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Abstract: Remotely piloted unmanned combat aerial vehicle (UCAV) will be a prospective mode of
air fight in the future, which can remove the physical restraint of the pilot, maximize the performance
of the fighter and effectively reduce casualties. However, it has two difficulties in this mode: (1)
There is greater time delay in the network of pilot-wireless sensor-UCAV, which can degrade the
piloting performance. (2) Designing of a universal predictive method is very important to pilot
different UCAVs remotely, even if the model of the control augmentation system of the UCAV is totally
unknown. Considering these two issues, this paper proposes a novel universal modeling method, and
establishes a universal nonlinear uncertain model which uses the pilot’s remotely piloted command
as input and the states of the UCAV with a control augmentation system as output. To deal with the
nonlinear uncertainty of the model, a neural network observer is proposed to identify the nonlinear
dynamics model online. Meanwhile, to guarantee the stability of the overall observer system, an
adaptive law is designed to adjust the neural network weights. To solve the greater transmission
time delay existing in the pilot-wireless sensor-UCAV closed-loop system, a time-varying delay state
predictor is designed based on the identified nonlinear dynamics model to predict the time delay
states. Moreover, the overall observer-predictor system is proved to be uniformly ultimately bounded
(UUB). Finally, two simulations verify the effectiveness and universality of the proposed method.
The results indicate that the proposed method has desirable performance of accurately compensating
the time delay and has universality of remotely piloting two different UCAVs.

Keywords: unmanned combat aerial vehicle (UCAV); wireless sensor network (WSN); time delay;
neural network observer; state predictor

1. Introduction

At present manned/unmanned formation is the developing trend of future war, the unmanned
combat aerial vehicle (UCAV) can remove the physical restraint of the pilot, maximize the performance
of the air fighter and effectively reduce casualties. However, restricted by the development of current
intelligence technology, the UCAV still cannot complete the tasks independently. Therefore, a remotely
piloted UCAV will be a prospective mode of air fight in the future, and remotely piloted technology
has become an important way to win unmanned aerial combat [1–3].

The remotely piloted system consists of UCAVs, the wireless sensor network (WSN) and the
remotely piloted station (seen in Figure 1). The procedure is as follows: the pilot in the remotely piloted
station gives the real-time command according to the combat situations displayed on the interface
through the downstream channel of the WSN. Then the remotely piloted command is sent to the
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UCAV through the upstream channel of the WSN. The UCAV control augmentation system tracks the
remotely piloted command rapidly and changes the states of the UCAV [4,5]. However, it has two
difficulties in this mode: (1) There is greater time delay in the network of a pilot-wireless sensor-UCAV,
which can cause pilot-induced oscillation and engender the phenomenon of “chasing-swing”, and
can even cause instability of the loop of remote pilot and UCAV. (2) Each UCAV has its own control
augmentation system, and different UCAVs have different aerodynamic and control augmentation
systems, including controller parameters and feedback states [6]. Thereby it is very important that the
design of a universal state predictive method realizes remotely piloting different UCAVs, even if the
parameters of the control augmentation systems are totally unknown.
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Figure 1. The structure of the wireless combat sensor network scenario. 

For the problem of time delay, many researchers have studied and proposed different methods. 
The predictive approach is very efficient for calculating the time delay [7,8]. To predict the state 
parameter precisely, different predictive methods have been investigated, such as the Smith 
predictive method [9–11], a Kalman estimator [12,13], feed-forward control [14], reference model 
based control [15,16], and a state space observer approach [17,18]. Thurling and Greene [19] gave a 
detailed description of the composition of the delay of a low speed unmanned aerial vehicle (UAV) 
remotely piloted system and analyzed the result of time delay impacting on the handling qualities; 
they described how the greater time delay could cause the pilot to over-operate the UAV and even 
lead to UAV instability. Based on the deterministic linear model and the deterministic delay, the 
delayed UAV flight state is predicted by solving the state equation. However, this method is too ideal 
to improve the UAV flight quality in the presence of disturbance and time-varying delay. Teng and 
Grant [20] improved this algorithm and, based on a low speed UAV linear longitudinal model, 
adapted the predictor model for real-time using online parameter estimation techniques; then they 
designed a constant time delay Smith predictor. However, the time delay is always a time-varying 
system in the WSN. Recently, there are also some researches on time-varying delay prediction. In 
[21], a kind of state observer based on a deterministic model was presented for a velocity-sensorless 
vertical take-off and landing aircraft with bounded time-varying delay in its measurement outputs. 
The proposed observer effectively improved the output measurement delay and the asymptotic 
convergence property of the estimation error based on the Lyapunov–Razumikhin theorem was 
proved. In [22], a fuzzy observer-based hybrid force/position predictive method was investigated for 
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For the problem of time delay, many researchers have studied and proposed different methods. The
predictive approach is very efficient for calculating the time delay [7,8]. To predict the state parameter
precisely, different predictive methods have been investigated, such as the Smith predictive method [9–
11], a Kalman estimator [12,13], feed-forward control [14], reference model based control [15,16], and a
state space observer approach [17,18]. Thurling and Greene [19] gave a detailed description of the
composition of the delay of a low speed unmanned aerial vehicle (UAV) remotely piloted system
and analyzed the result of time delay impacting on the handling qualities; they described how the
greater time delay could cause the pilot to over-operate the UAV and even lead to UAV instability.
Based on the deterministic linear model and the deterministic delay, the delayed UAV flight state is
predicted by solving the state equation. However, this method is too ideal to improve the UAV flight
quality in the presence of disturbance and time-varying delay. Teng and Grant [20] improved this
algorithm and, based on a low speed UAV linear longitudinal model, adapted the predictor model
for real-time using online parameter estimation techniques; then they designed a constant time delay
Smith predictor. However, the time delay is always a time-varying system in the WSN. Recently, there
are also some researches on time-varying delay prediction. In [21], a kind of state observer based on
a deterministic model was presented for a velocity-sensorless vertical take-off and landing aircraft
with bounded time-varying delay in its measurement outputs. The proposed observer effectively
improved the output measurement delay and the asymptotic convergence property of the estimation
error based on the Lyapunov–Razumikhin theorem was proved. In [22], a fuzzy observer-based hybrid
force/position predictive method was investigated for a bimanual robot teleoperation system in the
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presence of dynamics uncertainties and random network-induced time delays. Lu et al. considered
the dynamics uncertainties of a slave and the random time delays, therefore, the method is more
applicable. There have been many researches on time delay prediction, including deterministic objects,
objects with parameter uncertainties, fixed delay time and random delay time systems. However, all
of these studies [19–22] can be classified as networked control problems of low dynamic objects. That
is to say, the operator sends the control command directly to the remote actuator of the passive object
through the WSN. For networked control systems, only the dynamics model of the controlled object
itself is needed, which is relatively simple and usually known [23–25].

