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A B S T R A C T

Aims/hypotheses: In adults, type 2 diabetes and obesity have been associated with structural brain changes, even
in the absence of dementia. Some evidence suggested similar changes in adolescents with type 2 diabetes but
comparisons with a non-obese control group have been lacking. The aim of the current study was to examine
differences in microstructure of gray and white matter between adolescents with type 2 diabetes, obese ado-
lescents and healthy weight adolescents.
Methods: Magnetic resonance imaging data were collected from 15 adolescents with type 2 diabetes, 21 obese
adolescents and 22 healthy weight controls. Volumetric differences in the gray matter between the three groups
were examined using voxel based morphology, while tract based spatial statistics was used to examine differ-
ences in the microstructure of the white matter.
Results: Adolescents with type 2 diabetes and obese adolescents had reduced gray matter volume in the right
hippocampus, left putamen and caudate, bilateral amygdala and left thalamus compared to healthy weight
controls. Type 2 diabetes was also associated with significant regional changes in fractional anisotropy within
the corpus callosum, fornix, left inferior fronto-occipital fasciculus, left uncinate, left internal and external
capsule. Fractional anisotropy reductions within these tracts were explained by increased radial diffusivity,
which may suggest demyelination of white matter tracts. Mean diffusivity and axial diffusivity did not differ
between the groups.
Conclusion/interpretation: Our data shows that adolescent obesity alone results in reduced gray matter volume
and that adolescent type 2 diabetes is associated with both white and gray matter abnormalities.

1. Introduction

There has been a marked world-wide increase in the prevalence of
type 2 diabetes among young persons (Pinhas-Hamiel and Zeitler, 2005;
Alberti et al., 2004). Although the cause is likely to be multi-factorial,
childhood obesity is believed to be an important underlying factor
(Pinhas-Hamiel and Zeitler, 2005; Haines et al., 2007).

Type 2 diabetes in adolescence is associated with structural brain
abnormalities (Yau et al., 2010; Bruehl et al., 2011). Adolescents with
type 2 diabetes are reported to have significantly reduced volume in
hippocampus and prefrontal brain regions and higher rates of global
cerebral atrophy compared to obese adolescents (Bruehl et al., 2011).
These associations are similar to those reported for adults with type 2

diabetes (Moulton et al., 2015; Brundel et al., 2010; Anan et al., 2012;
Hsu et al., 2012; Chen et al., 2012). For instance, gray matter reduc-
tions have been identified by Voxel Based Morphometry (VBM; a neu-
roimaging analysis technique using statistical parametric mapping), in
adults with type 2 diabetes compared with healthy weight controls
(Chen et al., 2012). Furthermore, differences in cortical white matter in
adults with type 2 diabetes compared with healthy controls have also
been found (Hsu et al., 2012; Chen et al., 2012).

In adults with type 2 diabetes, changes in gray matter volume have
also been associated with levels of visceral fat (Anan et al., 2012) and
several studies have found gray matter differences between obese pa-
tients and normal weight controls (Smucny et al., 2012; Pannacciulli
et al., 2006). However, in adolescents, gray matter reduction was only
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observed in obese adolescents with type 2 diabetes and not those
without diabetes, contrary to findings in adults, (Yau et al., 2010;
Bruehl et al., 2011). Because cortical changes have been reported in
obese adolescents without diabetes compared to healthy controls
(Yokum et al., 2012) and in those with insulin resistance (Ursache et al.,
2012), there is a need to compare between adolescents with type 2
diabetes, obesity and healthy weight.

A recent study comparing youth with type 2 diabetes to non-dia-
betic obese and healthy weight peers found that those with type 2
diabetes had reduced thalamic volume (Rofey et al., 2015). Although
not statistically significant, the study also found microstructural white
matter differences indexed by fractional anisotropy (FA) between the
groups; those with type 2 diabetes showing the lowest FA levels (Hsu
et al., 2012). However, the Rofey et al. (2015) study included only five
participants per group and measured changes in a limited set of brain
areas.

The exact extent and location of gray and white matter differences
in adolescents with type 2 diabetes requires further examination using
more accurate and impartial techniques, such as systematic voxel-wise
mapping across the entire cortex and comparison across obese, type 2
diabetic and normal weight adolescents. The aim of this study was to
examine whether type 2 diabetes and obesity are complementary or
independent correlates of structural brain differences observed in
adolescents with type 2 diabetes. Moreover, as FA is the combined
measure of both radial and axial diffusion, which are often suggested to
indicate demyelination and axonal degeneration respectively (Wozniak
and Lim, 2006), we examined the composites of FA independently.

