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et de Sécurité (INRS), France

Benjamin Martin,
Harvard Medical School,

United States
Yingjie Zhang,

Shandong University, China
Heidi Olzscha,

Martin Luther University of
Halle-Wittenberg, Germany

*Correspondence:
Gang Yin

gangyin@csu.edu.cn

Specialty section:
This article was submitted to

Pharmacology of
Anti-Cancer Drugs,

a section of the journal
Frontiers in Oncology

Received: 27 April 2021
Accepted: 05 July 2021
Published: 29 July 2021

Citation:
Hai R, He L, Shu G
and Yin G (2021)

Characterization of Histone
Deacetylase Mechanisms in

Cancer Development.
Front. Oncol. 11:700947.

doi: 10.3389/fonc.2021.700947

REVIEW
published: 29 July 2021

doi: 10.3389/fonc.2021.700947
Characterization of Histone
Deacetylase Mechanisms
in Cancer Development
Rihan Hai1,2, Liuer He1,2, Guang Shu2 and Gang Yin1*

1 Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China,
2 School of Basic Medical Sciences, Central South University, Changsha, China

Over decades of studies, accumulating evidence has suggested that epigenetic
dysregulation is a hallmark of tumours. Post-translational modifications of histones are
involved in tumour pathogenesis and development mainly by influencing a broad range of
physiological processes. Histone deacetylases (HDACs) and histone acetyltransferases
(HATs) are pivotal epigenetic modulators that regulate dynamic processes in the
acetylation of histones at lysine residues, thereby influencing transcription of oncogenes
and tumour suppressor genes. Moreover, HDACs mediate the deacetylation process of
many nonhistone proteins and thus orchestrate a host of pathological processes, such as
tumour pathogenesis. In this review, we elucidate the functions of HDACs in cancer.
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BACKGROUND

Epigenetics refers to molecular processes that regulate gene expression without altering the DNA
sequence, including diverse molecular modifications of DNA and chromatin, such as histone
acetylation and DNA methylation (1, 2). Epigenetics can turn on/off gene expression and thus plays
a crucial role in tumorigenesis and cancer progression (3). Abnormal epigenetic alterations and
destroyed epigenetic integrity are common characteristics of tumour cells (4). Among all epigenetic
mechanisms, histone modifications have been shown to be important in carcinogenesis.
Abbreviations: AMPK, activated protein kinase; APL, acute promyelocytic leukaemia; Bcl-2, B-cell lymphoma-2; CDK, cyclin-
dependent kinase; CLL, chronic lymphocytic leukaemia; CREB, cAMP-response element-binding protein; CTCL, cutaneous T
cell lymphoma; DSB, DNA double-strand break; E2F, Early 2 factor; ELM2, egl-27 and MTA1 homology domain 2; ERa,
oestrogen receptor-a; FOXO, forkhead box O; GLS, mitochondrial glutaminase; HATs, histone acetyltransferases; HCC,
hepatocellular carcinoma; HDAC, histone deacetylases; HIF-1, hypoxia-inducible factors 1; HL, Hodgkin’s lymphoma; ISWI,
imitation switch; LDH, lactate dehydrogenase; LSD1, lysine-specific demethylase 1 proteins; MC-LR, microcystin-leucine
arginine; MMPs, matrix metalloproteinases; MPNs, myeloproliferative neoplasms; MPP8, M-phase phosphoprotein 8; MSH2,
MutS protein homologue 2; NER, nucleotide excision repair; NHEJ, nonhomologous end joining pathway; NICD1, Notch1
intracellular domain; NuRD, nucleosome remodelling and deacetylase; OSCC, oral squamous cell carcinoma; PHF23, plant
homeodomain finger protein 23; PML-RAR, promyelocytic leukaemia-retinoic acid receptor; Rb, retinoblastoma protein;
SANT, Swi3, Ada2, NCoR and TFIIIB domain; SDS3, suppressor of defectivesilencing3; SIN3A, switch-independent protein
3A; STX17, syntaxin 17; T-ALL, T cell acute lymphoblastic leukaemia; UPS, ubiquitin proteasome system; XPC, xeroderma
pigmentosum complementation group C.
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Histone modifications are catalysed by specific enzyme
complexes through ATP-consuming processes, which in turn
impact gene transcription, duplication, repair and recombination
(4). Acetylation and methylation are involved in the regulation of
amino-terminal (N-terminal) tail domains of core histones and
affect the post-translational crosstalk between DNA and histones
by recruiting proteins and transcription factors (5).

Histone acetylation involves reversible alterations of the N-
terminal lysine on histones and is subsequently linked to
different cellular processes and disease development (6, 7).
Histone acetylation is accomplished by two enzymes: histone
acetyltransferases (HATs) and histone deacetylases (HDACs or
KDACs), which add or remove acetyl groups (8) (Figure 1). The
existence of acetylated lysine in the histone tail causes the
chromatin to be more open, allowing initiation of gene
transcription. In contrast, deacetylation enhances the ionic
interactions between histones, which have a positive charge,
and DNA, which has a negative charge. Deacetylation is
related to compacted chromatin, which is not conducive to
gene transcription (9). These modifications show strong
Frontiers in Oncology | www.frontiersin.org 2
relationships to gene expression in normal and cancerous
cells (10).

HDACs act as gene silencing complexes, and studies have
suggested that HDACs suppress gene expression through
transcription factors such as E2F1. Furthermore, evidence
indicates that HDACs can eliminate acetylation of nonhistone
proteins (11). HDACs inhibit the process by which T cells
recognize and destroy tumour cells (12).
HDAC CLASSIFICATIONS

Human HDACs can be classified into four classes with 18
members (Figure 2). Class I and II HDACs were found to show
high similarities in catalytic sites. Except for HDAC8, HDAC
isoforms appear to combine with more proteins or more HDAC
isoforms in multiprotein complexes (13, 14). Many types of
HDACs are derived from nucleotide polymorphisms and
optional splicing. Various isoforms of HDAC9 have been
identified (15).
FIGURE 1 | Acetylation by HATs and deacetylation by HDACs influence gene transcriptional activity. HATs and HDACs add or remove acetyl groups at the
N−terminus lysine, which leads to an open or condensed state of the chromatin.
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Class I HDACs
These enzymes have been identified in the nucleus. The
expression of class I HDACs is elevated in cancer cells.
HDAC1 mainly shows oncogenic activity, but a dual role of
HDAC1 was found in different stages of acute promyelocytic
leukaemia (APL) (16). HDAC1 functions as a tumour suppressor
by restraining the activity of PML-RAR in the preleukaemic
stage of APL. Moreover, it exerts tumour-promoting activity in
established tumour cells (16). This finding reveals the
importance of identifying the role of HDACs at different stages
in different cancer cell types for optimal treatment, such as
personalized design of inhibitors.