Due to the need of strong maneuverability, the general aerodynamics of the UCAV is unstable; the
UCAV requires its own control augmentation system to guarantee self-stability [26,27]. Consequently,
the response of the UCAV is highly dynamic. The remotely piloted mode is different from common
remote manipulation such as performed by a manipulator of a satellite or moon rover, which can
work on the mode of “do and wait”, and the manipulating commands can be sent to the actuator
directly. In remotely piloted mode, for the pilot, the control object is no longer the UCAV itself, but the
whole UCAV with the control augmentation system [7]. Therefore, the dynamics model of the UCAV
will contain not only the aerodynamic and motion characteristics, but also the control augmentation
system and the nonlinear characteristics of the actuator. In addition, in the whole flight envelope, the
characteristics of the control augmentation system change with the change of flight conditions and
mission; also the control augmentation systems designed by different designers are very different [28].
These problems make it very difficult to describe the dynamics model of the UCAV accurately [29];
this brings much bigger challenges to remotely pilot different UCAVs.

For this problem, many scholars have focused on the model uncertainty and nonlinear unmodeled
dynamics. The intelligent algorithm using a fuzzy logic system and a neural network as an approximate
estimator is widely studied [30–32]. For intelligent algorithms, some recent works can be found
in [33–35]. A robust adaptive fuzzy tracking controller for a hypersonic flight vehicle subject to
both parametric uncertainties and unmodeled dynamics is proposed in [36]. Considering parameter
uncertainties and unmodeled dynamics, a full state tracking error system is built. A fuzzy logical system
is utilized to identify the nonlinear system with parameter uncertainty and unmodeled dynamics.
In [37], a fault-tolerant controller of a hypersonic flight vehicle is presented using back-stepping and
composite learning. To obtain good uncertainty approximation, composite learning is proposed for the
update of neural weights by constructing a serial-parallel estimation model. The intelligent algorithm
is applied to a hypersonic vehicle [38], an autonomous underwater vehicle [39], a UAV [40], a quad
rotor [41], a re-entry vehicle [42], etc. Although there are many intelligent algorithm studies on system
uncertainties, to our best knowledge, there are few studies related to remotely piloted techniques for a
UCAV with a control augmentation system.

Compared with previous studies on remotely piloted UCAVs, this paper is an extension of the
previous method proposed in [7]. A predictive method is presented based on the assumption of a linear
approximation model in [7]. The method in this paper can solve the state delay prediction problem of
the UCAV nonlinear uncertain model, which is more universal. The main contributions of this paper
are listed as follows.

(1) A novel universal input–output nonlinear dynamics model of a UCAV with a control augmentation
system is established. Considering that the pilot often pays attention to the position information
when piloting a UCAV, and the position is just twice the integral of acceleration, which is
universal for any UCAV. Consequently, we establish a universal nonlinear uncertain model which
uses the pilot’s remotely piloted command as input and the states of the UCAV with a control
augmentation system as output. In addition, the nonlinear characteristics of the UCAV’s actuator
are also considered.

(2) To deal with the nonlinear unmodeled dynamics, a radial-basis-function (RBF) neural network
method is applied to identify the nonlinear dynamics model online. Meanwhile, to guarantee
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the stability of the overall observer system, an adaptive law is designed to tune the neural
network weights.

(3) A time-varying state predictor is designed based on the identified nonlinear dynamics model to
achieve accurate predictions of the time delay states.

(4) The overall adaptive neural network observer-predictor scheme is shown to be uniformly
ultimately bounded (UUB) via the Lyapunov approach. The predicted errors are proved to
converge by analyzing the trajectory. Two simulation results show that the design predictor can
identify the nonlinear dynamics model precisely and can predict the flight states effectively.

The remainder of this paper is organized as follows. Section 2 describes the nonlinear dynamics
model of the UCAV with a control augmentation system and presents several basic assumptions. In
Section 3, a state predictor based on adaptive neural network dynamics is presented, and then the
closed-loop system stability is proved. The simulation results and some discussions are presented in
Section 4. Finally, conclusions are given in Section 5.

2. Problem Formulation

2.1. Dynamics Model of a UCAV

In this paper, we use the nonlinear longitudinal dynamics model of a UCAV built in [7]; the details
are shown as follows:

ay =
ρV2SCL(α,δe,Ma)

2m − g cos(ϑ− α)
.
α = − 1

2mVρV2SCL(α, δe, Ma) + q + g
V cos(ϑ− α)

.
q =

ρV2ScCMyy (α,δe,Ma)
2Iyy.

