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ABSTRACT Quality control (QC) rules (Westgard rules) are applied to viral load test-
ing to identify runs that should be reviewed or repeated, but this requires balancing
the patient safety benefits of error detection with the cost and inefficiency of false
rejection. In this study, we identified the total allowable errors (TEa) from the litera-
ture and utilized a commercially available software program (Unity Real Time;
Bio-Rad Laboratories) to manage QC data, assess assay performance, and provide QC
decision support for both FDA-approved/cleared (Abbott cytomegalovirus [CMV] and
HIV viral load) as well as laboratory-developed (Epstein-Barr virus [EBV] viral load)
assays. Unity Real Time was used to calculate means, standard deviations (SDs), and
coefficient of variation (CV; in percent) of negative, low-positive, and high-positive
control data from 73 to 83 days of testing. Sigma values were calculated to measure
the test performance relative to a TEa of 0.5 log10. The sigma value of 5.06 for EBV
predicts ;230 erroneous results per million individual patient tests (0.02% fre-
quency), whereas sigma values of .6 for CMV (11.32) and HIV (7.66) indicate ,4 er-
roneous results per million individual patient tests. The Unity Real Time QC Design
module utilized these sigma values to recommend QC rules and provided objective
evidence for loosening the laboratory’s existing QC rules for run acceptability, poten-
tially reducing false rejection rates by 10-fold for the assay with the most variation
(EBV viral load). This study provides a framework for laboratories, with Unity Real
Time as a tool, to evaluate assay performance relative to clinical decision points and es-
tablish optimal rules for routine monitoring of molecular viral load assay performance.
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Ensuring quality in molecular diagnostic assays employs a multipronged approach
that can include validation and verification of new tests, regular monitoring of

assay quality control reagents, routine utilization of independent controls to assess
ongoing assay performance, participation in proficiency testing programs, and periodic
competency assessments. While these activities assist in establishing and maintaining
analytical performance, several challenges exist when attempting to ensure high-qual-
ity clinical performance for many molecular assays used for infectious disease diagnosis
and monitoring. Although numerous WHO international standards exist for targets of
molecular viral load assays (https://www.nibsc.org/), relatively few commercial assays
utilize control reagents that are traceable to these standards, and lack of assay com-
mutability exists, such that two assays with controls traceable to an international
standard may give different results (1, 2). Furthermore, commutability can be influ-
enced by differences in design and performance of in-kit controls from different com-
mercial assay manufacturers despite their traceability to international standards.
Finally, lack of commutability for viral load assays such as for BK virus, cytomegalovirus
(CMV), and Epstein-Barr virus (EBV) hampers the development of objective clinical
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cutoffs for making management decisions and limits the ability of laboratorians to es-
tablish total allowable error (TEa), effectively the “tolerance limits,” for these assays.
Consequently, laboratories are continually forced to reestablish “standards” that are
applicable only to their laboratory and patient population.

Sigma metrics—quality management techniques traditionally used to identify and
reduce defects in processes—are commonly used in clinical chemistry laboratories to
monitor quantitative assays. These statistical tools have also recently been applied to
viral load testing to attempt to define the QC parameters for assessing test perform-
ance as described by Westgard and Lucic (3). These authors described their approach
for identifying defects, which for these purposes are viral load results that deviate from
established tolerance limits. The number of defects observed over time can be
reported on a scale of defects per million opportunities (DPMO), with processes func-
tioning at “world class” levels of performance generating 3.4 or fewer DPMO (3–5). In
diagnostics laboratories, it is not practical to count defects, so the sigma metric is cal-
culated as (TEa [%] 2 bias [%])/CV [%], where TEa is the total allowable error (a clini-
cally relevant change) and the CV (coefficient of variation) and bias are determined by
repeatedly testing QC material or by comparing internal data to peer group or profi-
ciency testing surveys (6).

