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Abstract: The microbiome emits informative signals of biological organization and environmental
pressure that aid ecosystem monitoring and prediction. Are the many signals reducible to a habitat-
specific portfolio that characterizes ecosystem health? Does an optimally structured microbiome
imply a resilient microbiome? To answer these questions, we applied our novel Eco-Evo Mandala
to bacterioplankton data from four habitats within the Great Barrier Reef, to explore how patterns
in community structure, function and genetics signal habitat-specific organization and departures
from theoretical optimality. The Mandala revealed communities departing from optimality in habitat-
specific ways, mostly along structural and functional traits related to bacterioplankton abundance
and interaction distributions (reflected by ε and λ as power law and exponential distribution pa-
rameters), which are not linearly associated with each other. River and reef communities were
similar in their relatively low abundance and interaction disorganization (low ε and λ) due to their
protective structured habitats. On the contrary, lagoon and estuarine inshore reefs appeared the most
disorganized due to the ocean temperature and biogeochemical stress. Phylogenetic distances (D)
were minimally informative in characterizing bacterioplankton organization. However, dominant
populations, such as Proteobacteria, Bacteroidetes, and Cyanobacteria, were largely responsible for
community patterns, being generalists with a large functional gene repertoire (high D) that increases
resilience. The relative balance of these populations was found to be habitat-specific and likely related
to systemic environmental stress. The position on the Mandala along the three fundamental traits, as
well as fluctuations in this ecological state, conveys information about the microbiome’s health (and
likely ecosystem health considering bacteria-based multitrophic dependencies) as divergence from
the expected relative optimality. The Eco-Evo Mandala emphasizes how habitat and the microbiome’s
interaction network topology are first- and second-order factors for ecosystem health evaluation
over taxonomic species richness. Unhealthy microbiome communities and unbalanced microbes are
identified not by macroecological indicators but by mapping their impact on the collective proportion
and distribution of interactions, which regulates the microbiome’s ecosystem function.

Keywords: marine microbiome; ecosystem health; biocomplexity; optimality; biogeochemical forcing;
climate change; Mandala

1. Introduction
1.1. Marine Ecosystem Health through the Microbiome

The Anthropocene presents an existential threat to many ecosystems, including marine
habitats, necessitating ecological indicators that can assist in the prediction and manage-
ment of environmental pressure. Global research on the Earth’s oceans [1–5] has revealed
the large abundance, complexity, and ecological importance of microscopic organisms,
which interact in communities called the microbiome. The microbiome is the ideal can-
didate for such indicators as they are largely responsible for the planet’s biogeochemical
cycles [6–8] and are highly responsive to disturbances in these cycles [9,10]. Consequently,
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there is growing interest in the dynamics of microbiomes for indicating and predicting
ecosystem health [11–14]. There is agreement that properly decoding marine microbiome
signals (or those of any other aquatic ecosystem) is a critical first step in the assessment and
consequent preservation and improvement of the resilience of ecosystems [15,16]. While
there has been much success in the search for unique species (populations) predictive of
ecosystem health states, more work is required to understand how the collective dynamics
of the community can indicate ecosystem health, and there is value in understanding these
dynamics within localities and regions [16], not merely at the global scale.

1.2. Leveraging Community Complexity for EcoHealth Assessment

Microbiomes, such as that found in the human gut [17], exhibit signatures of evolu-
tionary optimality (or self-organizing criticality; see [18]) in which dynamical fluctuations
are scale-free distributed, resulting in a relatively stable system. When these communities
display a power law distribution in the frequency distribution of size classes among species
(i.e., the abundance spectrum), their ecosystem is equally well-balanced (see [19] for plank-
ton and [20] for oceanic biomass). Power law patterns have also been generally observed
in scale-free networks [21] that were proven to coincide with a local or global energy mini-
mum of system’s features. Consider river networks, whose power law distribution reflects
the scale-free pattern of runoff and the energy minimum of water flow [22]. The stationary
solution of the landscape evolution equation is a power law that is invariant across many
orders of magnitudes (Rodriguez-Iturbe and Rinaldo, 2001); yet, it is linking patterns to
processes clearly at stationarity. Invariance, which is a state of relative stability of a system’s
features, is a byproduct of self-organized criticality but, more generally, of evolutionary
dynamics leading to feasibly optimal states [23]. In this sense, some authors [24,25] have
equated invariance with robustness, although the latter does not correspond to invariant
features necessarily; for example, random networks are also topologically robust (yet
invariant but not scale-invariant) because any perturbation leads to another random state.

In general, ecosystems may not be locally stable and undergo critical transitions
(as in [26]) but these fluctuations are invariant over time. For instance, runoff in rivers
may exhibit local instability (permanent due to structural features such as sudden jumps,
or temporary such as black-swan variability due to climate extremes) but, over large spatial
and temporal scales, shows stability in distribution. Deviation from global stability or
invariance is a worrisome signature of departure from optimality—for instance, driven
by large habitat and climatic modifications. A recent analysis of dynamical stability and
invariance (which is indubitably dependent on the scale of analysis) has been performed
for fisheries by [27]. Previous studies on the neural tissue [28] have also shown how scale-
invariance is not only occurring at a critical transition, as in Bak (which is unstable), but at a
global stable state, and this is the case for rivers. Lastly, probabilistically speaking, the stable
distribution family is also sometimes referred to as the Lévy alpha-stable distribution to
which power law distribution belongs. Thus, using this principle of relative optimality,
one could evaluate the distribution of microbial species’ abundance and their interactions
to assess the extent to which the microbiome is optimally arranged (and stable) or its
divergence from the theoretically optimal state.