ϑ = q
.

Vy = ay.
H = Vy

(1)

where H, V, Ma represent altitude, velocity and Mach, respectively, α, ϑ and q are angle of attack, pitch
angle and pitch rate, Vy and ay denote the longitudinal velocity and acceleration, Iyy and m stand for
the moment of inertia and the vehicle mass, g is the acceleration owing to gravity, ρ denotes air density,
S and c denote reference area and reference length and δe is elevator deflection, which is generated by
the UCAV control augmentation system. CL(α, δe, Ma) and CMyy(α, δe, Ma) denote lift coefficient and
pitch moment coefficient, respectively; they are both nonlinear functions of angle of attack, elevator
deflection and Mach. See Appendix A for a list of symbols.

2.2. Dynamics Transformation

In the previous section, the longitudinal dynamics model of UCAV is given. However, the strong
maneuverability of the UCAV is usually unstable, and it has its own control augmentation system.
Therefore, the object piloted is not the UCAV dynamics itself, but the whole UCAV after the control
augmentation. Different from the remote piloted low-speed UAV, the remote piloted command sent by
the pilot is no longer the elevator deflection, but the longitudinal acceleration command.

Figure 2 shows the structure of the pilot-wireless sensor-UCAV closed-loop system. It can be
seen that the UCAV control augmentation system consists of two parts: controller and actuator. The
controller of the UCAV calculates the elevator deflection command according to the control algorithm
designed by the designer to track the remotely piloted command ayc. Then, the actuator deflects the
corresponding elevator deflection angle to make the UCAV movement. However, because the response
characteristic of the UCAV’s controller is greatly variable with flight altitude and velocity, and the
backlash and dead zone of the UCAV’s actuator are nonlinear, it is very difficult to accurately describe
the dynamics model of the UCAV with a control augmentation system.
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Therefore, in this paper, the dynamics model, from the pilot’s acceleration command to the
acceleration response of the UCAV, is modeled as a nonlinear uncertain model, and it will be
approximated in Section 3. Moreover, due to the pilot often paying attention to the position information
when piloting the UCAV, and the position being just twice the integral of acceleration, which is
universal for any UCAV, then we can establish a universal nonlinear uncertain dynamics model as
follows: .

x(t) = Ax(t) + b[χ(x(t), u(t), t) + d(t)]
y(t) = CTx(t)

(2)

where x(t) =
[

x1(t) x2(t) x3(t)
]T

=
[

H Vy ay
]T
∈ R3, u(t) = ayc(t) ∈ R and y(t) = x(t) ∈ R3

are state vector, input and output vector, respectively. The unknown disturbance is d(t), with a known
upper bound bd. The coefficient matrixes of the system are

A =


0 1 0
0 0 1
0 0 0

, b =
[

0 0 1
]T

, C =


1 0 0
0 1 0
0 0 1

.

Remark 1. In Equation (2), χ(x(t), u(t), t) denotes the dynamics model from pilot’s longitudinal acceleration
command ayc to the response of the UCAV’s longitudinal acceleration ay via the control augmentation system.
The dynamic process is not only related to the aerodynamic and motion characteristics of the UCAV itself, but
also to the response performance of the control augmentation system and the nonlinear characteristics of the
actuator. In addition, due to the strong maneuverability of UCAV, its aerodynamic characteristics are very
complex, and the couplings between aerodynamic parameters and flight dynamics are strong, thus χ(x(t), u(t), t)
is an unmodeled dynamics in this paper, and it will be approximated later.

The latency in the pilot-wireless sensor-UCAV closed-loop system is defined as the time elapsed
from pilot’s command until an expected state feedback is displayed in the pilot/vehicle interface [7].
The time delay of the whole closed-loop system primarily includes two parts: uplink time delay τup(t)
and downlink time delay τdown(t), which vary with the flight distance.
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Remark 2 [23]. According to [23], the total time delay is equal to the delay displayed by the pilot/vehicle
interface, therefore, τup(t) and τdown(t) can be combined as τd(t) to make it easier for analysis. Then, the time
delay model can be simplified as follows:

τd(t) = τup(t) + τdown(t). (3)

Assumption 1 [23]. For the time-varying delay τd(t), we assume that the delays are bounded, known and
identical; for different outputs throughout the whole paper, the delay should be bounded by:

τd(t) ∈ [0, ∆].

To achieve a convenient expression in the following section, the dynamics model of a UCAV with
time-varying delay can be expressed as

.
x(t) = Ax(t) + b[χ(x(t), u(t), t) + d(t)]
¯
y(t) = CT ¯

x(t) = CTx(t− τd(t))
(4)

where
¯
y(t) =

[
H(t) Vy(t) ay(t)

]T
= y(t− τd(t)) is the output with measurement time-varying

delay.

2.3. Preliminaries

In this paper, the unknown functions will be approximated by an RBF neural network. It has been
proven that for an arbitrary real continuous nonlinear function λ(ξ) on a compact set Ωξ ⊂ Rn, there
exists the following RBF neural network and ideal weights vector W∗T, such that:

λ(ξ) = W∗TΦ(ξ) + ε(ξ), (5)

where the input vector is ξ = [ξi]
T, i = 1, 2, . . . , n is the neural network input dimension, and the neural

network approximation error ε(ξ) is bounded by the known constant εN. Function Φ is the Gaussian
function, which is in the following form:

Φ j(ξ) = exp

−‖ξ − η j‖
2

2σ2
j

, (6)

where η =
[
ηi j

]
=


η11 · · · η1m

...
. . .