2. Methods

2.1. Participants

Fifteen adolescents with type 2 diabetes, 21 obese and 22 control

adolescents participated (see Tables 1a and 1b). All adolescents with
type 2 diabetes were referred to the study by collaborating paediatric
endocrinologists in the Midlands and North-West of England. Obese
adolescents were either referred by dieticians or responded to study
advertisements; control participants were recruited from local schools.
Recruitment took place from November 2010–October 2012.

Selection criteria included: (1) aged between 12 and 18 years, (2)
being able to understand and read English and (3) being diagnosed for
at least 6 months (for the type 2 diabetes group). Each adolescent's BMI
was converted to a Z score (SD-BMI) based on the British 1990 growth
reference for height, weight, and body mass index (Cole et al., 1995).
Obese adolescents were defined as having a SD-BMI exceeding 1.96
standard deviations from the mean (> 95th percentile). We excluded
adolescents if they had (1) major medical conditions (other than type 2
diabetes, polycystic ovarian syndrome, hirsutism, which were included)
or learning disabilities, (2) any contraindication to being in a MRI
scanner or (3) major changes in diabetes related medication in the past
6 months. None of the adolescents in our study had diabetes compli-
cations.

Two participants were excluded due to movement artefacts, one due
to signal loss and one due to a brain abnormality. T1 weighted scans
(see below) were obtained from 14 participants with type 2 diabetes, 20
obese participants and 19 control group participants. Due to discomfort
during scanning not all participants underwent a diffusion weighted
scan. Hence, whole brain diffusion weighted scans (see below) were
obtained from 12 adolescents with type 2 diabetes, 13 obese and 20
control participants. Fully informed consent was taken from all parti-
cipants and their respective parent/guardian prior to participation. The
study was carried out in accordance with Declaration of Helsinki for
experiments involving humans and approved by the National Research
Ethics Service and the Birmingham University Imaging Centre.

Table 1a
Demographic and clinical characteristics of the VBM groups. Participants with type 2 diabetes (T2DM) were referred to the study by Paediatric Endocrinologists and obese adolescents
were either referred by dieticians or responded to study advertisements. Where possible data for insulin and diabetes related measures were also collected by the study team.

Characteristic T2DM
N = 14

Obese
N = 20

Controls
N = 19

F or Fisher's
exact test

p

Age 16.1 ± 1.5 14.9 ± 2.00 16.4 ± 1.7 3.93 0.026
Sex (female, n, %) 14 (100%) 15 (75%) 14 (74%)
Ethnicity (n)
White 6 9 9 8.0 0.36
Asian 8 7 7
Black 0 3 0
Other 0 1 3

SD-BMI (sd) 2.22 ± 1.55 3.25 ± 0.78 0.23 ± 0.96 38.08 < 0.0001
Fasting blood glucose (mmol/l) ± sd 9.54 ± 3.88

n = 11
4.9 ± 0.53
n= 20

4.77 ± 0.51
n = 17

26.32 < 0.0001

Fasting insulin (pmol/l) ± sd 257.7 ± 171.7
n = 6

172.8 ± 141.8
n= 19

77.2 ± 72.6
n = 16

5.30 0.009

HbA1c (%) ± sd
(mmol/mol)

8.10 ± 2.26
(65.0)
n = 13

5.56 ± 0.39
(37.3)
n= 19

5.35 ± 0.32
(35.0)
n = 14

21.29 < 0.0001

HOMA-IR ± sd 102.2 ± 120.2
n = 5

40.0 ± 37.6
n= 19

16.5 ± 15.8
n = 16

5.97 0.006

c-Peptide (pmol/l) ± sd 1386.8 ± 905.6
n = 6

1226.7 ± 572.6
n= 18

762.7 ± 274.4
n = 16

4.37 0.020

2 h-OGTT (mmol/l) ± sd NA 6.84 ± 1.49
n= 20

5.31 ± 0.97
n = 18

13.58 < 0.001

Duration of diabetes (months) ± sd 32.6 ± 30.0 NA NA
Range 7–106 (IQR = 36)

Diabetes treatment (n)
Metformin 6 4 NA
Metformin + gliclazide 1 0
Metformin + insulin 2 NA NA
Insulin 2 NA NA
GLP-1 agonist 1 0 NA

Values are means ± SD; T2DM= type 2 diabetes; IQR = interquartile range; NA = not applicable.
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2.2. Procedure and measures

For all participants weight and height were measured wearing light
clothing with footwear removed to calculate BMI. Prior to scanning,
blood glucose was measured by the finger prick method, using a
FreeStyle Optium Blood Glucose Monitor. To ensure control and obese
participants did not have undiagnosed diabetes, their fasting glucose
(Vitros 950 Dry Chemistry Analyser; Ortho Clinical Diagnostics, High
Wycombe, UK), insulin by a nonspecific insulin ELISA method
(Mercodia Iso-Insulin assay; Diagenics Ltd., Milton Keynes, UK), C-
peptide, measured by ELISA (Dako, Ely, UK) at the Regional Endocrine
Laboratory, University Hospital Birmingham (fasting reference ranges
quoted from this laboratory are 200–800 pmol/l), and HbA1c (high-
pressure liquid chromatography method) were measured and they un-
derwent a 2-h oral glucose tolerance test. For type 2 diabetes patients
these measures were obtained from the patient records. Duration of
diabetes was also recorded. HOMA-IR, indicating insulin resistance,
was calculated using the following formula: (fasting glucose × fasting
insulin) / 22.5 (Matthews et al., 1985).