1.3. Community Signals as Environment-Modulated Noise
1.3.1. Phylogenetic Trait Dynamics

The community dynamics of the marine microbiome contain many signals infor-
mative of environmental pressure. The color of this “noise”, in a dynamical sense, is
extremely meaningful for the network topology underlying the observed ecological phe-
nomena over time [27,29]. Traditional bioinformatics considers the dynamics of phylo-
genetic traits such as taxonomy or species abundance; for example, the diversity and
abundances of populations within these communities change with habitat geomorphology
and physicochemistry [30–35]. However, such approaches suffer from a lack of knowledge
about many species [36]. Additionally, the taxonomic resolution at which such diversity
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analysis is conducted reveals other signals about the ecosystem state, because biological
traits are differentially conserved along the phylogenetic tree [37]. Indeed, others have
demonstrated how functional profiles are more informative than taxonomic profiles [38],
given that environmental pressure can select for species with competitively advantageous
functional potential.

1.3.2. Entropic Methods for Species Interaction Assessment

There are also entropy-based approaches to species interaction assessment, which
can aid ecosystem monitoring. The biomass conversion process of the system involves
the interspecies abundance variation resulting from competitive (or cooperative) interac-
tions, making information theoretic approaches, such as transfer entropy [39], suitable for
signal detection. Transfer entropy (TE) is an assumption-free and probabilistic means of
maximizing uncertainty reduction about species interactions [29,40]. It is ideal because
species interactions are usually non-normal, non-linear, bidirectional, highly unpredictable,
and asynchronous: methods such as TE have been found to be superior to correlational
approaches [41,42], and other models for functional network inference [29]. Moreover,
there is growing evidence of law-like behavior within communities, such as Taylor’s law
and the abundance–size spectrum [19,43], which are highly robust and seem to shift only in
the presence of significant environmental pressure. Ref. [17] showed that the information
flow (measured by TE) within the gut microbiome of healthy individuals is more scale-free
than that within the gut microbiome of unhealthy individuals. Therefore, here, we explore
the usefulness of TE for ecosystem evaluation given its ability to handle the complexities
within biosystems.

With so many signals to choose from, at so many (taxonomic and spatiotemporal)
scales, it is daunting to condense the complexity of the microbiome into a simple yet
useful portfolio of features that can inform ecosystem management. There is also a need to
compare the usefulness of genetic and statistical features—such as information entropy—
for ecosystem health evaluation. Furthermore, these signals can themselves be misleading.
For example, one can conclude that a community is optimally structured because there
is scale-freeness in its abundance-size spectrum, but this may not necessarily mean that
the dynamical stability, its resilience, is high. The adaptability of microbes could lead to a
re-structuring that presents as critical, although the rate of interaction among species has
irreversibly transitioned, indicating low resilience.

1.4. Paper Outline

Thus, this paper is guided by three questions. First, are the collective dynamics of the
marine microbiome reducible to a habitat-specific portfolio? Second, how informative are
the genetic measurements for ecosystem health, compared to the statistical features, such
as the distribution of abundance or information flow? Third, does an optimally structured
microbiome, so characterized by its collective dynamics, imply a resilient microbiome?
To answer the first, we disaggregate the microbiome into statistical distributions of its
features—its genetic dissimilarity, interaction dynamics, and functional dynamics—and
then model the relationship among them using our new Eco-Evo Mandala. This facilitates
answering the second and third, because it enables exploration of the association between
the structural stability and dynamic stability of the system, and comparison of the between-
state differences along separate axes. This method is applied at the community level as a
measure of habitat state, and at the population level to explore species-specific signals.

Using this approach, we explored the Great Barrier Reef, off the coast of Northern
Australia. It is the world’s largest coral reef system, providing invaluable environmental,
social, and economic services to humans and other species within this region. Though pro-
tected as a World Heritage Site, it is not spared the deleterious effects of anthropogenic
perturbations such as agricultural runoff and climate change, which affect ecosystems at
even the microbial scale [32,35,44]. The resultant coral bleaching events have been increas-
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ing in frequency and magnitude [45], necessitating robust ecosystem health evaluators
such as the one presented here.

In Section 2 of this paper, we describe the materials and methods involved in this
approach, using microbiome data collected from four geomorphologically different marine
habitats within the Great Barrier Reef. We then present Section 3 and discuss the findings
in Section 4, before concluding in Section 5.