Robust analytical performance of viral load assays is required to ensure the ability
to detect clinically relevant changes in values—i.e., to ascertain that a significant
change in a patient’s viral load over time is due to clinical factors (e.g., disease progres-
sion, antiviral resistance, or response to therapy) and not analytical factors caused by
excessive assay variability (due to issues such as pipetting errors, loss of calibration, or
instrument malfunction). One part of assay quality assurance—routine monitoring of
in-kit and independent assay controls for acceptable performance—works to ensure
that any excessive assay variability is identified and prevented. Although this process is
required by regulatory agencies, the criteria for determining acceptability can vary and
are often left to the laboratory to establish. Although sigma metrics provide an objec-
tive framework for assessing assay performance, there are relatively few scenarios
where clinically relevant changes in viral load have been established in practice guide-
lines (e.g., HIV, hepatitis B virus [HBV], and hepatitis C virus [HCV]) (7–11), https://www
.hcvguidelines.org/). In addition, capturing and managing molecular QC data have his-
torically been manual and labor-intensive processes, relying on paper documentation or
in-house-developed spreadsheets/databases. In the present study, we assessed how
Unity Real Time (Bio-Rad Laboratories, Hercules, CA), a commercially available, modular
QC data management software program, can be utilized to manage QC data, assess
assay performance, and provide QC decision support through its QC Design module for
both well-defined FDA-approved/cleared assays and laboratory-developed tests.

MATERIALS ANDMETHODS
Data collection and clinical setting. The Clinical Microbiology Laboratory at Michigan Medicine is a

high-complexity, academic laboratory performing viral load testing on the Abbott m2000 system. Assays
for HIV and CMV viral load are FDA cleared or approved (Abbott Molecular, Des Plaines, IL), whereas the
EBV viral load assay is a laboratory-developed test (analyte-specific reagents; Abbott Molecular).
Samples are batched, and a negative, low-positive, and high-positive control are included with each run.
Assay controls for CMV and HIV are in-kit controls provided by Abbott; assay controls for the EBV labora-
tory-developed test (LDT) were obtained from Exact Diagnostics (Ft. Worth, TX) and were validated by
Michigan Medicine Clinical Microbiology Laboratory prior to assay implementation. Recalibration of
assays was performed as appropriate in accordance with College of American Pathologists (CAP) check-
list requirements (12).

Management of assay control data. Unity Real Time was implemented in the first quarter of 2019
in the Michigan Medicine Clinical Microbiology Laboratory as a tool to standardize the entering, tracking
and management of QC data for CMV, EBV, and HIV viral load assays. This software allows user input of
results for each control upon completion of testing for a run and determines acceptability based on
user-defined criteria.

In routine clinical practice, control data were entered into Unity Real Time for each run and evaluated
using 2-2S (2 consecutive values of the same control, or both controls simultaneously, .2 standard devia-
tions [SDs] outside the mean) and 1-3S (1 control value .3 SDs outside the mean) QC rules based on an
initial mean value of the controls and a fixed standard deviation based on validation data and historical
performance. Clinical runs that triggered either of these rules were considered “failed,” and the entire run
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was repeated. Each viral load assay was assigned a unique identifier in Unity Real Time that specified the
extraction (m2000 sp) and amplification (m2000 rt) instrument used, and only a single extraction-amplifi-
cation instrument combination was used for each assay. Under each unique identifier, a separate QC data
table was used for each lot of controls. Actions and comments were recorded by the bench technologist,
including the dates of changes of reagent lots, recalibration of the instruments, and any instrument main-
tenance (repair or preventative) that was performed. Review of QC data was performed in accordance
with the College of American Pathologists inspection checklist (12).

Data analysis. For this study, CMV, EBV, and HIV control values were retrospectively evaluated to
compare viral load assays with various levels of regulatory approval, analytical refinement, and guide-
lines on quality assurance. To assess the performance of various viral load assays relative to the TEa (if
known), data from the first lot of controls recorded in Unity Real Time was extracted. The data comprised
the following: for HIV, 73 days of control values, from 15 December 2018 to 20 July 2019; for CMV,
77 days of control values, from 7 January 2019 to 4 April 2019; and for EBV, 83 days of control values,
from 20 January 2019 to 25 April 2019. For the purposes of this analysis and to evaluate the intrinsic pre-
cision of the assays, initial means and fixed SDs were not applied; rather, Unity Real Time was used to
retrospectively analyze the data to calculate means, SDs, CV, and 95% and 99% confidence intervals.
However, since Unity Real Time calculates sigma values based only on accepted control values, a single
51SD value from one rejected run was considered an outlier and removed from the HIV data set prior
to analysis. Sigma metrics were calculated using the following formula: (TEa [%] 2 bias [%])/CV [%]. Bias
was set to 0 in the calculation of sigma values, because we were interested in within-laboratory error
and because single operational pathways (dedicated m2000sp and m2000rt instruments) were used for
each viral load assay.