2.3. Image acquisition

MRI was performed on a Phillips 3 T scanner with 8-channel phased
array SENSE head coil. A T1-weighted 3D image was acquired for each
participant with TR 8.4 ms, TE 3.8 ms, flip angle 8, matrix resolution
288 × 288 and 175 sagittal slices with a voxel size of 1 × 1 × 1 mm. A
subset of participants were scanned using a diffusion sequence em-
ploying echo planar imaging (75 slices with isotropic 2 × 2 × 2 mm3

voxels, TR = 9360 ms, TE = 77.8 ms). Diffusion data was acquired in
61 gradient directions with a b value of 1500 s/mm2, and 1 volume was
acquired with no diffusion weighting (b = 0 image).

2.4. Image processing

We used VBM to examine structural differences in gray matter be-
tween the three groups. Pre-processing of the T1-weighted images was
done using SPM8 (http://www.fil.ion.ucl.ac.uk/spm) and the VBM8
tool-box (http://dbm.neuro.uni-jena.de) in MATLAB v7.1 (MathWorks,
Natick, MA, USA). The Template-O-Matic toolbox (Wilke et al., 2008)
for SPM8 was used to generate an age and gender specific template in
Montreal Neurological Institute (MNI) space for use with the VBM8
Toolbox. These tissue probability maps (TPM) were produced using the
matched template approach with participant's age and gender as de-
fining variables. This avoided using the standard adult reference data
(Wilke et al., 2003) and introducing a systematic bias into the seg-
mentation process, as has been previously demonstrated for paediatric
MRI data (Raschle et al., 2011).

Within the same generative model (Ashburner and Friston, 2005) all
T1-weighted images were segmented and the tissue segments normal-
ized to the customised TPM using an affine transformation. These
images were then used to create a study specific template using the
Diffeomorphic Anatomical Registration Through Exponentiated Lie al-
gebra (DARTEL) registration method (Ashburner, 2007).

All T1 weighted images were then segmented based on the pre-
viously estimated segmentation parameters, spatially normalized to the
study specific template and corrected for bias-field inhomogeneities
using the unified algorithm in VBM8 toolbox (Ashburner and Friston,
2005). Non-linear only normalization to the study specific template was
used to account for individual brain sizes. The gray matter (GM) seg-
mented images were then smoothed with 6 × 6× 6 mm Gaussian
kernel.

Between-group differences in GM volume were assessed in SPM8
using one-way ANOVA for three independent groups controlling for age
and gender. For each contrast, statistical parametric maps were com-
puted on a voxel by voxel basis to test for morphological differences
between groups. In agreement with previous VBM studies for whole-

Table 1b
Demographic and clinical characteristics of the TBSS groups.

Characteristic T2DM
N = 13

Obese
N = 13

Controls
N = 20

F or Fisher's
exact test

p

Age 16.00 ± 1.6 15.0 ± 1.9 16.1 ± 1.9 1.34 0.27
Sex (female, n, %) 12 (100%) 10 (77%) 14 (70%)
Ethnicity (n)
White 5 8 10 7.03 0.54
Asian 7 3 7
Black 0 1 0
Other 0 1 3

SD-BMI ± sd 2.01 ± 1.51
n = 13

3.11 ± 0.65
n = 13

0.32 ± 0.98
n= 20

27.54 < 0.0001

Fasting blood glucose (mmol/l) ± sd 8.87 ± 3.87
n = 9

4.95 ± 0.56
n = 13

4.78 ± 0.49
n= 19

16.91 < 0.0001

Fasting insulin (pmol/l) ± sd 227.5 ± 176.0
n = 7

178.2 ± 1.48.5
n = 13

72.2 ± 70.1

n= 18

5.08 0.012

HbA1c (%) ± sd
(mmol/mol)