2. Materials and Methods
2.1. Microbiome Data

Microbiome data initially published by [35] were used in this study. The data con-
tained bacterioplankton abundances from 7 sites (TT1, TT2, TT3, TT4, FI, RI, and TR) along
a 124 km transect of the Great Barrier Reef, measured monthly between 2009 and 2013
(see Figure 1). These sites represented 4 geomorphologically different aquatic habitats:
estuarine inshore reef (TT1, TT2 and TT3), marine lagoon (TT4), marine inshore reef (FI and
RI), and riverine (TR). The microbiological data contained 1140 operational taxonomic units
(OTUs) of free-living marine bacterioplankton (bacteria and archaea kingdoms) obtained
following 16s rRNA gene amplicon sequencing of water samples from each site. The tax-
onomic classifications of OTUs were derived using the Hitman bioinformatics workflow
(see [35] for a description of the workflow and parameters used). Raw abundances based on
sequence reads were used for analysis instead of relative species abundances. The number
of water samples, and thus the time series lengths (t), differed for each site: t = 15 for TT1;
t = 17 in TT2; t = 17 in TT3; t = 15 in TT4; t = 10 in FI; t = 9 in RI; and t = 3 in TR.

R
S

A
0

1

0 20 40km

-18.0

-17.5

-17.0

145.5 146.0 146.5
Longitude

La
tit

ud
e

Mar.In.Reef RI

Mar.Lag. TT4

Est.In.Reef TT3

1.00

Phylum

Acidobacteria
Actinobacteria
Armatimonadetes
Bacteroidetes
BRC1
Chlamydiae
Chloroflexi

Crenarchaeota
Cyanobacteria
Euryarchaeota
Fibrobacteres
Firmicutes
Fusobacteria
Gemmatimonadetes

Lentisphaerae
Nitrospirae
OD1
OP11
OP3
Planctomycetes
Proteobacteria

SAR406
SBR1093
Spirochaetes
Synergistetes
Tenericutes
TM7
Unknown

Verrucomicrobia
WPS-2
WYO
ZB3

Riverine (TR)

Marine Inshore
Reef (FI)

Marine Inshore
Reef (RI)

Marine
Lagoon (TT4)

Estuarine Inshore
Reef (TT1)

Estuarine Inshore
Reef (TT2)

Estuarine Inshore
Reef (TT3)

2010 2011 2012 2013

2010 2011 2012 2013 2010 2011 2012 2013

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Time

bacteria
obacteria
timonadetes
roidetes

mydiae
oflexi

Crenarchaeota
Cyanobacteria
Euryarchaeota
Fibrobacteres
Firmicutes
Fusobacteria
Gemmatimonadetes

Lentisphaerae
Nitrospirae
OD1
OP11
OP3
Planctomycetes
Proteobacteria

SAR406
SBR1093
Spirochaetes
Synergistetes
Tenericutes
TM7
unidentified

Verrucomicrobia
WPS-2
WYO
ZB3

Est.In.Reef TT2

Est.In.Reef TT1

Mar.In.Reef FI

Time

Time

R
S

A
R

S
A

R
S

A
0

1
0

1
0

1

2009 2013

2009 2013

R
S

A
0

1
R

S
A

0
1

R
S

A
0

1

Figure 1. Site location and time series of relative abundance. The central panel is a Google Map of the 7 sites in the Great
Barrier Reef used for this study. The surrounding panels present the time series of the relative abundance of phyla observed
in each site. For the time series, the horizontal axis is the time series in chronological order, while the vertical axis is the
relative abundance ranging from 0% to 100%. The color of the area in the time series plots corresponds with the phylum, as
indicated in the legend below.
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2.2. Interaction Quantification

Using X = x1, x2, x3, . . . , xt as the time series of abundances of length t for OTU X,
the pairwise OTU interactions within each bacterioplankton community were quantified
using transfer entropy (TE [17]):

TEXi→Xj = ∑ p(Xj,t, Xj,t−1, Xi,t−1) · log2

(
p(Xj,t|Xj,t−1, Xi,t−1)

p(Xj,t|Xj,t−1)

)
, (1)

where Xi and Xj are the times series of bacterioplankton abundances for OTU i and j;
and the subscript t (or t− 1) indicates the value of Xi and Xj at time t (or t− 1). TE was
calculated using the box kernel estimator for continuous data from the JIDT Package [46],
with a history length of 1 and kernel box size of 0.5 normalized units. TE quantifies the
interdependence between OTUs as the information flux between them, considering the
divergence, non-linearity, and asynchronicity in their abundance distribution, thereby
reflecting predator–prey relationships.

2.3. Population Complexity Indicators
2.3.1. Probabilistic Characterization of Distributions

The distribution of abundances and interactions (TEs) was characterized using one
of two measures, λ or ε, derived from their exceedance probability distribution function
(EPDF):

P(Y ≥ y) ∼
{

e−λy

y−ε+1 , (2)

where Y was the abundances or interactions (see Section 2.2) at the population (taxo-
nomic phylum) or community level; λ was used to characterize exponential distributions
(see Figure S3A); and Zipfian (power-law) distributions were characterized with ε (see
Figure S1A). The poweRlaw package [47] was used to estimate the parameters of all EPDFs
using a maximum likelihood procedure to obtain the best fit for the distributions. Scale-
freeness, and thus community or population optimality, increased with the value of ε
or λ.

2.3.2. Taylor’s Law

The variability of population abundances was characterized using the exponent ν of
Taylor’s Law [48]:

〈x2〉 ∼ 〈x〉ν, (3)

where 〈x〉 = E|X| is the mean abundance and 〈x2〉 = E|X2| − E|X|2 is the variance of the
abundance. This exponent was estimated for each population at the phylum taxonomic
level within each community, as well as for the entire community at each location. The pa-
rameter ν was estimated by determining the slope of a linear regression between the base
2 logarithm of both the population mean and variance (see Figure S2A). Higher values of ν
characterized communities or populations that experienced greater temporal instability in
their abundance.