HDAC1 and HDAC2 are involved in the deacetylation of p53,
which results in enhanced regulation of target genes by p53 (17, 18).
The interaction between HDAC3 and cancer-associated genes
influences the angiogenic and carcinogenic potential of tumours
and the efficacy of antitumour drug treatment (19). Furthermore,
HDAC3 can catalyse the deacetylation of the Notch1 intracellular
domain (NICD1), thereby promoting NICD1 protein stability,
which is involved in the progression of T cell acute lymphoblastic
Frontiers in Oncology | www.frontiersin.org 3
leukaemia (ALL) and chronic lymphocytic leukaemia (CLL) (20).
In addition, HDAC3 inhibits NF-kB lysine acetylation, thereby
exerting a proinflammatory effect (21).

When the expression of HDAC1 is decreased, the levels
of HDAC2 and HDAC3 are increased. However, highly
expressed HDAC2 and HDAC3 are unable to compensate for
the lack of HDAC1 (22).

HDAC8 is overexpressed in diverse cancer tissues, including
colon, breast, lung, pancreatic, and liver cancers and
childhood neuroblastoma (23). The distal region of HDAC8
allosterically regulates the activity of this enzyme (24). In
addition, oxidoreduction reactions can modulate the activity of
HDAC8 (25).

The HDAC1/2 Complex
Homologous proteins of class I HDAC can form stable
multiprotein complexes with other proteins. Over the years,
several HDAC1/2 corepressor complexes, such as switch-
independent protein 3A (SIN3A), mitotic deacetylase
(MiDAC), nucleosome remodelling and deacetylase (NuRD),
FIGURE 2 | The domain structure of human HDACs. The basic domain structure of eighteen HDAC members. Class I, II, and IV HDACs contain Zn2+-dependent
domains, while SIRTs contain NAD+-dependent domains. Nuclear localization sequences and zinc finger motifs in different HDACs are also shown.
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mesoderm induction early response (MIER), corepressor of
REST (CoREST), and arginine-glutamic acid dipeptide repeats
(RERE), have been identified (26, 27).

The structures of SIN3A and NuRD demonstrated the
diversity of protein complex components, which are related to
their function and context-specific cellular activity (28).

The SIN3 Complex
The SIN3 complex is composed of SIN3A/B, HDAC1/2,
suppressor of defective silencing 3 (SDS3), and SIN3-associated
protein p30 (SAP30) (27). Except for SIN3A/B, all corepressor
proteins possess an ELM2–SANT domain. The SIN3A complex
has more enzymatic activities based on its functional molecules
(29, 30). The SIN3 complexes can also form a dimer (31). The
acetylation of STAT3 and its interaction with SIN3A inhibit
the expression of tumour suppressor genes (32). Nevertheless,
the interaction pattern with the above modulators is still unclear.

Recently, PHF23, an H3K4me3 reader, was shown to directly
bind the SIN3-HDAC complex and repress its deacetylation
activity. Thus, the PHF23-SIN3-HDAC (PSH) complex
consequently enhances the activation of downstream tumour
suppressor genes (33). Aberrant PSH levels have a stimulatory
role in chromosome 17p-deleted tumours.

The NuRD Complex
The NuRD complex consists of chromodomain helicase DNA-
binding proteins (CHD3/CHD4/CHD5), HDAC1/HDAC2,
metastasis associated proteins (MTA1/MTA2/MTA3), methyl
domain binding proteins (MBD2/MBD3), retinoblastoma
binding proteins (RBBP4/RBBP7), and GATA zinc finger
domain proteins (GATAD2B/GATAD2A) (34, 35), and all
NuRD components showed high expression in tumour cells (36).

The NuRD complex is formed by six main protein subunits,
which have some functional differences (37). The NuRD complex
modulates the process by which different cells read DNA, which
can trigger pluripotency in stem cells and is involved in the
transformation of adult cells to induced pluripotent stem cells
(37, 38). The NuRD complex plays important roles in diverse
malignant phenotypes in hepatocellular carcinoma (HCC)
cells (36).

Class II HDACs
Class II HDACs have different effects in different tissues (39).
HDAC4, HDAC5 and HDAC7 alter cell differentiation on the
basis of certain signals and thus lead to changes in the gene
expression status. HDAC4, HDAC5, HDAC7, and HDAC9
(class IIa members) are encoded by various genes (40). The
catalytic domains of HDAC6 and HDAC10 (class IIb members)
show similarity with those of HDAC9. Furthermore, HDAC9
was reported to have splice variants (26). In addition,
phosphorylation of class IIa enzymes is associated with their
localization and activities in the nucleus (41). Compared to that
of other HDACs, the histone deacetylating activity of class IIa
HDACs is low. However, class IIa HDACs exert enzymatic
activity when forming protein complexes with SMRT/N-CoR
(42). A recent study reported that class IIa HDACs are directly
involved in lung vascular barrier disruption (43). Class IIa
Frontiers in Oncology | www.frontiersin.org 4
HDACs may also regulate the endothelial cell barrier through
deacetylation, since HDAC7 is closely related to cytoskeletal
processes (43).

Class IIa HDACs repress transcriptional processes in diverse
tissues. In addition to acting as transcription repressors, class II
HDACs are associated with autophagic progression and
cytoskeleton microtubules (44). For example, HDAC6 can act
as a a-tubulin deacetylase and participate in multiple
cytoplasmic pathways related to microtubules (45, 46),
revealing that it may be an important therapeutic for treating
Alzheimer’s disease and cancer (47). HDAC4 and HDAC9
contain different common genomic binding sites. However,
HDAC4 binds additional sites that may escape modulation by
HDAC9 (48). HDAC9 inhibits cardiomyocyte hypertrophy and
skeletal muscle differentiation. HDAC4 suppresses the activity of
Runx2, thereby repressing chondrocyte hypertrophy and
endochondral bone formation (49). The expression of HDAC5
and lysine-specific demethylase 1 (LSD1) was elevated in breast
cancer, and HDAC5 enhanced the LSD1 protein stability and
reduced the nuclear level of H3K4me1/me2 in breast cancer
cells (50).