7.80 ± 1.97
(61.7)
n = 12

5.55 ± 0.39
(37.2)
n = 13

5.29 ± 0.33
(34.3)
n= 16

20.05 < 0.0001

HOMA-IR ± sd 102.2 ± 120.2
n = 5

41.5 ± 39.8
n = 13

15.4 ± 15.2
n= 18

6.11 0.006

c-peptide (pmol/l) ± sd 1265.86 ± 886.53
n = 7

1296.67 ± 525.51
n = 12

747.28 ± 264.98
n= 18

5.09 0.012

OGTT (mol/l) ± sd NA 6.79 ± 1.77 5.38 ± 0.94 9.01 < 0.005
Duration of diabetes (months) ± sd 30.8 ± 23.0 NA NA
Diabetes treatment (n)
Metformin 5 1 NA
Metformin + gliclazide 1 0
Metformin + insulin 2 NA NA
Metformin + gliclazide + insulin 1 NA NA
GLP-1 1 0 NA

Values are means ± SD; T2DM= type 2 diabetes; NA = not applicable.
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brain analysis, clusters were considered significant at the threshold of
p < 0.001, using an extent threshold of 200 contiguous voxels. This
level is in agreement with published standards for applying VBM when
there are priori hypotheses for regional differences (Ashburner et al.,
2003).

Tract based spatial statistics (TBSS) were used to assess group dif-
ferences in fractional anisotropy (FA), mean diffusivity (MD), axial
diffusivity (AD) and radial diffusivity (RD). All diffusion data was
analysed using FMRIB Software Library (FSL, Oxford, UK; Smith et al.,
2004). First, the eddy current correction tool was used to align all
diffusion volumes to the no diffusion volume using affine registration. A
binary brain mask was created from the non-diffusion weighted image
using the Brain Extraction Tool. Using DTIFit within the FSL FDT
toolbox (Smith et al., 2004) diffusion tensor models were fitted for each
voxel within the brain mask creating FA maps for each participant.

Using the TBSS pipeline (Smith et al., 2006) the most typical FA
map in the sample was identified and all other participant FA images
were aligned to it, then the entire aligned dataset was affine-trans-
formed into 1 × 1× 1 mm3 MNI152 space. The transformed FA images
were averaged to create a mean FA image and thinned to produce a
mean FA skeleton using a threshold value of 0.15 for the FA level. Each
participant's FA map was then aligned onto the mean FA skeleton.
Between-group differences in white matter were assessed using the FSL
Randomise tool, which tests the t-value at each voxel location against a
null distribution, comprised of 500 random permutations (v2.1;
Anderson and Robinson, 2001). Statistical maps were corrected for
multiple comparisons (p < 0.05) using threshold-free cluster en-
hancement (TFCE). Significant clusters were labelled with reference to
JHU ICBM-DTI-81 and white-matter tractography atlases (Mori et al.,
2005; Wakana et al., 2007; Hua et al., 2008).

Within regions identified as having reduced FA the individual
contribution of AD and RD were explored. The second and third ei-
genvalues, l2 and l3, were averaged to provide a measure of RD and the
first eigenvalue used as a measure of AD (Wozniak and Lim, 2006).
Individual cortical maps of AD and RD values were created and (Smith
et al., 2006) aligned onto the mean FA skeleton. For each participant
the mean of AD and RD values located within regions of reduced FA,
previously identified by the voxel-wise group analysis were calculated.
Mean FA, MD, AD and RD values were compared among the three
groups by conducting a one-way ANOVA followed by Bonferroni cor-
rection for multiple comparisons.

3. Results

3.1. Sample characteristics

As expected, participants with type 2 diabetes had significantly
higher blood glucose, HbA1c, c-peptide and fasting insulin than con-
trols and obese participants (see Tables 1a and 1b). Six participants in
the obese group met the WHO diagnostic criteria (World Health
Organisation, 2006) of impaired glucose tolerance (IGT; fasting plasma
glucose< 7.0 mmol/l and 2-h plasma glucose after OGTT of ≥7.8
and< 11.1 mmol/l); none of the obese participants had diabetes. There
was a significant difference in age in the VBM sub-set, however age was
controlled for in all analyses. Note that the analyses below were also
performed without the male participants and results were compared to
findings reported below. No qualitative differences were found, sug-
gesting that gender effects do not drive our results.

3.2. VBM results

There were significant differences between GM volumes between
the groups. Participants with type 2 diabetes showed smaller GM vo-
lume in the caudate and putamen bilaterally than the control partici-
pants (Fig. 1a, Table 2). The obese participants showed smaller GM
volume in the right hippocampus, left putamen, left caudate and

amygdala bilaterally than the control participants (Fig. 1b, Table 2).
Controls had greater GM volume in putamen and caudate bilaterally,
left amygdala and left thalamus than the other two groups together.
(Fig. 1c, Table 2) and there were no areas where controls had lower GM
volume than the other groups. There were no significant differences
between obese and type 2 diabetes participants.