2.4. Phylogenetic Distance

The phyloseq package [49] was used to construct phylogenetic trees for each location’s
community, considering the taxonomic classifications (rather than gene sequences) of all
OTUs ever observed at a site (see Figure S4). Then, the pairwise distance between tips
of the tree, which represented OTUs, was measured using the distTips function of the
adephylo package [50]. This resulted in a matrix of phylogenetic distances between OTU
pairs. The effective phylogenetic distance of a community D was calculated as the mean of
these distances:

D =
1
n ∑ di,j, (4)
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where n is the number of pairs in the distance matrix, and di,j is the phylogenetic distance
between OTU i and j. Communities with higher D have more genetic dissimilarity among
their populations, which is related to functional dissimilarity. It should be noted that,
typically, the phylogenetic distance is calculated as the sum of all pairwise distances
between the tips of the tree in contrast to our effective average above. As each OTU was
classified into a phylum p, the phylogenetic distance for each phylum within the phylogeny
Dp was calculated as the mean of all distances attributed to that phylum:

Dp =
1
n ∑

p
dip ,j, (5)

where n is the number of pairs in the distance matrix and dip ,j is the phylogenetic distance
between OTU i belonging to phylum p and all other OTUs j (see Figure S4). Phyla with
higher Dp are more genetically unrelated, or functionally dissimilar, to other phyla within
their community.

2.5. Eco-Evo Mandala

Inspired by the work of [51] phytoplankton and [52] for microorganisms, we designed
the Eco-Evo Mandala (see Figure 2A). Mandalas are visualizations of theoretical models or
raw data of ecosystems along two or more dimensions and aim to (i) simplify observed
complexities (in the physical or metaphysical planes) and (ii) detect ecosystem patterns [53].
Ref. [52] is a recent example of a “foraging Mandala” for aquatic microorganisms, where
two axes were used to account for the local environment and individual biological adapta-
tions (related to resource frequency and resource quality). Then, the Mandala allows us to
reduce the vast biocomplexity of microbe–environment interactions into a pattern, where
areas are distinct for a minimal number of fundamental parameters related to microbial
strategies. This has also great relevance for the monitoring and management of aquatic
environments by leveraging microbial information. In this study, the proposed Eco-Evo
Mandala is a ternary plot that illustrates how a bacterioplankton community departs from
optimality—in a habitat-specific way—given the relationship among its structure (ε as
abundance distribution parameter; see Equation (2)), function (λ as interaction distribution
parameter; see Equation (2)), and phylogenetic dissimilarity (D as effective phylogenetic
distance; see Equation (4)). The values on each axis are rescaled to the maximum in each
series (using x/xmax, where x is the value and xmax is the maximum value observed). In the
Mandala, ε and λ reflect more Ecological processes (such as local speciation, long-range dis-
persal, and environment-driven interactions), while D reflects more long-term Evolutionary
processes (such as local genetic make-up through adaptation and selection). Communities
departed from optimality the further they were plotted from the region reserved for high D,
low λ, and low ε—in this case, the lower-left third that is the theoretically optimal ”healthy”
state. Note that this healthy state is an ”absolute” optimal (considering high organization ε
and λ, and effective functional diversity D); however, the habitat-specific optimal state may
be located in another region of the Mandala, such as the ones we found for the observed
habitats in this study.

3. Results
3.1. Community Health Characterization

We combined characterizations of community genetic relatedness, structure, and func-
tion into the Eco-Evo Mandala (see Figure 2) to evaluate ecosystem departure from optimal
states. Genetic distance (D, see Section 2.4) measured the amount of genetic dissimilarity
within a community (see Figure S4): high D meant that the community was very unre-
lated genetically (proportional to γ-diversity), while a low D meant that the community
was highly related. The river mouth (TT1) had the most dissimilarity among its species
(D = 6.9), followed by the estuarine inshore reef TT2 (D = 6.82); the lowest dissimilarity was
observed in the river TR (D = 6.51). Structure was quantified as the amount of scale-freeness
in the distribution of species’ abundances within a community (ε, see Section 2.3): lower
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values characterized more optimal structural organizations. The river (TR) was considered
the most structurally optimal (ε = 1.74), followed by the river mouth (ε = 1.82), with the
northernmost marine inshore reef FI showing the poorest structure (ε = 2.85). Function
was characterized by the amount of scale-freeness in the distribution of species interactions
(see Section 2.2) within a community: lower λ signaled more optimal distributions of
community interactions. Again, the river was measured to be the most optimal (λ = 2.39),
followed by the marine inshore reef RI (λ = 4.14); the estuarine inshore reef TT3 had the
poorest functional organization (λ = 14.82). Sites plotted furthest from the region denoting
high D, low ε, and low λ were considered furthest from optimality. Therefore, the Eco-Evo
Mandala suggests that the river (TR) is the most optimal location within the region; the
estuarine inshore reef TT3 was furthest from optimality for functional reasons; and the
marine inshore reef FI was furthest from optimal for structural reasons.