Class III HDACs
To date, seven Sirtuins have been identified. Sirtuins contain
catalytic domains, which function in a nicotinamide adenine
dinucleotide (NAD+)-dependent manner in transcriptional
processes. Sirtuins have also been reported to have lysine
defatty-acylase activity (51).

SIRT1 was shown to have a dual role in tumour cell growth
(52, 53). This molecule acts as a positive regulator of proteins
involved in tumour suppressor pathways or DNA damage repair
(54). SIRT1 also has a negative effect on tumorigenesis since it
can decrease oncogene transcriptional activity through
interaction and deacetylation of c-MYC (52, 55). SIRT2 was
reported to exert tumour repressing effects. The deletion of
SIRT2 disrupted the checkpoints of the cell cycle and led to
enhanced tumorigenesis (56, 57). In addition to mitosis, SIRT2
can regulate genome integrity (58). SIRT3 was reported to
modulate transcription factors in breast cancers (59). In lung
cancer cells, SIRT4 suppressed cell proliferation, invasion and
migration (60). In liver cancer, SIRT5 enhanced tumour cell
proliferation (61). In retinoblastoma, SIRT6 was shown to be a
cancer suppressor protein and function by restraining the
metabolism of cells (62). SIRT6 can stabilize the normal
genome of neighbouring cells (63). Moreover, SIRT7 was
observed to target H3 histones with high specificity and recruit
RNA polymerase I (64, 65).

Class IV HDACs
Located in the N-terminal tail, the catalytic domain of HDAC11
is very similar to that of HDAC3 and HDAC8 (66). Similar to
Sirtuins, HDAC11 also possesses acylase activity. Determination
of defatty-acylase activity is considered an alternative method of
identifying HDACs, and zinc-dependent HDACs showed
notable differences in activity (67, 68). HDAC11 participates in
oligodendrocyte progression and promotes oligodendrocyte
July 2021 | Volume 11 | Article 700947
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differentiation (69). This molecule is also involved in immune
responses by decreasing IL-10 levels (68). A recent study found
that HDAC11 can promote the malignant phenotypes of
JAK2-driven myeloproliferative neoplasms (70).
ROLE OF HDACS IN TUMOURS

HDACs are involved in various stages of cancer (71). Highly
expressed HDACs are usually associated with terminal illness
and inferior outcomes of patients. For instance, upregulation of
HDAC1, HDAC2, and HDAC3 expression correlated with worse
survival in patients with gastric and ovarian tumours (72), and
elevated levels of HDAC8 expression in neuroblastoma were
related to advanced disease and negative outcomes (73, 74).

Notably, the HDAC expression level may not be a
prerequisite of their functions in cancer, since abnormal
activities of HDACs in cancer progression are common (75).
Furthermore, some HDAC families serve as subunits of large
protein complexes and can promote carcinogenesis (76, 77).

Research has shown that histone deacetylase activity is not
generally necessary for gene expression. The acetyltransferase
activity of these molecules cannot recruit p300/CBP and
transcription factors but can facilitate the recruitment of TFIID
and RNAPII at virtually all enhancers and enhancer-regulated
genes (78). Histone acetylation promotes transcription of paused
genes through release of Pol II into elongation (79). Research has
shown that global histone acetylation depends on ongoing
transcription. For instance, Wang and his colleagues have
found that in K562 cells, transcription inhibition leads to rapid
loss of H3K27ac from enhancers and promoters. Hos2 histone
deacetylase primarily interacts with genes with high genome-
wide activity and catalyses deacetylation of lysines in the H3 and
H4 histone tails (80). Therefore, whether HDACs have context-
specific rather than general functions in modulation of gene
expression requires further exploration.

HDAC inhibitors (HDACis) were shown to exert antitumour
effects through various mechanisms in several cancer cell lines
(81). Different HDACis show distinctive mechanisms in
influencing cell growth, apoptosis, migration, and angiogenesis
(82, 83). HDACis can be classified into four main types
according to their structures: short-chain fatty acids,
hydroxamic acids, cyclic peptides, and benzamides (84). In
recent years, four HDACis have been officially approved by the
FDA for clinical therapy of T-cell lymphoma (TCL) and multiple
myeloma: vorinostat, romidepsin, belinostat and panobinostat
(11, 85). For example, panobinostat causes G2/M cell cycle arrest
and apoptosis due to suppression of HDAC3 and HDAC6 and
thus leads to degradation of Aurora A and B kinases (86).
Panobinostat also enhanced the expression of CDH1 and
restrained epithelial-mesenchymal transition (EMT) in triple-
negative breast cancer (87). Entinostat leads to low Bcl-XL
expression and promotes the apoptotic process of tumours.
Entinostat was also shown to cause G1 cell cycle arrest by
upregulating p21 expression (88).
Frontiers in Oncology | www.frontiersin.org 5
Generally, the anticancer activity of HDACis indicates the
tumour-promoting effects of HDACs. However, genetic
inactivation of HDACs might play a tumorigenic role. HDAC1
somatic mutations and HDAC4 homozygous deletions were
observed in 8.3% of dedifferentiated liposarcomas (89) and 4%
of melanomas (90). In addition, HDAC2 has been shown to exert
an anticancer effect in vitro and in vivo. Class II HDACs may also
serve as cancer suppressors in specific cellular settings. HDAC6
showed low expression in liver cancer cells and liver
transplantation patients. Furthermore, the status of HDAC6 is
related to poor prognosis of disease. For class III HDACs, a
SIRT6 mutation, which is a loss-of-function mutation, was
observed in tumour cells and promoted tumour formation (91).
POSSIBLE MECHANISMS OF HDACS IN
CANCER DEVELOPMENT

HDACs are involved in tumour pathogenesis and progression by
deacetylating histone and nonhistone proteins that participate in
the modulation of multiple tumorigenic pathways (92)
(Figures 3, 4 and Table 1).