...
ηn1 · · · ηnm

 and σ j, j = 1, 2, . . . , m are the center vector and the width of the

Gaussian function, respectively.
Then the unknown function λ can be approximated by an RBF neural network. For the network

input ξ, the output is given by
λ̂(ξ) = ŴTΦ(ξ), (7)

where Ŵ is the estimation of the ideal neural network weight that is provided by some weight-tuning
algorithms.

Remark 3 [43]. In this paper, we denote ‖·‖ as the Euclidean norm, and ‖·‖F as the Frobenius norm.

Definition 1 [43]. We say that the solution of a dynamic system is UUB if for a compact set U of Rn and for all
x(t0) = x0 ∈ U there exists a µ > 0 and a number T(µ, x0) such that ‖x(t)‖ < µ for all t ≥ t0 + T.
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3. Predictor Design

The greater transmission time delay existing in the pilot-wireless sensor-UCAV closed-loop
system causes pilot-induced oscillation and degrades the pilot/vehicle system stability and tracking
performance. Therefore, a time-varying state predictor is designed in this section to predict the time
delay states. However, because the dynamics model of the UCAV’s control augmentation system
is unknown, an adaptive RBF neural network observer is proposed to approximate the unknown
nonlinear function. Moreover, a corresponding lemma and the convergence proof of predicted errors
are presented, respectively.

3.1. State Predictor

The proposed predictor performs according to the following structure:

.
_
x = A

_
x + b

[
χ
(_

x (t), u(t), t
)]
+ K

(
−
y−CT_x (t− τd(t))

)
−
_
y = CT_x (t− τd(t))

(8)

For the three-order systems Equation (4), the predictor is specifically expressed as:

.
_
H(t) =

_
Vy(t) + K1

(
H −

_
H(t− τd(t))

)
.
_
Vy(t) =

_
a y(t) + K2

(
Vy −

_
Vy(t− τd(t))

)
.
_
a y(t) = χ

(
t,
_
a y(t), u(t)

)
+ K3

(
ay −

_
a y(t− τd(t))

) , (9)

where
_
x (t) denotes the predicted value of x(t− τd(t)),

_
x (t− τd(t)) is the time delay signal of

_
x (t),

and K =


K1 0 0
0 K2 0
0 0 K3


T

is the predictor gain matrix to be designed, so that A −KCT satisfies the

Hurwitz condition.

Remark 4. The objective of the predictor is that: when t→∞ ,
_
x 1(t)→ x1(t) ,

_
x 2(t)→ x2(t) and

_
x 3(t)→ x3(t) .

Remark 5. To achieve the predictor Equation (8), we need to estimate the unknown nonlinear function
χ(x(t), u(t), t).

3.2. Adaptive RBF Neural Network Observer

In this section, we use an adaptive RBF neural network method to approximate the unknown
nonlinear function χ(x(t), u(t), t). The unknown nonlinear function can be rewritten as follows:

χ(x(t), u(t), t) = f (x(t)) + g(x(t))u(t), (10)

where f (x(t)) and g(x(t)) are unknown nonlinear smooth functions; they will be estimated later. We
assume no delay in the system; then the expression of the nonlinear system can be rewritten as:

.
x(t) = Ax(t) + b[ f (x(t)) + g(x(t))u(t) + d(t)]
y(t) = CTx(t)

(11)
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Then, for Equation (11), an observer is designed as:

.
x̂ = Ax̂ + b

(
f̂ (x̂) + ĝ(x̂)u− v(t)

)
+ Γ

(
y−CTx̂

)
ŷ = CTx̂

(12)

where x̂ represents the estimation of the state x, and the functions f̂ (x̂) and ĝ(x̂) are the estimations of
unknown nonlinear functions f (x) and g(x), respectively. The robust term v(t), yet to be defined, is a
function that provides robustness in the face of bounded disturbances. The observer gain vector Γ is
chosen so that the characteristic polynomial of A− ΓCT is strictly Hurwitz. The specific expression
form of Γ is as follows:

Γ =


Γ1 0 0
0 Γ2 0
0 0 Γ3

.
Defining the state and output estimated errors as x̃(t) = x(t) − x̂(t) and ỹ(t) = y(t) − ŷ(t), yields

the error dynamics
.
x̃ =

(
A− ΓCT

)̃
x + b

(
f̃ (x, x̂) + g̃(x, x̂)u + d(t) + v(t)

)
ỹ = CTx̃

(13)

where the nonlinear functional estimated errors f̃ (x, x̂) and g̃(x, x̂) are given by

f̃ (x, x̂) = f (x) − f̂ (x̂)
g̃(x, x̂) = g(x) − ĝ(x̂)

(14)

Then the error dynamics may be written as:

ỹ(s) = H(s)
(

f̃ (x, x̂) + g̃(x, x̂)u + d(t) + v(t)
)
, (15)

where s denotes the differential operator d/dt. The linear transfer function is H(s) =

CT
(
sI−A + ΓCT

)−1
b.

According to the approximation property of an RBF neural network, the continuous nonlinear
functions in the observer Equation (12) can be represented by a neural network with constant ideal
weights W∗ and sufficient numbers of basic functions Φ(x), i.e.,

f (x(t)) = W∗1
TΦ1(x) + ε1(x),

∣∣∣ε1(x)
∣∣∣ ≤ ε1,N

g(x(t)) = W∗2
TΦ2(x) + ε2(x),

∣∣∣ε2(x)
∣∣∣ ≤ ε2,N

(16)

where the input vector is x ∈ Qx ⊂ Rq, q is the neural network input dimension, and the neural
network approximation errors ε1(x) and ε2(x) are bounded by known constants ε1,N and ε2,N. Note
that subscripts “1” and “2” indicate quantities associated with f (x) and g(x).