By examining the pattern among points within the Mandala, we observed the relative
importance of each signal and habitat class to the microbiome. We observed that the
communities varied least along the genetic dissimilarity axis compared to the structural or
functional axes of the Mandala (see Figure 2B). Genetic dissimilarity (D) ranged between
6.5 and 6.9 (sd = 0.125), while ε ranged between 1.74 and 2.85 (sd = 0.459), and λ ranged
between 2.39 and 14.82 (sd = 4.102). We also observed greater between-habitat differences
than within-habitat differences. The river (TR) was plotted furthest from all other points,
the estuarine inshore reefs grouped together, and the marine sites, both lagoon (TT4) and
the inshore reefs (FI and RI), were separated from the rest. Therefore, we concluded that the
signals chosen for ecosystem monitoring were habitat-specific, and that genetic dissimilarity
was the least significant of the three when evaluating ecosystem optimality, as communities
are more likely to depart from optimality for structural or functional reasons.

3.2. Intra-Community Health Characterization

The phylum-level distribution of abundances best fit a Zipfian distribution (see
Figure S1A). The mean phylum-level parameters (|ε|) were highest in the marine in-
shore reef site RI (|ε| = 2.43), followed by the lagoon (TT4, |ε| = 2.35) and then the estuarine
inshore reef site TT2 (|ε| = 2.06), least of all in the estuarine inshore reef site TT3 (|ε| = 1.72).
In all estuarine inshore reefs and one marine inshore reef (FI), Euryarchaeota presented the
lowest ε and was thus considered closest to optimal; in the other marine inshore reef (RI),
Actinobacteria had the lowest; and for the marine lagoon, Bacteriodetes had the lowest.
In the marine lagoon and one marine inshore reef (FI), the phylum with the highest ε,
and therefore furthest from optimal, was Verrumicrobia, while in the other marine inshore
reef (RI), the highest was Euryarchaeota. In the estuarine inshore reef designated TT1, the
phylum with the highest exponent was Gemmatimonadetes; in TT2, it was Acidobacteria,
and in TT3, it was Firmicutes (see Figure S1B).
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Figure 2. The Eco-Evo Mandala. (A). The Eco-Evo Mandala, signaling habitat departure from optimality considering the
structure, function, and genetics of the microbiome. The Mandala is read counter-clockwise, the colored arrows exterior to
the plot serving as guides: the blue axis is D measuring phylogenetic distance; the green axis is λ measuring the distribution
of interactions; and the red axis is ε measuring the distribution of abundance. The colored grid lines indicate the position
of points relative to the similarly colored axis (e.g., the blue grid lines show the position of a point relative to the D axis).
D measures the amount of genetic dissimilarity within the network, ε measures the amount of structural organization, and
λ measures the amount of organization in interactions among populations. (B) Pair-wise plots of the Mandala axes: D− λ,
D− ε, and ε− λ. The community state on the Mandala along the three fundamental traits conveys information about the
microbiome’s health (healthy, transitory, and unhealthy at the vertices as extreme states, and any other state) as divergence
from the expected relative optimality.
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The phylum-level distribution of TE also best fit an exponential distribution (see
Figure S3A). The mean phylum-level parameters (|λ|) were highest in the estuarine inshore
reef sites TT3, TT2, and TT1 (|λ| = 12.8, 10.6, and 10, respectively), followed by the marine
inshore reef site FI (|λ| = 9.43), the marine lagoon (TT4, |λ| = 9.16), and then the marine
inshore reef site RI (|λ| = 6.61). The phylum closest to interaction optimality (i.e., presenting
the lowest λ) in the estuarine inshore reef TT1 was the Synergistes, while in TT2, it was
Chlorofelxi, and in TT3, it was SBR1093; in the marine lagoon, Euryarchaeota had the
lowest λ; for the marine inshore reef FI, the lowest λ was for Crearchaeota, while in RI, the
lowest was for Verrumicrobia. The phylum furthest from optimal (that is, with the highest
λ) in the marine inshore reef TT1 was Fibrobacteres, while in TT2 and TT3, it was WPS-2;
in the marine lagoon, Spirochaetes had the highest λ; for the marine inshore reef FI, the
highest λ was for Acidobacteria, while in RI, the highest was for Gemmatimonadetes (see
Figure S3B).

3.3. Community Structural and Functional Optimality

Another candidate metric for community and population characterization was ν,
which described how the variance in the abundance of populations scaled with their mean
abundance (see Equation (3)). At the community level, congruent with Taylor’s Law, ν
ranged between 1.5 in the marine inshore reef FI and 1.7 in the river, approaching but not
exceeding two (see Figure S2). Additionally, an inverse linear model provided a better
fit between ν and ε than between ν and λ (see Figure 3). Note that linearity between ε
and λ was also weak (see Figure 2B). However, at the population level, the pattern of the
relationship among the metrics was much less clear. This notwithstanding, the top phyla
considering ν and ε were comparable, as similar populations were shared between them
(see Figures S1B and S2B); contrarily, the top phyla considering λ (see Figure S3B) were
much less comparable to either of the other two. For example, in the marine inshore reef
(FI), the same six Phyla were among the top 10 Phyla for ν and ε, but five were shared
between λ and ε. Similarly, in the river (TR), more were shared between ν and ε than
between λ and ν or ε. Consequently, while ν and ε appear to be encoding similar signals
from the community, λ is measuring a different axis of variation.
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Figure 3. Associations among ν, ε, and λ. The shape of each point corresponds to the habitat (and location). The large black
points are the community averages, while the smaller colored points indicate the values for specific phyla.
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4. Discussion