To understand the relationship between lower GM volumes and the
clinical variables, GM density values were extracted from each area
showing difference (Suppl. Table 1). Bivariate correlations showed that
lower GM density was associated with higher BMI in all regions
showing significant differences in GM density between the control
participants and the obese and T2DM participants with the exception of
the right caudate (p > 0.09). After Bonferroni adjustment BMI re-
mained significantly associated with GM density in the left caudate, left
amygdala and left hippocampus. HbA1c correlated positively with GM
density in the right hippocampus only, but not when only the control-
and obese participants were considered (Suppl. Table 1) indicating, as
expected, that group membership and HbA1c were not fully in-
dependent of each other. When considering only the control- and obese
participants, the correlations between HOMA-IR and GM density in the
left amygdala and hippocampus were significant (See Suppl. Fig. 1),
although these were not significant when the diabetes group was in-
cluded (after Bonferoni adjustment). When these variables were entered
into a forward regression model while additionally controlling for age,
it was found that BMI-SD was the only independent predictor of GM
density explaining 42.3% of the variance in GM density in the amygdala
(β = −0.708; p < 0.0001) and 41.9% of the variance in GM density
in the left hippocampus (β = −0.706; p < 0.0001). Moreover, GM
abnormalities were not more prominent in obese adolescents with im-
paired glucose tolerance but without type 2 diabetes (Wilks' λ = 0.487,
F(7,11) = 1.66, p = 0.22). There were no significant correlations be-
tween GM density and duration of diabetes (all p's > 0.10).

3.3. TBSS results

Compared to the controls, participants with type 2 diabetes had
reduced FA in several brain areas (including the left corticospinal tract,
corpus callosum, left fornix, left thalamic radiation, left retrolenticular
internal capsule, inferior fronto-occipital fasciculus, right anterior
corona radiata, left uncinate, left callosal body, cingulum, and left
anterior external capsule) and no areas of higher FA (Fig. 2, Table 3).
Overall, FA was negatively correlated with BMI (r = −0.455;
p = 0.002), and HOMA-IR (r = −0.423; p < 0.0001), but HbA1c was
not significant after Bonferroni adjustment correction (r = −0.240;
p = 0.032) (Suppl. Table 2). When BMI-SD, HbA1c and HOMA-IR were
entered into a forward regression model while additionally controlling
for age, it was found that HOMA-IR was the only independent predictor
of FA explaining 8.1% of the variance in FA (β =−0.370; p = 0.035)
(See Suppl. Fig. 1).

Regions of reduced FA in the type 2 diabetes group were mainly
driven by a significant increase in radial diffusivity (p = 0.008 control
vs. T2DM). The mean, radial or axial diffusivity of obese participants
did not differ from the control or type 2 diabetes participants.
Moreover, there was no difference in the mean diffusivity and axial
diffusivity values between the three groups (Fig. 3). Radial diffusivity
was positively correlated with BMI (r = 0.300; p = 0.045), HbA1c
(r = 0.414; p = 0.008), and HOMA-IR (r = 0.341; p = 0.042), but
when these variables were entered into a forward regression model
while additionally controlling for age, none were independent pre-
dictors of radial diffusivity. WM abnormalities were not more promi-
nent in obese adolescents with impaired glucose tolerance but without
type 2 diabetes compared to their obese counterparts with normal
glucose tolerance (Wilks' λ = 0.861, F(3,8) = 0.431, p = 0.737). Nei-
ther FA nor any of the diffusivity measures were significantly associated
with the duration of diabetes (all p's > 0.38).
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4. Discussion

Both adolescents with type 2 diabetes and obese adolescents had
reduced GM volume compared with healthy weight adolescents in a
range of medial brain regions. There was no difference in GM volume
between the adolescents with type 2 diabetes and obesity. We also
found reduced FA in adolescents with type 2 diabetes compared to the
normal weight control participants in a range of central brain areas, and
these reductions were best explained by increases in radial diffusivity.

To date, only two other studies examined structural brain ab-
normalities in adolescents with type 2 diabetes. Yau et al. (2010) found
elevations in the apparent diffusion coefficient (ADC) in this group
compared to weight-matched controls without diabetes, suggesting re-
ductions in GM density. Based on manually drawn ROIs, consistent with
the present study, lower GM volume has been found in the caudate and
thalamus of adolescents with type 2 diabetes compared to normal

weight adolescents (Bruehl et al., 2011) and GM levels of obese ado-
lescents have been found to differ significantly with values of the
control participants (Rofey et al., 2015). This study extends these
findings to an evaluation of structural differences over the whole head.