Assumption 2 [43]. It is assumed that the ideal weights W∗1 and W∗2 are bounded by known values, so that

‖W∗‖i,F ≤Wi,M, i = 1, 2. (17)

Let the neural network functional estimations for f (x) and g(x) be given by

f̂ (x̂) = Ŵ1
TΦ1(x̂)

ĝ(x̂) = Ŵ2
TΦ2(x̂)

(18)

where the estimated weights Ŵ1 and Ŵ2 are provided by the tuning algorithms. Then the expression
for the functional estimated errors f̃ (x, x̂) and g̃(x, x̂) defined in Equation (14) are given by



Sensors 2020, 20, 2213 9 of 19

f̃ (x, x̂) = W∗1
TΦ1(x) + ε1(x) − Ŵ1

TΦ1(x̂)
g̃(x, x̂) = W∗2

TΦ2(x) + ε2(x) − Ŵ2
TΦ2(x̂)

(19)

The neural network output errors of the hidden layer are defined as

Φ̃i(x, x̂) = Φi(x) −Φi(x̂), i = 1, 2. (20)

Define the weights’ estimated errors as

W̃i = W∗i − Ŵi, i = 1, 2. (21)

Adding and subtracting W∗ T
i Φi(x̂), i = 1, 2, from Equation (19) yields

f̃ (x, x̂) = W̃1
TΦ1(x̂) + W∗1

TΦ̃1(x, x̂) + ε1(x)
g̃(x, x̂) = W̃2

TΦ2(x̂) + W∗2
TΦ̃2(x, x̂) + ε2(x)

(22)

Defining the disturbance term wi(t) as

wi(t) = W∗i
TΦ̃i(x, x̂), i = 1, 2 (23)

and wi(t) are bounded according to

‖wi(t)‖ ≤ βi, i = 1, 2,

with β1β2 > 0.
Then the proposed observer Equation (12) becomes

.
x̂ = Ax̂ + b

(
ŴT

1 Φ1(x̂) + ŴT
2 Φ2(x̂)u− v1 − v2

)
+ Γ

(
y−CTx̂

)
ŷ = CTx̂

(24)

where v1 and v2 are robust terms. Then the observation error dynamics become

.
x̃ =

(
A− ΓCT

)̃
x + b

(
W̃1

TΦ1(x̂) + w1 + ε1 + v1+
(
W̃2

TΦ2(x̂) + w2 + ε2
)
u + d + v2

)
ỹ = CTx̃

(25)

The neural network observer produces a generalized RBF neural network system. Since an RBF
neural network is composed of an arbitrarily linear transfer function and a nonlinear mapping operator,
the nonlinear plant predefined in Equation (11) can be represented in terms of an RBF neural network.

The output estimated error ỹ is given by

ỹ(s) = H(s)
(
W̃1

TΦ1(x̂) + w1 + ε1 + v1+
(
W̃2

TΦ2(x̂) + w2 + ε2
)
u + d + v2

)
, (26)

where H(s) is a known proper transfer function with stable poles, and is realized by
(
A−KCT, b, C

)
. To

make the system Equation (26) satisfy the strictly positive real (SPR) condition, we choose a polynomial
L(s) so that

ỹ(s) = H(s)L(s)
(
W̃1

TΦ1(x̂) + W̃2
TΦ2(x̂)u + w1+ w2u + δ1 + ε1 + δ2 + ε2u + v1 + v2 + d

)
, (27)

where H(s)L(s) is SPR. The “over bar” indicates the signal filtered by L−1(s) and the terms δ1(t) and
δ2(t) are defined as
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δ1(t) = L−1(s)
[
W̃

T
1 Φ1(x̂)

]
− W̃

T
1 L−1(s)[Φ1(x̂)]

δ2(t) = L−1(s)
[
W̃

T
2 Φ2(x̂)u

]
− W̃

T
2 L−1(s)[Φ2(x̂)]u

(28)

with ‖δi‖ ≤ ci‖W̃‖F, i = 1, 2.
Then the state-space realization of Equation (27) can be expressed as

.
z̃ = Acz̃ + bc

(
W̃

T
1 Φ1(x̂) + W̃

T
2 Φ2(x̂)u + w1+ w2u + δ1 + ε1 + δ2 + ε2u + v1 + v2 + d

)
ỹ = CT

c z̃
(29)

where Ac ∈ Rn×n, bc ∈ Rn, Cc ∈ Rn is a minimal state representation of H(s)L(s) = CT
c (sI−Ac)

−1bc,
with Cc = [1, 0, . . . , 0]T.

Lemma 1 [43]. If a strictly proper rational function H(s) = CT(sI−A)−1b, with A being a Hurwitz matrix, is
SPR then there exists a positive-definite symmetric matrix P such that:

ATP + PA = −Q, Pb = C, (30)

with Q being a positive-definite symmetric matrix.

Lemma 2 [43]. Consider the linear time-invariant system in state-space representation:

.
x(t) = Ax(t) + Bu(t), x(0) = x0, (31)

where x(t) ∈ Rn and u(t) ∈ Rm, and the matrices satisfy A ∈ Rn×n and B ∈ Rn×m. Then, following [43], every
solution x(t) of Equation (31) is such that

‖x(t)‖ ≤ k1 + k2‖u‖α2 , ∀t ≥ 0, (32)

where k1 decays exponentially to zero with x0 and k2 as positive constants that depend on the eigenvalues of A.
Let the robust terms be

vi(t) = −Di
ỹ∣∣∣̃y∣∣∣ , i = 1, 2, (33)

where D1 ≥ β1σM, D2 ≥ β2σMud, σM = σmax
[
L−1(s)

]
, and σmax[·] is the maximum singular value. Design the

neural network weights adaptive law as

.
Ŵ1 = F1Φ1(x̂)̃y− κ1F1

∣∣∣̃y∣∣∣Ŵ1.
Ŵ2 = F2Φ2(x̂)̃yu− κ2F2

∣∣∣̃y∣∣∣Ŵ2

(34)

where Fi = FT
i > 0, κi > 0, i = 1, 2.