Cell Cycle
HDACs facilitate the stage-specific development of cancers; for
example, HDAC1 reduces cell cycle suppressors by interacting
with Rb and influencing E2F1 activity (9). Therefore, HDACis
can impede the transition from G1 to S phase by recurring Rb
activity via dephosphorylation and inhibition of E2F1 activities
(147). HDAC inhibition also exerts anticancer effects by blocking
the cell cycle, which is achieved by inducing high expression of
cyclin-dependent kinase (CDK) inhibitors or low expression of
cyclins and CDKs (148). HDAC1 and HDAC2 can bind to genes
such as p21WAF1/CIP1 and p27KIP1, resulting in suppression of
their expression (149). Silencing p21 and p27 (CDK inhibitors)
led to facilitated cell proliferation. Thus, inhibition of HDAC1
and HDAC2 promotes cell cycle arrest at G1 phase (148).

Along with HDAC1’s effect on the G1/S transition, it is also
involved in the G2/M transition. Knocking down HDAC1 in
tumour cells partially contributed to G2/M phase arrest (150).
Furthermore, in adult neural stem/progenitor cells, HDAC3 was
reported to modulate the G2/M transition through alteration of
CDK1 expression (151). In addition, HDAC3 contributes to cell
progression and proliferation by modulating the signal
transducer and activator of transcription3 signalling pathway
in liver cancers (152). Moreover, HDAC10 participates in G2/M
transition by regulating the transcription of cyclin A2 protein
depending on let-7 and HMGA2 (153). HDAC10 plays a crucial
role in unchecked cell progression, since deletion of HDAC10
induces blockade at mitotic entry and thus restrains cell
proliferation in human lung cancers (154). High expression of
Sp1 induced by HDAC1/2/6 facilitates cell division of malignant
cells by enhancing BMI1 and hTERT and, more importantly,
G2/M progression (155). Furthermore, an HDAC6 inhibitor can
lead to G2/M arrest in temozolomide-resistant cells (155).
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Members of class III and class IV HDACs also play roles in
cell cycle regulation. SIRT1 can disturb the cell cycle by acting on
p53 and blocking all p53-dependent pathways (156). HDAC11
was shown to have a negative effect on E2F7 and E2F8, cell cycle
suppressors, thus contributing to cancer cell survival within
lymph nodes (109).

HDACis can block the cell cycle at G1/S and G2/M phases,
which is similar to the gene knockdown results, confirming
multiple effects of HDACs during the cell cycle. These results
support the promising role of HDACs as targets for treating
aberrant tumour cell growth and proliferation.

Apoptosis
HDACs participate in the extrinsic and intrinsic pathways of
apoptosis. For the extrinsic pathway, HDACs can block TRAIL-
or TGF-b-mediated pathways (157). For the intrinsic pathway,
the HDAC family alters pro- and antiapoptotic proteins. HDACs
can inhibit proapoptotic Bcl-2 proteins, such as NOXA and BAX
(158, 159), via direct acetylation or by nonhistone protein KU70
modification (160). Moreover, HDACs can promote apoptosis in
glioblastoma and other cancer types (161).

HDACi treatment can promote cell apoptosis by the
extrinsic/intrinsic pathway and by improving the sensitivity of
Frontiers in Oncology | www.frontiersin.org 6
tumour cells (162). In addition, some HDACis have been
assessed in preclinical cancer models. Vorinostat and
panobinostat, which are nonselective HDACis, inhibited FLIP
expression in a c-MYC-mediated manner (163). By suppressing
HDAC1 and HDAC2, HDACis impeded the growth of prostate
cancer (164). HDACis successfully reduced the level of FLIP and
enhanced caspase-8 activity in non-small cell lung cancer
(NSCLC). Under HDACis, cells are sensitive to activators such
as TRAIL, thereby promoting apoptosis (165). Furthermore,
HDAC2 depletion could help sensitize pancreatic cancer cells
to TRAIL-induced apoptosis by upregulating the expression of
TRAIL receptor DR5 (TRAIL-R2) (166). Regarding the intrinsic
pathway, HDAC inhibition could promote apoptosis by
downregulating the expression of Bcl-2 proteins, such as Bcl-2,
Bcl-xL and Mcl-1 (161), while upregulating the expression of
proapoptotic proteins (167), which include Puma, Bim, and
Noxa (168).

ProfessorWang found that HDAC1, HDAC2 and HDAC3 are
related to microcystin-leucine arginine (MC-LR)-induced
apoptosis in SD rat testicular cells. Specifically, HDACs were
activated by MC-LR and subsequently reduced the acetylation
state of normal testicular cells, resulting in cell cycle abnormalities
and consequently cell apoptosis. These researchers also reported
FIGURE 3 | Multiple tumorigenic pathways activated by HDACs. An overview of HDAC-involved tumorigenic processes, including the cell cycle, apoptosis, DNA
damage repair, metastasis, angiogenesis, and autophagy.
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that TSA could re-establish MC-LR-induced apoptosis and cell
cycle arrest (169).

Overexpression of HDAC1, HDAC2 and HDAC8 has been
demonstrated to downregulate the expression of p53, a tumour
suppressor gene that participates in cell apoptosis, thus resulting
in the inhibition of apoptosis (170–172). Lnc-Ip53, a lncRNA
that can be transactivated by p53, was reported to interact with
HDAC1 and p300, thereby restraining p53 acetylation, reducing
p53 activity and subsequently inhibiting apoptosis (173).
HDACis, like TSA, stabilized the acetylation caused by p53
and increased PUMA expression by promoting the binding of
p53 to the PUMA promoter, thus abrogating resistance to DNA
damage-induced cell death in renal cancer (155, 174). Along with
HDAC1, HDAC2 and HDAC8 (50), HDAC3 can interact with
oestrogen receptor-a (ERa) and form the HDAC3-ERa
complex, which suppressed selective apoptosis mediated by
TNF-a in MCF-7 cells, and the process is dependent on
caspase-7 (98).

