabetes risk model from a panel of serum biomarkers from the Inter99 
cohort. Diabetes Care. 2009;32:1207–12.

	35.	 Urdea M, Kolberg J, Wilber J, Gerwien R, Moler E, Rowe M, Jorgensen 
P, Hansen T, Pedersen O, Jorgensen T, Borch-Johnsen K. Validation of a 
multimarker model for assessing risk of type 2 diabetes from a five-year 
prospective study of 6784 Danish people (Inter99). J Diabetes Sci Technol. 
2009;3:748–55.

	36.	 Li L, Cheng WY, Glicksberg BS, Gottesman O, Tamler R, Chen R, Bottinger 
EP, Dudley JT. Identification of type 2 diabetes subgroups through topo-
logical analysis of patient similarity. Sci Transl Med. 2015;7:311–25.

	37.	 Buell C, Kermah D, Davidson MB. Utility of A1C for diabetes screening in 
the 1999–2004 NHANES population. Diabetes Care. 2007;30:2233–5.

	38.	 Kramer CK, Araneta MRG, Barrett-Connor E. A1C and diabetes diagnosis: 
the Rancho Bernardo Study. Diabetes Care. 2010;33:101–3.

	39.	 Carson AP, Reynolds K, Fonseca VA, Muntner P. Comparison of A1C and 
fasting glucose criteria to diagnose diabetes among U.S. adults. Diabetes 
Care. 2010;33:95–7.

	40.	 Lorenzo C, Wagenknecht LE, Hanley AJ, Rewers MJ, Karter AJ, Haffner 
SM. A1C between 5.7 and 6.4% as a marker for identifying pre-diabetes, 
insulin sensitivity and secretion, and cardiovascular risk factors: the Insulin 
Resistance Atherosclerosis Study (IRAS). Diabetes Care. 2010;33:2104–9.

	41.	 Zhou X, Pang Z, Gao W, Wang S, Zhang L, Ning F, Qiao Q. Performance of 
an A1C and fasting capillary blood glucose test for screening newly diag-
nosed diabetes and pre-diabetes defined by an oral glucose tolerance 
test in Qingdao, China. Diabetes Care. 2010;33:545–50.

	42.	 Carter K, Worwood M. Haptoglobin: a review of the major allele frequen-
cies worldwide and their association with diseases. Int J Lab Hematol. 
2007;29:92–110.

http://dx.doi.org/10.2174/0929866524666170202124120
http://www.R-project.org/

	Glycated lysine-141 in haptoglobin improves the diagnostic accuracy for type 2 diabetes mellitus in combination with glycated hemoglobin HbA1c and fasting plasma glucose
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Blood samples
	Peptide quantification
	Statistics and bioinformatics

	Results
	Discussion
	Authors’ contributions
	References