Theorem 1. Assuming that the control input u(t) is bounded, that is
∣∣∣u(t)∣∣∣ ≤ ud. Consider the nonlinear

system Equation (11) and the present adaptive RBF neural network observer system Equation (24), Equation
(22) and Equation (34), then the state estimated error x̃(t) and the neural network weight estimated errors W̃1(t)
and W̃2(t) are UUB. See the Appendix B for the proof.

Therefore, the unknown nonlinear function χ(x(t), u(t), t) can be approximated as:

χ̂(x(t), u(t), t) =
(
ŴT

1 Φ1(x̂) + ŴT
2 Φ2(x̂)u− v1 − v2 + Γ3

(
y−CTx̂

))
. (35)
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Based on the approximated nonlinear function, then the proposed predictor Equation (8) can be
rewritten in the following forms:

.
_
x = A

_
x + b

(
ŴT

1 Φ1(x̂) + ŴT
2 Φ2(x̂)u− v1 − v2 + Γ3

(
y−CTx̂

))
+ K

(
−
y−CT_x (t− τd(t))

)
−
_
y = CT_x (t− τd(t))

(36)

4. Simulation

In this section, simulations of two UCAV models with significantly different parameters are taken
to verify the effectiveness and universality of the proposed predictor. The main parameters of two
UCAVs are listed in Table 1.

Table 1. The main parameters of two UCAVs.

UCAVs m(kg) Iyy(kg·m2)
−

S(m2)
−
c(m) H0(m) V0(m/s)

UCAV-A 260 1305 0.124 4.5 12000 246
UCAV-B 480 1680 0.279 6.9 8000 307.5

The actuators of the two UCAVs are chosen as the same nonlinear model: the backlash is
0.2/57.3 rad and the dead zone is ±0.15/57.3 rad. According to the different dynamic characteristics
of the two UCAVs, the appropriate control gains are selected to ensure that the UCAVs’ control
augmentation systems have good response characteristics. The response characteristics of two UCAVs
with control augmentation systems can be found in Figure 3. We can see that both UCAVs can track
the longitudinal acceleration command of 5 m/s2 stably, but their response characteristics are very
different. For UCAV-A, because its flight condition is high altitude and low speed, combined with
its dynamic characteristics, the rise time of step response is about 0.9 s. UCAV-B is in the condition
of low altitude and high speed, so the control augmentation system has fast response characteristics,
about 0.5 s. However, because of its high flight dynamic pressure, UCAV-B is more sensitive to the
nonlinearity of the actuator, and the chatter is more obvious in the stable state.
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Figure 3. The response characteristics of two UCAVs with control augmentation systems.

In order to identify the nonlinear models of two UCAVs with control augmentation systems, the RBF

neural network adopts the structure of 3-7-1, the input vector has estimated value
[

x̂1 x̂2 x̂3
]T

, the
initial values of the weights of RBF are set to zero, and the parameters of the Gaussian function are chosen
as: the centers are η1 = 10000

3

[
−3 −2 −1 0 1 2 3

]
, η2 = 50

3

[
−3 −2 −1 0 1 2 3

]
,

η3 = 3
3

[
−3 −2 −1 0 1 2 3

]
, and the width is σ j = 15, j = 1, . . . , 7. We select the linear filter

L−1(s) = 1/(s + 0.5), the observer parameters Γ1 = 40, Γ2 = 40, Γ3 = 50, the adaptive parameters
F1 = diag[15000], F2 = diag[15000], κ1 = κ2 = 0.01 and D = 0.5, and the predictor parameters K1 = 2,
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K2 = 1.5, K3 = 1.5. From the view of engineering, the maximum time delay of the WSN in this piloted
mode is about 0.6 s [7], then the time-varying delay τd(t) is chosen randomly in the range [0s, 0.6s],
which is shown in Figure 4.Sensors 2020, 20, x FOR PEER REVIEW 12 of 19 
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Figure 4. Time-varying delay.

Simulation initial states are set as x(0) =
[

8000 0 0
]T

, x̂(0) =
[

8001 0.5 0.1
]T

and
_
x (0) =

[
8001 0.5 0.1

]T
, the remotely piloted command is set as u(t) = 3 sin(0.25t) + 3 sin(0.01t),

and external disturbance is d(t) = 0.1 cos(0.7t). The simulation results of UCAV-A and UCAV-B are
given in Figures 5–7 and Figures 8–10, respectively.

From Figures 5 and 8, we can see that although the models of the two UCAVs are quite different,
the estimated values can converge to their measured values well with the adaptive RBF neural network
observer, and the estimated errors can quickly converge to zero. From Figures 5a and 8a, we can also see
that the estimated values of longitudinal acceleration both have the same chatter to the measurement
values, and the chatter amplitude of UCAV-B is larger than that of UCAV-A, which is consistent with
the analysis result of Figure 3, indicating that RBF has good approximation performance. Figures 7
and 10 show the estimated values of the nonlinear unmodeled dynamics f̂ (x̂) and ĝ(x̂) of two UCAVs;
we can see that the estimated values are all smooth and bounded.
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Figure 5. Estimated value x̂ and estimated error of UCAV-A: (a) longitudinal acceleration (m/s2); (b)
longitudinal velocity (m/s); (c) altitude (m).
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Figure 6. Predicted results
_
x and predicted error of UCAV-A: (a) longitudinal acceleration (m/s2); (b)

longitudinal velocity (m/s); (c) altitude.
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Figure 7. Nonlinear model approximate value of UCAV-A. (a) f̂ (x̂); (b) ĝ(x̂).