Other publications also reported the function of p53 in
HDACi-mediated apoptosis. The HDACi-induced process
Frontiers in Oncology | www.frontiersin.org 7
includes activating p53, whereas p53 was not found to be a
prerequisite for anticancer processes (175). A majority of
studies have shown that HDACis function without p53 since
their anticancer effects do not fluctuate with cell p53 status (176).
Despite this, other studies have concluded that p53 plays a crucial
role in inducing tumour cells in response to HDACi treatment. To
test this hypothesis, scientists have generated isogenic HCT-116
colon tumour cells with different p53 statuses. Vorinostat,
apicidin, and VPA can function efficiently regardless of the level
of p53. Nevertheless, entinostat is influenced by p53 status to a
certain degree (175). This molecule can inhibit [FADD]-like
interleukin-1 b-converting enzyme inhibitory protein [FLIP(L)]
and thus promote p53-induced apoptosis (177).

Moreover, HDAC1 and HDAC8 simultaneously repress
BMF. The HDAC8 inhibitor methylselenopyruvate was found
to promote the transcription of BMF and apoptosis induced by
BMF in colon cancer cells (178). Recently, HDAC11 was shown
to be important for the proliferation of oncogenic JAK2-driven
myeloproliferative neoplasms, and downregulation of HDAC11
expression could promote apoptosis in human leukaemia (70).
FIGURE 4 | Characterized mechanism of HDACs in cancer development. HDACs influence the tumorigenic process by regulating oncogene and tumour suppressor
gene expression or interacting with related proteins.
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TABLE 1 | Summary of histone deacetylases.

Molecular mechanism

pregulates miR-449 and downregulates c-MET expression,
mour growth; KD of HDAC1 promotes p21 and p27
bits cyclin D1 and CDK2 expression, and reduces cell
downregulating cyclin A expression (93–95)

pregulates miR-449 and downregulates c-MET expression,
mour growth; KD of HDAC2 activates p53 and Bax but
to induce apoptosis; KD induces expression of p21 and
lin E2, cyclin D1, and CDK2 expression to induce cell-cycle
C2 increases expression of NOXA, which sensitizes tumour
oposide-induced apoptosis (94, 96, 97)

pregulates miR-449 and downregulates c-MET expression,
mour growth; KD of HDAC3 upregulates E-cadherin
reduces cell migration; HDAC3 interacts with ERa and form
a complex, which suppresses selective apoptosis mediated
4, 98)

n induces p21WAF1/CIP1 and NTRK1/TrkA gene expression,
cell cycle arrest and differentiation; HDAC8 regulates CREB,
ing retinoic acid-mediated differentiation (73, 74)

s the level of cleaved caspases 3 and 9 (99)

s with LSD1; promotes cell proliferation by upregulating Six
of HDAC5 promotes apoptosis by upregulating cyto C,
, and bax expression and induces G1 phase cell-cycle arrest
21 expression and decreasing cyclin D1 and CDK2/4/6
100, 101)
us of HDAC7 has sufficient activity for transcriptional
C7 can repress transcription through deacetylation-
-independent mechanisms (102)
ith catalytic domain on its C-terminus (103)

cruitment of HSP90 and p300 to enhance HIF-1’s
ctivity; KD of HDAC6 upregulates the HIF-1a and VEGFA
reby facilitating angiogenesis; HDAC6 interacts with CLIP-
tes tumour cell migration (104, 105)
tes autophagy and cytotoxic drug resistance by interacting
AC10 silences MMP2 and MMP9 expression, thereby
r cell migration and invasion; regulates cyclinA2, thereby
ll cycle (106–108)
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Super Family Class Subclass Type Localization Amino
Acid

Cancer Type Biological relevance

Arginase/
deacetylase
superfamily

Class I HDAC1 Nucleus 482 Elevated in lung, liver,
breast, colorectal,
prostate, ovarian,
bladder, gastric, renal,
and haematological
cancers, HL, and APL

Promotes cell cycle progression
and cell proliferation; inhibits
apoptosis (11)

KD of HDAC1
which inhibits t
expression, inh
proliferation by

Arginase/
deacetylase
superfamily

Class I HDAC2 Nucleus 488 Elevated in gastric,
prostate, colorectal,
pancreatic, breast,
renal,
medulloblastoma, and
bladder cancers, ALL,
CTCL and HL

Promotes cell cycle progression
and cell proliferation; inhibits
apoptosis (11, 96)

KD of HDAC2
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TABLE 1 | Continued

Molecular mechanism

interacts with HDAC1/2; defatty-acylate substrate activity (67, 68, 103)

Suppresses p53 activity and maintain the cell cycle and proliferation;
deacetylates FOXO1, 3, and 4, resulting in transcriptional repression of
proapoptotic genes and upregulation of the expression of stress-related
genes; regulates autophagy through the SIRT1-FOXO1-Rab7 axis (112–116)

Binds to and activates transcription factor p300, which form the preinitiation
complex with, FOXO1 and FOXO3; increases FOXO1’s interaction with
PPAR and thus represses PPAR target genes; regulates the activity of
cytosolic proteins LDH-A (120–123)

Activates PI3K/Akt pathway; controls the ATP synthesis through AMPK
pathway; suppresses EMT and migration through the Sirt3-Foxo3a pathway,
interacts with miR-19b, LKB1 (126–129)

Downregulates the tumour suppressor PTEN and mTOR thus increasing
autophagy (134)

Inhibits GLS and regulates glutamine metabolism thereby affecting the TCA
cycle; BAG3 inhibits the formation of the GLS-SIRT5 complex and prevents
proteasomal degradation of GLS, thereby promoting autophagy; activates
SOD1 and promote tumour growth (136–140)

Activates PARP1 to repair DBS damage under oxidative stress; inhibits the
transcription of factors NF-kB, HIF-1a and MYC (62, 140, 142)

Deacetylates PAF53, which recruits RNA polymerase I to rDNA promoter
(145)

H
aiet

al.
H
D
A
C
s
in

Tum
origenesis

Frontiers
in

O
ncology

|
w
w
w
.frontiersin.org

July
2021

|
Volum

e
11

|
A
rticle

700947
9

Super Family Class Subclass Type Localization Amino
Acid

Cancer Type Biological relevance

Arginase/
deacetylase
superfamily

Class IV HDAC11 Nucleus 347 Elevated in breast,
renal, and liver
cancers

Promotes proliferation,
metastasis, and cell cycle;
inhibits apoptosis (70, 109–111)