Smaller hippocampal volumes and greater atrophy in frontal brain
regions have been previously reported in obese adolescents with insulin
resistance but without type 2 diabetes (Ursache et al., 2012) and this
has also been found in adults with type 2 diabetes using focused region
of interest analyses (Brundel et al., 2010; Gold et al., 2007), along with
the basal ganglia (Moulton et al., 2015). In the present study, GM vo-
lume was reduced in the right hippocampus in the obese adolescents
when compared to their healthy weight counterparts, but these reduc-
tions were not as manifest in our adolescents with type 2 diabetes.
Neither did we find significant GM abnormalities in frontal brain re-
gions in any of our groups. Hippocampal and frontal volume reductions
seem more apparent when ROIs are being examined (Bruehl et al.,

Fig. 1. a–c. VBM analysis of GM volume. Areas in yellow show reduced GM volume in (a) type 2 diabetes adolescents than controls (MNI co-ordinates x = −167, y = 11.8, z = −0.7),
(b) obese adolescents than controls (MNI co-ordinates x = −21.4, y = −5.6, z = −20.7), (c) type 2 diabetes and obese adolescents than controls (MNI co-ordinates x = −18,
y = 13.8, z =−2). Overlaid on an age and gender specific paediatric template created using TOM8 toolbox in SPM8. The left side of the image corresponds to the left hemisphere of the
brain.
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2011; Gold et al., 2007), but not in studies using the ADC (Yau et al.,
2010) or a voxel by voxel approach, as in the present study. As ROI
analyses are generally more sensitive to finding differences, these hip-
pocampal GM abnormalities are likely to be small.

The data presented here suggest that reductions in GM volume in
adolescents with obesity and in those with type 2 diabetes are primarily
linked to higher BMI, characteristic of both conditions, rather than
insulin resistance. However, given the small number of participants
with both obesity and insulin resistance (n = 5) these results should be
interpreted with caution.

Consistent with our findings, in terms of WM, lower FA values have
also been found in other studies involving adolescents with type 2
diabetes (Yau et al., 2010; Rofey et al., 2015) and in most (Hsu et al.,
2012; Hoogenboom et al., 2014; Zhang et al., 2014), but not all (van
Bloemendaal et al., 2016) studies involving adults with type 2 diabetes.
Although there is some overlap regarding the regions showing FA re-
duction (e.g. corona radiata), regions tend to differ across studies.
Whereas Yau et al. (2010) and Hsu et al. (2012) found lower FA values
in the frontal and temporal regions, in the current study and in Zhang
et al. (2014) affected white matter tracts were mainly found in the
central regions. Hoogenboom et al. (2014) reported lower FA values in
the cingulum bundle and uncinate fasciculus, but analyses were limited

to these specific regions of interest. The reasons for these regional
variations in FA reductions are not clear but are likely to include dif-
ferences in sample characteristics of both the diabetes and comparison
groups and the relatively small sample sizes. These differences not-
withstanding, the overall picture is that type 2 diabetes is associated
with widespread reductions in FA, suggesting differences in white
matter between the groups (Alexander et al., 2007).

FA is frequently used to refer to white matter ‘integrity’ but is only
one of several indicators; we examined other diffusivity parameters to
provide a more detailed picture of the underlying microstructural WM
differences. Our data suggests that the reduction in FA in the adoles-
cents with type 2 diabetes stemmed from an increased diffusivity in the
radial axis, which has been associated with demyelination in animal
studies (Song et al., 2002). Axial diffusivity, which has been associated
with axonal damage or atrophy (Song et al., 2003; Concha et al., 2006),
or mean diffusivity, indicating the average rate of water diffusion, did
not differ between the groups. The present study is the first to report a
detailed analysis of the WM microstructure in adolescents with type 2
diabetes and the pattern of results is generally consistent with that
found in adults with type 2 diabetes (Hsu et al., 2012; Zhang et al.,
2014; Reijmer et al., 2013a). However, a study examining older people
with type 2 diabetes found that changes in diffusivity appeared to be

Table 2
Significant GM volume group differences.

Contrast P FWE corr. Cluster size (voxelsa) Z score Co-ordinates Anatomical location

x y z

Control > T2DM < 0.001 1942 4.35 −18 3 13 Left caudate
−10 2 −14 Left putamen
−8 18 10 Left caudate

< 0.001 1579 4.33 22 16 9 Right caudate
14 10 −2 Right putamen

Control > Obese 0.005 788 4.76 34 −3 −17 Right hippocampus
26 −7 −20 Right hippocampus
22 −16 −27 Right hippocampus/amygdala

< 0.001 2106 4.63 −18 −1 −23 Left amygdala
−14 14 −2 Left putamen/caudate
−24 15 −6 Left putamen

Control > Obese + T2DM < 0.001 4327 4.73 22 18 7 Right putamen/caudate
−15 12 1 Left caudate
−24 14 −6 Left putamen

0.006 748 4.6 −18 −28 12 Left thalamus/caudate
−16 −21 15 Left thalamus/caudate

0.009 682 4.07 −20 −1 −21 Left hippocampus/amygdala

a Voxel size = 1.5 × 1.5 × 1.5 mm; T2DM = type 2 diabetes.