The research explored how the distribution of biological traits—genetic dissimilar-
ity, abundance, and interactions—within marine bacterioplankton communities (and, in
comparison, for a riverine community) could be used to evaluate ecosystem health. The bac-
terioplankton was considered due to the centrality of bacteria in ecosystem functions (e.g.,
carbon cycling) and multitrophic cascades with other species. Our findings evidenced:
(1) the importance of probabilistic community organization indicators (distributions and
their parameters) in contrast to population-threshold approaches alone (e.g., threshold
on critical abundance of certain bacteria) that contain habitat-specific microbiome signals;
(2) the sufficiency of abundance and abundance fluctuation information over time as eco-
indicators of ecosystem health, without the need for further biological information; (3) the
structural stability (of the physical habitat or community abundance proportion) does not
necessarily imply dynamical stability that is largely dependent on long-term environmental
fluctuation distribution affecting species interaction distribution.

4.1. Signaling Ecosystem Optimality with Community versus Population Dynamics

In this work, community diversity was quantified by D, the distribution of abun-
dances by ε, and the distribution of functions by λ. Another candidate was ν; however,
given the strong relationship between ν and ε, and that both ε and λ are derived from pdfs,
we decided to construct the Mandala without ν. Previous work on the microbiome has
concluded that community diversity, the distribution of abundances, and the distribution of
functions represent separate axes of variation, each capable of signaling the ecosystem state.
Note that here ”signaling” is purposely used in an information-theoretic perspective to
underline the communication between species and environment manifested by time-series
data. High D indicated high diversity within a community, which is considered ideal
because it facilitates functional redundancy, and creates pools of dormant genes that can
be used for atypical environmental conditions [38]. When highly diverse communities
encounter stress, they can respond quickly by recruiting previously dormant populations
who specialize in the stressed state. It also maintains community resilience despite pop-
ulation loss: functional redundancy ensures that necessary functions are maintained by
allowing for population replacements. Low ε and low λ are considered optimal because
they indicate that the distributions of abundances (structure) and interactions (function)
are scale-free. Scale-free distributions, most notably in the abundance of biological species,
have been associated with healthy biological systems [17,20]. The notion of self-organizing
criticality [18] explains why this is so: biological systems tend to self-organize to optimal
states, which manifest scale-freeness in the distribution of features [54]. We assume that an
optimal habitat presents a diverse microbiome, with a scale-free distribution of functions
and abundances. Therefore, habitats plotted in the portion of the Mandala reserved for
high D, low λ, and low ε were considered closest to optimality.

This notwithstanding, these are theoretical expectations and we do not know the
distribution or distribution parameter indicative of true optimality for the ocean bacte-
rioplankton in relation to a habitat type. A distribution type and its parameter reflect
a network; therefore, what we examine is variation in community assembly organiza-
tions that are likely evolutionarily optimal or departing from an optimal state. However,
it is possible for the habitat microbiome to be reorganized into topologies different to
scale-free networks. For instance, shallow lagoons without any major structural habitat
forcing may lead to feasible optimality of the microbiome as distributed exponentially;
these theoretically suboptimal conditions may also be related to recurrent biogeochemical
loads. Consequently, we emphasize that our observations are likely about relative habitat
optimality, and that future research is needed to identify the network topology of the bacte-
rioplankton (and its distributions) associated with the optimal habitat baseline; this will
allow us to carefully quantify departure from optimality due to diffuse and point-source
stress such as climate oscillations (e.g., heatwaves) and nutrient loads.
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Our Eco-Evo Mandala considers the distribution of traits within the entire community
to evaluate the ecosystem state. When evaluating ecosystem health, one can focus on
identifying keystone species [55], core to their ecological networks and whose exceedance
of predefined thresholds destabilizes ecosystems. This justifies focusing on individual
populations, because altering one can alter the entire system. However, while this implies
the importance of the community interactions, it does not explicitly consider community
dynamics; furthermore, it ignores the complexity of these community dynamics. The eco-
logical function of the microbiome is the result of the interactions of all species within
the meta-population, not any one in particular. This complexity means that the effects of
one population can be offset by the collective dynamics of the entire system, rendering
the information provided by a single population potentially misleading. Consequently,
it is better to monitor entire communities when trying to evaluate an ecosystem, rather
than specific populations. Here, we emphasize that community dynamics are not only
informative of ecosystem health, but sometimes more so than population dynamics.