Deoxyhypusine
synthase like
NAD/FAD-
binding domain
superfamily

Class III I SIRT1 Nucleus 747 Elevated in CLL;
decreased in breast,
bladder, prostate,
brain, and ovarian
cancers, colon
carcinoma, OSCC,
glioblastoma

Promotes metastasis,
autophagy, chromatin stability;
disturbs cell cycle and
angiogenesis; influences DNA
repair, chemoresistance,
metabolism, stress response
(113, 114, 117–119)

Deoxyhypusine
synthase like
NAD/FAD-
binding domain
superfamily

Class III I SIRT2 Cytoplasm 389 Elevated in brain
cancer; decreased in
breast, liver, and
prostate cancers,
glioblastoma

Promotes metastasis,
autophagy; regulates chromatin
condensation, DNA repair, cell
cycle, metabolism, differentiation
(124, 125)

Deoxyhypusine
synthase like
NAD/FAD-
binding domain
superfamily

Class III I SIRT3 Mitochondria 399 Decreased in breast,
ovarian, lung, and
prostate cancers,
medulloblastoma

Promotes autophagy, apoptosis;
regulates DNA repair,
metabolism; maintains
mitochondrial protein synthesis
(130–133)

Deoxyhypusine
synthase like
NAD/FAD-
binding domain
superfamily

Class III II SIRT4 Mitochondria 314 Decreased in gastric,
bladder, breast, and
lung cancers,
leukaemia

Promotes genomic stability;
represses tumorigenesis;
regulates amino acid catabolism
(13, 135)

Deoxyhypusine
synthase like
NAD/FAD-
binding domain
superfamily

Class III III SIRT5 Mitochondria 310 Elevated in lung
cancer

Promotes cell proliferation and
invasion; regulates urea cycle,
metabolism (61, 136, 137, 141)

Deoxyhypusine
synthase like
NAD/FAD-
binding domain
superfamily

Class III IV SIRT6 Nucleus 355 Elevated in CLL;
decreased in
pancreatic, colon, and
breast cancers,
glioblastoma
multiforme

Promotes progression, tumour
establishment, chromatin and
DNA repair; regulates telomeric
chromatin (62, 143, 144)

Deoxyhypusine
synthase like
NAD/FAD-
binding domain
superfamily

Class III IV SIRT7 Nucleus 400 Elevated in colorectal,
breast, and thyroid
cancers

Promotes autophagy; inhibits
proliferation and migration;
regulates rDNA transcription
(146)
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DNA Damage Response
A growing body of research has shown that HDACs are involved
in DNA damage repair (DDR) responses. HDACs serve as
protective agents against DNA damage due to their necessary
role in remodelling chromatin and balancing the acetylation of
proteins associated with DNA damage (179).

HDAC1, along with HDAC2, binds to DNA damage regions
to deacetylate histone proteins at H3K56 and H4K16 and
accelerates nonhomologous end joining (NHEJ) pathways,
thereby promoting double-strand break (DSB) repair (180).
For HDAC3, inactivating HDAC3 leads to genomic instability,
and HDAC3 deficiency in the liver contributes to HCC (181).
More specifically, HDAC3 deacetylase acts on and stabilizes
Tip60, thereby reducing apoptosis triggered by DNA damage
(182). Furthermore, HDAC inhibition blocks DSB repair and
sensitizes tumour cells to ionizing radiation and DNA
damage agents.

HDAC3 was also reported to participate in nucleotide
excision repair (NER). HDAC3 acts on H3K14 after ultraviolet
irradiation and promotes XPC recruitment to DNA-damaged
sites, thereby exerting a positive effect on the global genomic
NER (183).

Several class II HDACs are involved in DNA damage repair.
For example, HDAC4 and 53BP1 colocalize in nuclear foci after
DSBs. Knocking down HDAC4 resulted in low levels of 53BP1
and inactivation of the DNA damage-induced G2 checkpoint
(184). HDAC9 and HDAC10 were shown to play roles in
homologous recombination (153, 185). Furthermore, Doctor
Zhang reported that the DNA mismatch repair protein MutS
protein homologue 2 (MSH2) is associated with class IIb
HDACs. Specifically, HDAC6 functions as an MSH2 inhibitor
via deacetylation and ubiquitination (186).

Sirtuins interact with many DDR proteins, such as Ku70,
NBS1, hMOF, WRN, APE1, XPA, PARP-1, TopBP1, and KAP1,
thus regulating several DDR pathways (187). In tumour cells,
SIRT1 was reported to prevent p53 acetylation and thus promote
cell survival after DNA damage (156, 188). Therefore, knocking
down SIRT1 exerts positive feedback in cancer treatment,
revealing that SIRT1 is an potential target for cancer
treatment. However, when cancer cells suffer severe damage,
SIRT1 is repressed due to phosphorylation at Ser682 by the DNA
damage-responsive kinase HIPK2 (189). This process results in
cell death under severe DNA damage. SIRT1 plays a crucial role
in supporting genome integrity and stability (190). Thus,
enhancing SIRT1 in this manner may be a potential
therapeutic strategy.

SIRT6 also plays a notable role in DNA repair. This molecule
was first reported to abrogate genome instability through the
alteration of DNA base excision repair. SIRT6 can be directly
recruited to DNA damage sites and enhance mono-ADP-
ribosylation of PARP1, thereby facilitating DSB repair (143),
which is achieved through phosphorylation of SIRT6 by JNK
(191). To suppress genomic instability, SIRT6 recruits and
deacetylates the ISWI-chromatin remodeler SNF2H at histone
H3K56 (192). A recent study showed that inhibition of HDAC8
or SIRT6 induces DNA repair deficiencies in homologous
Frontiers in Oncology | www.frontiersin.org 10
recombination and NHEJ pathways in leukaemia-initiating
cells, and such DNA repair deficiencies are synergistic with
nicotinamide phosphoribosyl transferase (NAMPT) targeting
(193). Overall, we found that some class III HDAC members,
due to their deacetylase activity, are essential in the DNA
damage response.

Metastasis
EMT is an important step in tumour cell invasion and metastasis.
Many studies have shown that HDACs can regulate EMT in
diverse cancer types. The most important feature of EMT is
downregulated E-cadherin (encoded by CDH1) expression.
Some CDH1 transcriptional inhibitors, such as Snail, Slug,
Twist, and ZEB1/2, have been identified (194–196).