RESULTS AND DISCUSSION

In this report, we show approaches taken to establish criteria for run acceptability,
provide performance data, and demonstrate robustness of both in vitro diagnostic
(IVD) and laboratory-developed viral load assays. Furthermore, we describe attributes
of a commercially available software program (Unity Real Time) that simplifies and
standardizes molecular QC data management while offering molecular laboratories a
comprehensive tool for ensuring robust analytical performance.

To evaluate the precision and accuracy of each assay, level 1 (negative), level 2 (low-
positive), and level 3 (high-positive) control values were entered in Unity Real Time for
77, 83, and 73 days of testing for CMV, EBV, and HIV viral load assays, respectively. The
QC rules (1-3S and 2-2S) that were used in the clinical laboratory during the time frame
of the data analysis were selected to be applied by Unity Real Time to determine accept-
ability of values obtained from each run. Figure 1 shows Levey-Jennings charts gener-
ated by Unity Real Time with the values centered at each control’s cumulative means
from the total set of data, which allowed comparison of control performance over time.
Controls that failed these rules, as applied to the data sets using means and ranges
determined by Unity Real Time, identified runs that would have been rejected and
repeated (Fig. 1, red symbols). While control values for HIV were relatively stable around
the means, CMV level 2 and level 3 controls exhibited a downward trend early in the
timeline and a slight upward trend late in the timeline. In contrast, the EBV assay exhib-
ited a slight upward trend early and a slight downward trend late in the timeline of its
data set. It is important to note that the time frames for the trends observed with the
CMV and EBV controls did not overlap and were not of a magnitude that would have
resulted in rejection of a run. These trends could have been the result of analytical
changes in the reagents or control materials between lots or potential degradation over
time. However, assay recalibration did not have an impact on these trends or rule viola-
tions in this data set (data not shown). While Unity Real Time is useful in tracking these
trends, these scenarios provide some justification for the routine use of independent
controls (complementing the in-kit or assay controls) with each run across lots to assist
in troubleshooting sources of variation (6).

Next, the performance of each assay was assessed in the context of clinical guidelines
for monitoring of viral loads and treatment decisions. Based on these guidelines, a TEa
of 0.5 log10 would ensure detection of clinically significant differences for HIV and CMV
at viral load levels used to make decisions about therapy (7–11). Although the TEa
required for effective monitoring of EBV viral load is less clear, the same value of 0.5
log10 was applied so that each assay could be compared directly. For these additional
analyses, we chose to focus on the level 2 (low-positive) control, as the clinical decision
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FIG 1 Trends of in-kit control values for CMV, EBV, and HIV viral load assays. Levey-Jennings charts of
quality control data for level 1 (negative, blue circles), level 2 (low-positive, green squares), and level
3 (high-positive, purple diamonds) controls are centered on each control’s cumulative means 6 SDs
and plotted over time for CMV, EBV, and HIV. Horizontal lines indicate ranges for SDs. Individual
control values for runs that were rejected based on laboratory criteria are indicated in red. The red
value in the EBV graph was rejected due to a positive reaction in the negative control. The two red
values in the HIV graph were rejected due to violations of the 1-3S rule.
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points for each of the viral load assays included in this study were closer to those control
values. Figure 2 shows Levey-Jennings charts centered on the cumulative means of the
level 2 controls for each assay using TEa for the range. As indicated, each assay demon-
strated a high level of precision with narrow SD ranges. Even results that failed 1-3S or

FIG 2 Performance of level 2 (low-positive) controls compared to TEa for CMV, EBV, and HIV viral load assays. Levey-Jennings charts have cumulative mean
and standard deviations for CMV, EBV, and HIV level 2 controls on the left y axis of each panel. Horizontal lines indicate ranges for SDs. TEa for each control
was set at 0.5 log10, and ranges are on the right y axis of each panel. Individual control values for runs that were rejected based on laboratory criteria are
indicated in red. The first red value in the HIV graph was rejected due to violation of the 2-2S rule and the second one due to violation of the 1-3S rule.
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2-2S QC rules were well within the TEa and therefore clinically acceptable. Taken to-
gether, the results of these analyses indicate that the originally selected QC rules (2-2S
and 1-3S) were overly sensitive and resulted in excess false rejections (i.e., the probability
of false rejection [Pfr] was too high). It is relevant to also note that the cumulative means
of each control compared well to clinical decision points that are available through prac-
tice guidelines (7–11). For HIV, it is important to distinguish 2.3 log10 (200) copies/ml
from ,1.6 log10 (40) copies/ml, a 0.7 log10 difference, and the mean value for the HIV
level 2 control was 3.06 log10 copies/ml. For CMV, guidelines are appropriately informed
by the expected precision of the assay, such that a 0.5-log10 change is considered clini-
cally significant, except below 3 log10 IU/ml, where a 0.7-log difference is considered sig-
nificant. In our institution, 3.48 log10 IU/ml is the threshold used to start antiviral therapy
and is near the mean of the level 2 control (3.52 log10 IU/ml).