4.2. Phylogenetic and Probabilistic Ecohealth Characterization

It has been argued that the inclusion of biological knowledge can improve models
of biosystem dynamics [56]. Phenotypic distributions hold information about the micro-
biome’s habitat [37], but care must be taken in selecting which traits to monitor: some,
such as genetic dissimilarity, which contributes to diversity (richness), can be misleading.
Additionally, the scale at which this analysis occurs, whether the population or community
level, is important. Our results show that a community’s distributions of abundance and
information flow are potentially more informative about the habitat than its diversity,
similar to [57], who demonstrated how structural and dynamical indicators were suffi-
cient for measuring system health. Although some studies have equated diversity with
ecosystem health, some have found that diseased habitats can display higher microbial
diversity than healthy habitats, particularly because of an increase in viruses [58–60]. We
also demonstrated that analysis of the information entropy dynamics at the community
scale—rather than at the population scale—could inform about the habitat state. This is
important because there are many microbes that are as yet uncultured [61,62], so we do not
have full taxonomic information about them, neither do we know their ecological function.
Even if they were cultured, sometimes, in vitro behavior is different from in situ behavior
[63]. Therefore, ecosystem health monitoring requires knowledge about the statistical dy-
namics of the entire community, rather than the taxonomic identity and ecological function
of any particular species.

Interesting patterns emerged, which were consistent across ecological scales. First,
the average behavior of populations (phyla) approximated the behavior of the entire com-
munity, resulting in the clustering of phyla around their habitats in the phase space Figure 4.
Additionally, we observed novel inter-population relationships, which could be useful
for ecosystem health evaluation. For example, the estuarine inshore reef TT3 presented
Cyanobacteria, which were closer to optimality than Proteobacteria, and this community
overall was the farthest of the seven sites from optimality. Conversely, the marine inshore
reef RI presented Proteobacteria closer to optimality than Cyanobacteria, and this com-
munity overall was not too far from optimality. Cyanobacteria are widely implicated as
problematic for marine ecosystems when they dominate microbial assemblages [64], while
Proteobacteria are usually the dominant species characteristic of stable marine environ-
ments. Thus, it may be possible to discern the optimality of a habitat by comparing the
structural and functional stability of select species.
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Figure 4. Phylum-level Mandala. Each panel is an Eco-Evo Mandala for the community sampled at each site. The colored
points are the phyla while the black point is the community average. Only those phyla for which all three dimensions were
calculable are displayed; the river (TR) is excluded as λ was not calculable for any of the populations (though it was for the
entire population).

4.3. Multi-Axis Community Departure from Optimality

One might assume that a structurally stable system is also dynamically stable, i.e.,
resilient. The results of the Mandala illustrate how a community can depart from optimal
states for multiple reasons: optimality in one trait does not necessitate optimality in another.
For example, the northern-most marine sites were closest to functional optimality but fur-
thest from structural optimality, while the southern-most estuarine sites were closest to
structural optimality but furthest from functional optimality. Exponents such as ε consider
the stability of a community, reflecting the ability of the community structure to retain
a particular shape given the probabilistic distribution of its abundances. Contrarily, λ,
derived from transfer entropy, considers the dynamics of the community over time, the rate
of energy sharing among populations. The fact that these biological systems display critical
structures regardless of environmental state is a testament to their adaptive capabilities:
regardless of the environmental state, the probability distribution of their abundances
remains relatively constant. However, the community can still change in other ways: the
taxonomic composition of these communities can transition following perturbation; the
interaction rate among populations can also change. That is to say, structural stability does
necessitate dynamical stability, as they represent separate axes. The results of this study
caution researchers and environmental managers not to rely on solitary metrics to evalu-
ate ecosystem health, but instead to confer with a combination of methods. Community
optimality, as one indication of ecosystem health, can be inferred from the optimality in
both structure and function represented by distributions in abundance and interactions,
respectively. Another interesting finding was the hybrid nature of the distribution of TE
in all habitats, which were mostly exponential but presented a scale-free tail. Microbi-
ologists have theorized about the existence of a core microbiome, whose structure and
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function remain consistent regardless of geography, geomorphology, or environmental
perturbation [65]. The core microbiome may be the portion of the interaction network
manifesting this scale-free tail in the distribution. A network analysis approach may be able
to confirm this by identifying whether hubs are present in the network graph following the
application of a threshold to extract those nodes whose interactions are to be found at the
tail of this distribution.

4.4. Habitat Inference from Bacterioplankton Organization

Many marine bacteria are ubiquitous, especially given the high motility of species
and high porosity of habitats. This could mean that communities are roughly the same,
rendering the marine microbiomes uninformative of habitat type or state, and thus only
useful on a planetary scale. However, we observed greater between-class differences
than within-class differences, supporting the observation of others that microbial com-
munities collectively respond to the state and nature of their habitat in characteristic
patterns [9,43,66–68]. We propose that the geomorphology, hydrodynamics, and water
quality (temperature, salinity, nutrient loads, etc.) of these habitats may be responsible
for the differentiation of microbial communities, which enables the identification of habi-
tat class from community dynamics. Hydrodynamics coupled with eutrophication can
increase microbial biomass in habitats [69], resulting in the relatively high abundance of
particular species whose motility is positively impacted [70]. The river and estuarine sites
present a shallower, more two-dimensional habitat constantly flushed by wave dynamics,
which expedites the entry and exit of species and nutrients [71]. This may explain the com-
paratively low but exponentially distributed interactions of the estuarine sites, particularly
the river mouth TT1, and the high yet less exponentially distributed interactions (indicative
of a slower decay in the EPDF of interactions) of the marine inshore reef and marine
lagoon. The low residence time of the water in the river and estuarine sites does not allow
a stable environment for the build-up of interactions; on the other hand, the marine sites
are less hydrodynamically turbulent and accessible from more angles, creating a calmer,
more settled environment in which populations may grow and interact. The estuarine
environment is more greatly impacted by local perturbation, such as industrial runoff from
agricultural lands, which greatly increases nutrient loads, promoting growth—especially
that of potentially toxic species—which may explain their less structured interactions and
relatively stable abundances [35]. The marine sites are more impacted by global stressors
such as temperature and salinity, with limited impact on nutrient availability [35], which
would keep its interactions more stable. As such, fluctuations in structural stability and
functional dynamics could be able to be indicative of the habitat geomorphology and
environmental perturbation. This pattern would need to be explored further in other
domains to confirm its validity.