HDACs bind to the CDH1 promoter and deacetylate H3 and
H4 histones. In pancreatic cancer, the Snail/HDAC1/2 complex
was shown to repress CDH1, causing a reduction in E-cadherin
expression and subsequently inducing EMT (197). The complex
mentioned above was also found to can interact with EZH2 and
cause CDH1 silencing (198). Additional studies reported that
ZEB1 induces the binding of HDACs with the CHD1 promoter
in human pancreatic cancers (199). Furthermore, ZEB1 and
HDACs can modify the splicing of CDH1 exon 11. Therefore,
the reduction in CDH1 expression is a comprehensive outcome
caused by transcriptional inhibition and abnormal splicing (200).
Mocetinostat, an HDACi, efficiently reduced the expression of
ZEB1 in pancreatic tumour cells (87), revealing a therapeutic
effect of class I HDACis in treating EMT and metastasis
of cancers.

A recent study demonstrated that class I HDACs are related to
maspin repression, which is often detected in prostate cancer.
Inhibiting class I HDACs facilitated maspin re-expression, thus
suppressing the proliferation and migration of prostate tumour
cells (201). In addition, in colorectal cancers, HDAC3 was
recruited to Runx 2 and repressed metastasis (202).

HDAC7 was reported to enhance EphA2 expression by
downregulating miR-4465 expressing, showing a positive effect on
tumour proliferation, migration, and invasion in nasopharyngeal
carcinoma (NPC) (203). HDAC11 can upregulate the expression of
RRM2, a gene associated with promigratory and metastatic
phenotypes in diverse cancers, thus promoting metastasis of
tumour cells (109).

The function of SIRT1 in the EMT process is associated with
tumour types. In prostate cancer cells, SIRT1 and ZEB1
simultaneously bind to CDH1, thereby silencing transcription,
which results in metastasis (204). In addition, the MPP8-SIRT1
interaction is considered to play a crucial role in CDH1 repression
in prostate cancer cells (205). In melanoma, SIRT1 can deacetylate
Beclin-1, thereby leading to E-cadherin in autophagy, and a low
level of E-cadherin results in an enhanced EMT process (206). In
colorectal cancer, EMT is activated by SIRT1 by upregulating Fra-
1 expression (207). However, SIRT1 was suggested to reduce
metastasis through deacetylation of Smad4 and repression of
TGF-b-triggered signalling. The latter could affect matrix
metalloproteinase-7 (MMP-7) in breast and oral cancer cells
(208, 209). SIRT2 was reported to deacetylate Slug and stabilize
July 2021 | Volume 11 | Article 700947
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its protein to enhance EMT (210). Thus, Sirtuins play important
roles in metastasis.

Angiogenesis
Angiogenesis is critical in tumour growth and metastasis.
Hypoxia or a hypoxic microenvironment enables the initial
stage of angiogenesis, and its process is mainly controlled by
hypoxia-inducible factor 1a (HIF-1a). HDACs such as HDAC1
function explicitly as deacetylase enzymes of HIF-1a, thereby
preventing HIF-1a degradation. Abnormal expression of
HDAC1 leads to overexpression of HIF-1a and VEGF in
tumours, which subsequently promotes angiogenesis (211).
Consistent with this conclusion, HDACis can lead to HIF-1
and VEGF degradation and repression (211). HDAC4, HDAC6,
HDAC10, and SIRTs show similar mechanisms, as they promote
angiogenesis by enhancing VEGF, EGF, and HIF 1a levels (157).

HDAC4, HDAC5, and HDAC6 act as mediators of HIF-1
activity by promoting the recruitment of obligatory cofactors,
such as HSP90 and p300, thereby enhancing its transcriptional
activity (212). Moreover, SIRT1 was found to play an opposite
role, since it deacetylases HIF-1a and prevents HIF-1a from
interacting with p300, resulting in a reduction in HIF-1a activity.
SIRT1 inhibition in the hypoxic microenvironment maintains
high HIF-1 activity (213).

However, HDAC5 and HDAC6 also have antiangiogenic
roles since they can deacetylate HIF-1a chaperones, namely,
HSP70 and HSP90. Suppressing HDAC5 and HDAC6 causes
substantial acetylation of these proteins, and thus, HIF-1 is in an
immature form and easily degrades (214). In endothelial cells,
HDAC5 inhibits the expression of proangiogenic genes,
including FGF2 or Slit2 (215). HDAC5 can suppress cysteine-
rich angiogenic inducer 61 (CYR-61), which is an antifibrotic
and proangiogenic mediator, to repress angiogenesis (216).
HDAC6 also has a positive effect on angiogenesis through
deacetylation of the actin-remodelling protein cortactin and
thus induces migration and sprouting in endothelial cells (217).

Overall, HDACs function by regulating various pro- and
antiangiogenic proteins in angiogenesis, revealing that they
may be promising targets for cancer therapy. HDAC inhibition
is considered to exert antiangiogenic effects by downregulating
the expression of proangiogenic genes.

Autophagy
Autophagy exerts a dual role in tumorigenesis. Autophagy can
eliminate damaged subcellular fractions, thereby preventing the
transformation of normal cells into tumour cells (218).
Therefore, the deletion of autophagic proteins was found to
facilitate tumorigenesis. However, autophagy also promotes
survival of cancer cells under metabolic stress, which may
result in resistance to anticancer treatment (219).

Many HDAC enzymes show dual effects in the autophagic
process. Class I type HDACs are thought to be conducive to
autophagic flux in mice (220). Knocking down HDAC1 and
HDAC2 was reported to impede autophagic flux (221). HDAC2
can directly function on the SNARE domain of syntaxin 17
(STX17) during autophagy. Deacetylated STX17 interacts with
Frontiers in Oncology | www.frontiersin.org 11
SNAP29 and HOPS, thus promoting the fusion of
autophagosomes with lysosomes (222).