The predicted states and predicted errors of UCAV-A are shown in Figure 6. We can see that the
predicted values can quickly track the actual values after simulation time 3 s. From the predicted errors
and the delay errors compared in Figure 6, we can see that the longitudinal acceleration, longitudinal
velocity and altitude delay errors without prediction are 0.4 m/s2, 1.8 m/s and 16 m, respectively, and
the predictive method makes errors converge to zero. From Figure 9, we can see that the proposed
method has the same prediction performance for different UCAVs. In addition, although unmodeled
nonlinear dynamics, time-varying delay and external disturbance exist in the simulation, the proposed
predictor maintains desirable predictive performance of the actual states.
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Figure 8. Estimated value x̂ and estimated error of UCAV-B: (a) longitudinal acceleration (m/s2); (b)
longitudinal velocity (m/s); (c) altitude (m).
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x and predicted error of UCAV-B: (a) longitudinal acceleration (m/s2); (b)
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Figure 10. Nonlinear model approximate value of UCAV-B: (a) f̂ (x̂); (b) ĝ(x̂).

5. Conclusions

This study investigates an adaptive neural network observer-based universal state predictive
method for remotely piloted UCAVs, with control augmentation systems in the WSN. The main
contributions consist of the following three aspects:

(1) Building a novel universal dynamics model for remotely piloted UCAVs with a control
augmentation system. The dynamic process from a pilot longitudinal acceleration command to
the UCAV response is modeled as a nonlinear uncertain function, and the longitudinal velocity
and altitude are taken as states, which are the first and second integrals of the longitudinal
acceleration respectively. This generalized model is suitable for different UCAVs, and does not
need to know the model of the UCAV in advance.

(2) An adaptive neural network observer based on Lyapunov is proposed to estimate the nonlinear
uncertain model online, and a time-varying state predictor is designed based on the identified
nonlinear dynamics model to predict the time delay states. The system stability conditions of the
closed-loop system are proven using Lyapunov. The effectiveness and universality is verified
by simulation.

(3) The proposed method is widely suited to the application of a remotely piloted vehicle with
a control augmentation system in the WSN. Therefore, this method can efficiently resolve the
problem of state prediction for the remotely piloted system with time delay.
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Appendix A

The following symbols and abbreviations are used in this manuscript:

ay Longitudinal acceleration
c Reference length

CL(α, δe, Ma) Lift coefficient
CMyy (α, δe, Ma) Pitch moment coefficient

g Acceleration owing to gravity
H Altitude
Iyy Moment of inertia
Ma Mach
m Vehicle mass
q Pitch rate
S Reference area
V Velocity
Vy Longitudinal velocity
α Angle of attack
δe Elevator deflection
ϑ Pitch angle
ρ Air density
τd Time-varying total time delay
τdown Downlink time delay
τup Uplink time delay

Radial-basis-function RBF
Strictly positive real SPR

Unmanned aerial vehicle UAV
Unmanned combat aerial vehicle UCAV
Uniformly ultimately bounded UUB

Wireless sensor network WSN

Appendix B

Proof. Defining the following Lyapunov function

V =
1
2

z̃TP̃z +
1
2

tr
(
W̃

T
1 F−1

1 W̃1

)
+

1
2

tr
(
W̃

T
2 F−1

2 W̃2

)
, (A1)

where P = PT > 0. Since H(s)L(s) is SPR, there exists P = PT > 0 such that

AT
c P + PAc = −Q, Pbc = Cc (A2)

for Q = QT > 0. Using Equation (A2), the time derivative
.

V of V becomes

.
V = 1

2 z̃T
(
AT

c P + PAc
)̃
z + ỹ

(
W̃

T
1 Φ1(x̂) + W̃

T
2 Φ2(x̂)u + w1 + w2u + δ1 + ε1 + δ2 + ε2u + d + v1 +v2)+

tr
(
W̃

T
1 F−1

1

.

W̃1

)
+ tr

(
W̃

T
2 F−1

2

.

W̃2

)
(A3)

Evaluating Equation (A3) along the trajectories Equation (33) and Equation (34) gives

.
V ≤ 1

2λmin(Q)‖̃z‖2 +
∣∣∣̃y∣∣∣(c1‖W̃1‖F + c2‖W̃2‖F + ε1 + ε2u + d

)
+ κ1F1

∣∣∣̃y∣∣∣tr(W̃T
1

(
W∗1 − W̃1

))
+

κ2F2
∣∣∣̃y∣∣∣tr(W̃T

2

(
W∗2 − W̃2

)) (A4)
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Since
− λmin(Q)‖̃z‖2 ≤ −λmin(Q)‖̃y‖2, tr

(
W̃

T(
W∗ − W̃

))
≤WM‖W̃‖F − ‖W̃‖

2
F

we have

.
V ≤ −

∣∣∣̃y∣∣∣( 1
2λmin(Q)