To determine the performance of each assay relative to the TEa, Unity Real Time was
used to calculate summary data from the level 2 QC data. For our purposes, we used 0.5
log10 copies/ml as the TEa for each assay and determined the CV from the cumulative data
for each assay’s level 2 controls (Table 1). The 99% and 95% confidence intervals were also
determined from the calculated means, SDs, and CVs. These data show that the log10
changes in viral load for each assay that could be detected with 95 and 99% confidence
were well below the 0.5 log10 clinical requirement. This further indicated that the precision
of each assay was sufficient to reliably detect a clinically significant difference in viral load.

Although traditionally applied to non-health care settings, such as the manufactur-
ing industry (13), application of Six Sigma principles is also becoming a best practice
for health care and laboratory quality management improvement (3, 14). In a labora-
tory setting, calculation of the sigma metric allows quantification of the amount of var-
iation in a process (in this case, a viral load assay) by determining the number of SDs
between the test’s true value and the defined tolerance limit (3). Using Unity Real
Time, sigma values were determined to be 11.32 for CMV, 7.66 for HIV, and 5.06 for
EBV relative to a TEa of 0.5 log10 (Table 1).

Clinical laboratory standards dictate that processes that achieve .5 sigma are high-
quality, high-performing tests (15), a value which each assay demonstrated. While the
CMV (11.32 sigma) and HIV (7.66 sigma) assays performed well above the Six Sigma stand-
ard of “world class” performance, the EBV assay (5.06 sigma) still performed at a level that
is considered “excellent” (3). Indeed, at a level of 5 sigma, one expects to see 230 defects
(or false results) per million occurrences (or tests performed), or 1 in every 4,348 individual
patient tests. Based on the Michigan Medicine laboratory test volume for EBV viral loads,
this translates to an erroneous result in this assay approximately only once every 1.25 years
if no QC rules were in place. At a level of 7.66 sigma, one expects 0.36 defect per billion
occurrences (1 in every 2.78 billion individual patient tests); at a level of 11.32 sigma, one
expects,0.01 defect per trillion occurrences (1 in every 1014 individual patient tests).

Finally, we used Unity Real Time to recommend QC rules based on the calculated
sigma values. Prior to the implementation of Unity Real Time, Michigan Medicine Clinical
Microbiology Laboratory routinely applied 1-3S (1 value .3 SDs from the mean) and 2-2S
(2 consecutive values of the same control .2 SDs from the mean) QC rules to determine
acceptability of assay runs. QC Design is a module in Unity Real Time that utilizes the QC

TABLE 1 Sigma statistics for level 2 (low-positive) controls for each viral load assay

Assay

Log10 viral loada

CV (%)a Sigmab

CI change

Calculated mean SD 99%c 95%d

CMV 3.52 0.044 1.26 11.32 0.114 0.087
EBV 3.61 0.099 2.74 5.06 0.255 0.194
HIV 3.06 0.065 2.13 7.66 0.168 0.128
aDetermined cumulatively from the entire data set; other calculations are based on this value.
bUnbiased sigma calculated with a TEa of 0.5 log10.
cLog10 viral load change that can be detected with 99% confidence.
dLog10 viral load change that can be detected with 95% confidence.
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FIG 3 Impact of application of different Westgard rules on error detection and rejection rates for EBV
viral load. The QC Design module in Unity Real Time calculated the probability of error detection and