HDAC4 and HDAC5 are considered to alter autophagic flux
while functioning as positive regulators of tumour cell growth.
HDAC6 is needed to clear misfolded proteins by inducing
autophagy (66) and enhances autophagy through its
relationship with microtubule proteins (223). HDAC6 possesses
a ubiquitin-binding domain, which is involved in responding to
cytotoxic protein aggregates (224). In neurodegenerative diseases
and cerebral ischaemia, HDAC6 plays an intermediary role
between autophagy and the ubiquitin proteasome system
(UPS). Specifically, autophagy can be strongly promoted and
serve a compensatory role for HDAC6 under UPS damage (225,
226). HDAC6 plays an essential role in ubiquitin-selective quality
control (QC) autophagy, rather than starvation-induced
autophagy (227), in HDAC6 knockout mouse embryonic
fibroblasts (MEFs). QC autophagy is reasonably distinct from
starvation-induced autophagy due to the participation of
ubiquitinated substrates and ubiquitin-binding HDAC6 and
p62 (228). Furthermore, mitochondria have a selective method
of elimination similar to autophagy. Specifically, parkin-mediated
mitochondrial ubiquitination can also recruit the autophagic
components HDAC6 and p62, which facilitate autophagic
initiation and progression in impaired mitochondria (228).
Despite p62’s passive role in autophagy as a substrate receptor,
a recent study indicated that it can also act positively as an
autophagic suppressor by promoting HDAC6 expression and
subsequently recruiting deacetylated a-tubulin and unstable
microtubules, resulting in dysfunctional autophagic flux, in
prostate cancer cells (229). In neuroblastoma, loss of HDAC10
caused autophagosome/lysosome fusion blockade and autophagic
flux arrest, contributing to enhanced cell sensitivity to
chemotherapy (106). HDAC10 can also deacetylate HSP70
protein families, which may be linked to autophagy-mediated
cell survival (106). Thus, class IIb HDACs are likely to primarily
modulate autophagic flux by influencing autophagosome-
autolysosome fusion.

Sirtuins are also involved in the regulation of the autophagic
process. SIRT1 showed different effects in different cell lines and
has a dual function in autophagy (230). SIRT1 is required to trigger
starvation-induced autophagy since it affects Atg5, Atg7, Atg8, and
LC3, essential members of the autophagic process (231, 232).
Moreover, forkhead box O3 (FOXO3) can be deacetylated by
SIRT1 and subsequently upregulates the expression of numerous
autophagic genes. Additional studies have revealed that FOXK1/2,
counterbalancing factors of FOXO3, recruit SIN3A-HDAC
complexes to interfere with the acetylation of histone H4 and
the expression of crucial autophagic genes (233). In addition,
SIRT1 was shown to influence the PI3K/Beclin 1 and mTOR
pathways in embryonic stem cells (ESCs), which in turn affects
oxidative stress-induced autophagy (234). Unlike SIRT1, SIRT3
and SIRT5 were reported to participate in not only late but also
early autophagic regulation (230). SIRT3 can act on mitochondria
and trigger clearance under oxidative stress or starvation
conditions (235). SIRT3 can also regulate the phosphorylation of
activated protein kinase (AMPK) to enhance autophagy (236, 237).
July 2021 | Volume 11 | Article 700947
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SIRT5 deacetylates lactate dehydrogenase B (LDHB) and increases
its enzymatic activity. Protons (H) generated by LDHB contribute
to autophagy in cancer cells (238). SIRT5 was also reported to
participate in ammonia-induced autophagy, which is achieved
through alteration of glutamine metabolism (136). SIRT2
dissociates from FOXO1 under stress conditions and drives the
latter into a hyperacetylated state, which facilitates the autophagic
process (136). SIRT6 was also reported to induce autophagy by
restricting the transcription of the transcriptional repressor
Nkx3.2, thus enhancing GATA5 expression (239).

In summary, the HDAC context-dependent functions in
autophagic processes contribute to cancer treatment by
targeted therapy.

HDAC and Immunity
HDAC3 is involved in lipopolysaccharide (LPS)-directed
cytokine secretion in monocytes and M1 macrophages.
HDAC3 disrupts the process by which inflammation-activated
M1 macrophages mediate LPS tolerance (240).

Inhibition of HDAC mediates tumour-associated
macrophages to specify the antitumour phenotype, resulting in
decreased immune suppression and increased antitumour
immune responses (241). Retinoic acid-related orphan receptor
a (RORa)/HDAC-directed inhibition of NF-kB signalling
modulates cholesterol metabolism in CD8+ T cells, which may
provide a new therapeutic target in cancers such as colon
tumours (242). Research has shown that suppression of
HDACs is involved in restoration of IFN signalling, leading to
enhancement of long-term antitumour immunity and repression
of prostate tumour growth in bone (243). Moreover, Tcf1-
instrinsic HDAC activity participates in suppressing excessive
CTLA4 induction in protein immunization-elicited T cells,
therefore protecting B-cell functions (244).

HDAC and the Tumour Microenvironment
Suppression of HDACs is involved in regulating infiltrating
macrophages and repressing the trafficking of myeloid-derived
suppressor cells into tumours, thereby enhancing T cell
activation in the tumour microenvironment (241). Suppression
of HDACs plays an antitumour role in many cancers, such as
pancreatic tumours, colorectal tumours and NSCLC, which can
mediate tumour microenvironment changes, therefore
enhancing the antitumour function of anti-PD-1 antibodies
(245). Inhibition of HDACs can promote the expression of
Frontiers in Oncology | www.frontiersin.org 12
antigen-presenting machinery genes and CTL infiltration.
Research has shown that HDACs are involved in regulating
the tumour microenvironment, therefore regulating the
immunotherapy response (246). Anne and her colleagues
found that HDAC is involved in the transition of the tumour
microenvironment from “cold” to “hot”, thereby inhibiting
immune checkpoint blockade therapies (247).
CONCLUSION

Over the years, HDACs have been intensively investigated. To
date, HDACs have been declared a key driver of cancers by
modulating the dynamic acetylation of histone and nonhistone
cellular substrates. As important regulators of histone acetylation
clearance, HDACs exhibit abnormal expression and functions in
cancer, indicating they are promising targets. Nevertheless, the
precise mechanism of HDACs as tumorigenic agents is still
worth studying. In many types of tumours knocking out
HDACs was shown to lead to cell cycle arrest or apoptosis. In
addition, the antitumour effect of HDACs was detected in a
specific cellular setting. Selective HDACis serve as effective tools
in elucidating the roles of HDACs. Moreover, additional studies
are needed to systematically determine how each HDAC
functions in specific conditions.
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