We must mention that other ecological processes also impact community organization,
not merely habitat geomorphology and environmental stress. Microbiome dynamics is
also shaped by top-down factors, such as viral dynamics [72]. Recent studies focused on a
complete characterization of ocean microbiome dynamics, i.e., the interaction of eukary-
otes, prokaryotes, and viruses observed in several habitats around the world, to capture
universal dynamical patterns. For instance, recently, Zhang et al. [73] considered sampled
microbiomes in the Pearl River Delta and found associations with algal blooms and salinity
gradients. Prodinger et al. [74] recently observed during diverse eukaryotic species blooms
the Megavirus occurrence in the Uranouchi Inlet (JP), confirming the importance of viruses
in the bacterioplankton dynamics. Debates still exist about the causal pathways between
eukaryotes, prokaryotes, and viruses, and so further research is needed. Unfortunately, our
study is limited by the lack of data on viral dynamics—and other biotic and abiotic factors,
potentially—and does not allow us to quantify these other important features. However,
the current study aims to characterize bacterioplankton patterns alone (due to the centrality
of bacteria in many ecosystem functions and the data-driven approach) and not processes,
based on the data available, along three main phenotypic axes reflecting abundance distri-
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bution, abundance-based interactions, and phylogenetics (eco and evo community traits).
The model and the Mandala can, however, be extended to the whole microbiome (eukary-
otic and viral communities too) rather than only being used for prokaryotes. We show that
simply by considering abundance and interaction distribution at the community level, we
are able to identify habitats and their potential relative stability or divergence from the
theoretically optimal distribution. Additionally, we reiterate that phylogenetic dissimilarity
did not help much with characterizing habitat patterns, although it may aid in under-
standing factors such as organization processes and effective diversity versus taxonomic
diversity. By zooming out from the phylum to the OTU scale—where viral dynamics may
appear evident—the uncertainty around habitat statistics, related to coupling abundance
and interaction distribution parameters (ε and λ, respectively), increases because micro-
determinants of populations become more important. Our Mandala is capable of signaling
habitat-specific dynamics of bacterioplankton communities at the macro-level by using
eco-evo traits, and this can also shed light on the importance of micro- versus macro-scale
processes with relevance to ecological monitoring (i.e., what, where, and how much to
sample bacterioplankton in relation to environmental dynamics).

5. Conclusions

In response to the question about how to characterize microbiome health, we found
that the collective distribution of abundance and interactions is sufficient to assess the
habitat-specific microbiome state, and even to predict habitat type from bacterioplankton
organization. Biology (genetics) alone is not as informative for predicting an ecosystem
state considering both statistical and entropic features. Additionally, we found that a
structurally stable microbiome (considering abundance proportion related to static habitat
features) does not equate to a dynamically stable one (dependent on microbial species
interaction organization, which is sensitive to environmental fluctuations). Our conclusions
are from analyses of distributions of community phenotypic traits of the bacterioplankton
for four distinct aquatic habitats (one riverine and three marine). Traditional approaches to
ecosystem diagnosis can miss habitat-specific features by focusing on abnormal readings
in single species (or environmental drivers) rather than community patterns. Community
patterns are, for instance, distribution functions of the collective organization of species
(abundance, interaction, and phylogenetic dissimilarity from a distance/dissimilarity
perspective, where the distance is associated with the autocorrelation function of these
features), which may be independent of the spatial, temporal, and biological scale of orga-
nization. This invariance across scales is associated with stable or scale-free distribution,
manifesting the relative optimality of a community, and the exponent of the distribution is
likely habitat-specific (modulated by environmental dynamics) rather than blueprinted
by biology. Thus, it is much more appropriate to focus on the collective distribution
of abundance and interactions (as information flow due to the data-driven approach of
ecosystem monitoring [29]) revealing ecosystem organization, rather than treating any
specific bacterium and its abundance in isolation. By decoupling and decoding the genetic,
structural, and functional signals emanating from aquatic microbiomes (here, focusing
on the bacterioplankton but extendable to eukaryotic and viral components), we demon-
strated a novel means of evaluating ecosystem health (as community organization). The
results: (i) confirmed the relatively low importance of community genetic dissimilarity for
ecosystem organization (and response, potentially); (ii) illustrated the complementarity
but distinctness between structural and dynamic stability (biomass and interaction dis-
tributions, where the latter is much more sensitive to environmental fluctuations); and
(iii) explored the habitat specificity of the community response to environmental stress
by highlighting the important protective role of structural complexity, such as in marine
reef and riverine habitats. In conclusion, it is possible—and preferable—to derive robust
ecosystem optimality indicators from the information (probabilistic distributions) extracted
from the biocomplexity of bacterioplankton communities.
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