Fig. 2. TBSS analysis of fractional anisotropy (FA) volumes. Areas in red are where FA values were significantly lower (p < 0.05, corrected by multiple comparison) in controls relative
to type 2 diabetes adolescents. Areas of reduced FA (red) are thickened using the tbss_fill script implemented in FSL. Results are overlaid on the mean FA skeleton (green) and MNI152-FA
template. The left side of the image corresponds to the right hemisphere of the brain. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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driven by changes in mean diffusivity in both the radial and axial di-
rection (Reijmer et al., 2013b), whereas yet another study comparing
obese adults with type 2 diabetes and lean normoglycaemic controls
found reductions in axial diffusivity only (van Bloemendaal et al.,
2016). Taken together, the literature seems to indicate that type 2
diabetes, especially at a younger age, is associated with increased ra-
dial, but not axial diffusivity, which is suggestive of demyelination
rather than atrophy, but that with advancing age the risk of WM
atrophy may also increase.

We did not find a difference in WM between participants with type 2
diabetes and obese participants or between obese and control partici-
pants. The relationship between obesity and WM abnormalities both in
adolescents and adults has been the topic of several studies but, again,
results are equivocal (Kullmann et al., 2015). Several studies found
significant negative associations between BMI and FA reductions
throughout the brain in young adults (Kullmann et al., 2015; Lou et al.,
2014; Xu et al., 2013; Verstynen et al., 2013). Reduced FA in young
obese adults was driven by increased radial and decreased axial diffu-
sivity in one study (Verstynen et al., 2013), while another study found
that BMI correlated with different diffusivity parameters in different
areas of the brain, which may suggest that different underlying biolo-
gical processes are involved in the relationship between BMI and re-
duced WM integrity (Xu et al., 2013). Furthermore, a recent study
comparing age- and BMI-matched obese participants and lean partici-
pants found that obesity was associated with reduced axial diffusivity
and reduced WM volume. BMI was the only independently factor

associated with decreased WM integrity (van Bloemendaal et al., 2016),
while yet another study found that obesity was associated with in-
creased white matter density only in the striatum (Pannacciulli et al.,
2006). Overall, these findings seem to suggest that the effects of obesity
on the microstructure of WM are less specific than those associated with
type 2 diabetes.

It is important to note though that the obese group in the present
study included participants with impaired glucose tolerance, which
may go some way in explaining that the WM structure of the obese
group were in-between the diabetes group and control group. This is in
line with Weinstein et al. (2015) who, in a study including young and
middle-aged adults, found a dose-dependent relationship between brain
integrity (defined by principle component analysis on FA and GM
density measures) and categories of fasting blood glucose (normal
glucose metabolism, impaired glucose metabolism and type 2 diabetes)
with highest levels of brain integrity in people with normal glucose
metabolism. However, in the current study WM abnormalities were not
more prominent in obese adolescents with impaired glucose tolerance
but without type 2 diabetes compared to their obese counterparts with
normal glucose tolerance. It is of note that glucose tolerance is a bio-
logical continuum with artificial cut-offs to define normal glucose me-
tabolism, impaired glucose tolerance and diabetes separated by small
margins (7.8 mmol/l to 11.1 mmol/l for instance). As only six of the
obese participants met the criteria for impaired glucose tolerance fur-
ther studies with larger samples are needed to disentangle the effects of
obesity, impaired glucose tolerance and type 2 diabetes on WM

Table 3
Regions of reduced FA in participants with type 2 diabetes compared to controls.

Cluster Size (voxelsa) p Peak MNI Co-ordinates Region

x y z

1 2576 0.03 −14 −25 −2 Left corticospinal tract
2 2085 0.03 −5 −2 26 Medial corpus callosum
3 611 0.05 −8 −1 −16 Left fornix
4 557 0.04 22 −34 0 Left thalamic radiation
5 422 0.04 −34 −28 1 Left retrolenticular internal capsule, left IFOF
6 134 0.05 15 21 23 Right anterior corona radiata, corpus callosum (genu)
7 74 0.05 −12 10 −17 Left uncinate
8 73 0.05 −4 14 −3 Left callosal body, cingulum
9 72 0.05 −15 15 −13 Left anterior external capsule, uncinate

a Voxel size = 1 × 1 × 1 mm.