∣∣∣̃y∣∣∣− σM(bd + ε1,N + ε1,Nud)
)
−

∣∣∣̃y∣∣∣(γ1

(
α1‖W̃1‖F − ‖W̃1‖

2
F

)
− γ2

(
α2‖W̃2‖F − ‖W̃2‖

2
F

))
, (A5)

with γi = κiFi and αi = Wi,M + ci/γi, i = 1, 2. Squaring the terms ‖W̃1‖F and ‖W̃2‖F, we obtain the
following conditions for

.
V of V to be negative:

∣∣∣ỹ∣∣∣ ≥ max

4σM(bd + ε1,N) + γ1α2
1

λmin(Q)
,

4σMε2,Nud + γ2α2
2

λmin(Q)

, (A6)

‖W̃1‖F ≥
1
2α1 +

(
σM(bd+ε1,N)

γ1
+

α2
1

4

)1/2

‖W̃2‖F ≥
1
2α2 +

(
σMε2,Nud

γ2
+

α2
2

4

)1/2 (A7)

According to a standard Lyapunov theorem, this demonstrates the UUB of ‖̃z‖, ‖W̃1‖F and ‖W̃2‖F.
In order to show the boundedness of the state estimated error x̃(t), now analyze the convergence
of x̃(t).

step 1: solve x̃(t)
From Equation (24), we can obtain the estimated error as

.
x̃(t) =

(
A− ΓCT

)̃
x + bũ, (A8)

where ũ = W̃
T
1 ĥ1 + w1 + ε1 +

(
W̃

T
2 ĥ2 + w2 + ε2

)
u + d + v1 + v2.

When ũ is not considered, the solution of
.
x̃ =

(
A− ΓCT

)̃
x is given by

x̃(t) = x̃(0)e
∫ t

0 (A−ΓCT)dt. (A9)

Furthermore, the trajectory x̃(t) of Equation (A8) can be expressed as

x̃(t) = x̃(0)e
∫ t

0 (A−ΓCT)dt + e
∫ t

0 (A−ΓCT)dt
∫ t

0
bũ(τ)e−

∫ τ
0 (A−ΓCT)dτdτ. (A10)

Let Ξ(t, 0) = e
∫ t

0 (A−ΓCT)dt, Ξ(t, τ) = e
∫ t

0 (A−ΓCT)dt−
∫ τ

0 (A−ΓCT)dτ, then the above Equation (A10) can
be rewritten as

.
x̃ = Ξ(t, 0)̃x(0) +

∫ t

0
Ξ(t, τ)bũ(τ)dτ (A11)

since
e
∫ t

0 (A−ΓCT)dt−
∫ τ

0 (A−ΓCT)dτ = e(A−ΓCT) = eA(t−τ)
× e−ΓCT(t−τ) = m0e−α(t−τ), (A12)

where m0 = eA(t−τ), α = ΓCT.
Then, Ξ(t, τ) = m0e−α(t−τ). m0e−α(t−τ) is the upper bound of Ξ(t, τ), and m0 and α are

positive constants.
step 2: convergence of x̃(t)
Lemma 2 and Equation (A8) yield

‖̃x(t)‖ ≤ k1 + k2‖ũ‖
α
2 , ∀t ≥ 0, (A13)
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where
‖ũ‖α2 = ‖W̃

T
1 Φ1(x̂) + w1 + ε1 +

(
W̃

T
2 Φ2(x̂) + w2 + ε2

)
u + d + v1 + v2‖

α
2 .

Defining c = w1 + ε1 + (w2 + ε2)u + d + v1 + v2, then

‖ũ‖α2 = ‖W̃
T
1 Φ1(x̂) + W̃

T
2 Φ2(x̂)u + c‖

α

2 ≤ ‖W̃
T
1 Φ1(x̂)‖

α

2 + ‖W̃
T
2 Φ2(x̂)u‖

α

2 + c′4, (A14)

where ‖c‖α2 ≤ c′4. Since ‖Ax‖2 ≤ ‖A‖F‖x‖2 and ‖x‖α2 =

√∫ t
0 e−α(t−τ)xT(τ)x(τ)dτ, then

‖W̃
T
1 Φ1(x̂)‖

α

2 ≤ ‖W̃
T
1 ‖
α

F‖Φ1(x̂)‖
α
2 = ‖W̃

T
1 ‖
α

F‖Φ1(x̂)‖
1
√
α

√

1− e−αt ≤ ‖W̃
T
1 ‖
α

F
1
√
α

c′5. (A15)

Similarly,

‖W̃
T
2 Φ2(x̂)u‖

α

2 ≤ ‖W̃
T
2 ‖
α

F
1
√
α

c′6, (A16)

where c′5 = ‖Φ1(x̂)‖
√

1− e−αt, c′6 = ‖Φ2(x̂)‖
√

1− e−αtud. Then

‖ũ‖α2 ≤ ‖W̃
T
1 ‖
α

F
1
√
α

c′5 + ‖W̃
T
2 ‖
α

F
1
√
α

c′6 + c′4. (A17)

Substituting Equation (A17) into Equation (A13), we get

‖̃x(t)‖ ≤ k1 + k2

(
‖W̃

T
1 ‖
α

F
1
√
α

c′5 + ‖W̃
T
2 ‖
α

F
1
√
α

c′6 + c′4

)
= c3 +

(
c4 + c5‖W̃1‖

α
F + c6‖W̃2‖

α
F

) 1
√
α

, (A18)

where c3 = k1, c4 = k2c′4, c5 = k2c′5, c6 = k2c′6, c4, c5 and c6 are positive constants. From Lemma 2, we
can obtain that c3 is decaying exponentially to zero owing to the initial condition. The trajectory ‖̃x(t)‖
is bounded by the weight estimated errors ‖W̃1‖F and ‖W̃2‖F, which are shown to be bounded. �
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