Fig. 3. Mean FA, MD, RD, and AD values within regions of
reduced FA. Error bars indicate 95% confidence intervals.
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structure in young people.
The underlying mechanisms of the structural abnormalities in

adolescents with type 2 diabetes are unknown and causal inferences
cannot be made based on the present data, but a number of possible
causes can be speculated. First, the GM and WM abnormalities in the
brains of adolescents with type 2 diabetes or obesity could signify a
delay in normal development. The normal development of the human
brain is characterised by a steady decline in GM from adolescence into
adulthood (Courchesne et al., 2012) along with an increase in WM
(Lebel et al., 2012). These WM increases occur across the brain and are
characterised by increased volume and FA, along with decreased mean
diffusivity (MD) (Lebel et al., 2012). The pattern of results in the pre-
sent study of reduced GM density along with reduced FA is the opposite
to what would be predicted by delayed maturation of the brain. How-
ever, longitudinal studies are needed to examine this hypothesis.

Second, the results of our study suggest that the processes under-
lying the structural brain abnormalities in GM and WM in adolescents
with type 2 diabetes may differ, with the GM changes primarily driven
by factors associated with obesity and the WM changes are primarily
driven by factors associated with insulin resistance. Obesity is linked to
low-grade inflammation (Kumar and Cooke, 2002; Bastard et al., 2006)
resulting in tissue degeneration (Veit et al., 2014). Insulin resistance
has been associated with oxidative stress (Park et al., 2009), known to
result, via multiple mediating pathways, in the production of free ra-
dicals (reactive oxygen species, ROS) causing damage to lipids, proteins
and DNA, which in turn, has been found to result in nerve damage and
segmental demyelination (Román-Pintos et al., 2016). It is important to
note though that despite the relative strength in their association with
GM and WM disturbances, obesity and insulin resistance are not in-
dependent of each other. Moreover, oxidative stress and inflammatory
pathways are known to interact at multiple levels producing multiple
outcomes (Sandireddy et al., 2014), which may explain some of the
differences in findings across studies. Large studies are required to
disentangle these interactions.

Inflammatory processes as a result of obstructive sleep apnea have
also been associated with reduced FA and increased radial diffusivity in
the absence of differences in mean and axial diffusivity (Chen et al.,
2015). Although we did not monitor sleep apnea, it has been associated
with obesity and type 2 diabetes in adolescents (Koren et al., 2015).

Others have found associations between decreased FA, mean diffu-
sivity and systolic blood pressure (Maillard et al., 2012) in young
adults. These associations were most notable in the anterior corpus
callosum, an area similar to that found in the current study, suggesting
that the WM abnormalities may be of vascular origins (Yau et al.,
2013). Blood pressure data was not available for all diabetes partici-
pants in the current study but in contrast to Maillard et al. (2012) we
did not find decreases in mean diffusivity in our study.

A strength of the current study is that we used objective automatic
quantitative volumetric brain imaging techniques over the whole brain
instead of focussing on a-priori set brain regions. Although this may
have reduced the power of finding differences between the groups
compared to ROI analyses, our findings are likely to be robust to find
differences in FA between healthy weight adolescents and those with
type 2 diabetes. This is the first study to use a study specific brain
template to examine WM and GM abnormalities comparing adolescents
with type 2 diabetes, those with obesity and healthy weight with ob-
jective techniques such as VBM and TBSS. Finally, participants came
from clinics and schools from a large geographical region and major
ethnic and social groupings were represented.

However, our study also has limitations. First, the sample sizes were
relatively small for a structural study, which may have reduced the
power of finding WM differences between the obese group and the type
2 diabetes groups and between the obese and control groups. Second,
the current study did not include assessment of cognitive function. Type
2 diabetes has been associated with mild neuropsychological dis-
turbances in older (Reijmer et al., 2013; Zhang et al., 2014) and

younger people (Yau et al., 2010). Reduced myelin results in reduced
processing speed, which, in turn, may affect cognitive function. How-
ever, all our participants were attending secondary schools or college at
the appropriate level for their age suggesting that if cognitive deficits
were present, they were likely to be mild to very mild. Future studies
should examine whether the abnormalities in WM and GM found in this
study result in reduced cognitive abilities. Third, as discussed above,
the obese group in the present study included participants with im-
paired glucose tolerance, which may have affected the WM results.

5. Conclusions

Type 2 diabetes, even in adolescents, is associated with differences
in white matter microstructure as indicated by lower FA in a large
number of commissural, association and projection pathways. FA re-
ductions were explained by increases in radial diffusivity, consistent
with demyelination of white matter tracts. Compared to healthy weight
controls, adolescents with type 2 diabetes and those with obesity also
show reduced GM. It is currently unknown whether the abnormalities
in GM and WM in adolescents with type 2 diabetes or obesity are re-
versible. Given the potentially serious consequences for these young
people, longitudinal studies are now needed.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2017.07.004.
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