(Continued on next page)
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data and derived sigma metrics to select the best QC rules to apply to an assay that maxi-
mize detection of errors while minimizing false rejection of small variations that are not
expected to impact patient care. It is important to note, however, that these rules are valid
only when applied to data with a normal distribution. Although each assay was shown to
perform very well (with high sigma values), we focused on the EBV assay as the viral load
assay with the lowest sigma value for its level 2 (low-positive) control to determine the
effect of application of different QC rules on error detection and false rejection rates.
Figure 3 shows the sigma metrics charts generated using the Unity Real Time QC Design
module following application of the 1-3.5S (Fig. 3A), 1-3S (Fig. 3B), and 1-2S (Fig. 3C) QC
rules. Application of the 1-3.5S rule provides a probability of error detection (Ped) of 0.860
(86.0%), with a very low probability of false rejection (Pfr) of 0.001 (0.1%). Although applica-
tion of the 1-3S rule provided a higher Ped of 0.966, it also had a higher Pfr of 0.008 than
1-3.5S. Applying the 1-2S rule when running 3 levels of QC (negative, low-positive, and
high-positive controls) in each run resulted in a 1.00 Ped, but the Pfr was 0.131 (13.1%) for
the level 2 control, which would create a false rejection for more than 1 of each 10 QC
results. As both the 1-3.5S and 1-3S rules have an acceptable analytical quality assurance
(16), the 1-3.5S rule would be the preferred selection due to a lower Pfr, although the differ-
ence is very small. Taken together, the data indicate that utilizing the rules suggested by
Unity QC Design (based on the cumulative data) for EBV would result in an approximately
10-fold reduction in the rejection rates for these assays (Pfr reduction from 0.011 for the
1-3S/2-2S rule originally used in the laboratory to 0.001 for 1-3.5S) (data not shown). When
applied to CMV and HIV (assays with sigma metrics of.7), Unity Real Time QC Design sug-
gested 1-5S rules for both (data not shown). While the use of tighter QC rules can reduce
the frequency of erroneous results, this should be balanced with having rules that are too
stringent and increase the rate of false rejections (Pfr). Similarly, achieving a high sigma
metric demonstrates the safety of relaxing QC rules while still achieving appropriate rates
of error detection (Ped). The implementation of QC rules that are informed by in-house pre-
cision data, TEa, and sigma values could increase efficiency and reduce costs (incurred by
unnecessary repeats or reviews of results) by rejecting only runs with imprecision that
might affect patient care.

There are limitations to the information presented which should be acknowledged:
to evaluate the utility of Unity Real Time in monitoring data and recommending QC
rules, we used data from a single lot of controls and calculated the SD intrinsic to that
data set. Although standard clinical practice is to calculate means and SDs from 20
data points tested on different days (6), to assess the true SD of the system, we would
also recommend assessing the SD across multiple lots of reagents. The SD from each
lot could be used to generate recommended QC rules, and then a decision can be
made based on which rule is consistently recommended. Historical SD data across mul-
tiple lots could also be used to assign a fixed SD for evaluation of daily control values.
In addition, since monitoring of QC data over time serves as a proxy for overall system
performance and error within individual patient samples cannot be measured, it is still
possible to report erroneous patient results that are due to random error of a magni-
tude greater than the TEa. However, the probability of this is low in our assays due to
the robustness of the test system with its established QC rules. Finally, this study
assessed the performance of assays that utilize an external calibrator that is performed
once per lot and applied to all specimens. This should detect changes in extraction
efficiency, heat block performance for PCR cycling, or fluorescence detection. It is
not known whether these results can be extrapolated to a different system where
there is an internal calibrator in each sample and presents opportunities for further
investigation.

FIG 3 Legend (Continued)
probability of false rejection for EBV viral load controls based on the sigma value of the level 2 (low-
positive) control. Individual sigma metrics charts are shown for the 1-3.5S (A), 1-3S (B), and 1-2S (C)
Westgard rules. Ped, probability of error detection; Pfr, probability of false rejection; DSEcrit, critical
increase in systematic error.
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Conclusion. A fundamental aspect of laboratory quality assurance (QA) programs is
to ensure that the tolerance limits for their assays are appropriate so that the changes
observed are clinically relevant and can be accurately and repeatedly detected. Ideally,
there is a consensus on the total allowable error for an assay that supports clinical deci-
sion-making so that the QA program focuses on preventing significant errors. The labo-
ratory can then assess the performance of the assay relative to the TEa and calculate a
sigma metric, predicting how frequently an error will occur without QC. Finally, the labo-
ratory can institute QC rules that balance error detection and false rejection. In this
report, we show that, in our hands, assays to determine CMV, EBV, and HIV viral loads
were able to perform within the 0.5 log10 TEa and operated at a high sigma value, sug-
gesting that less restrictive QC rules could be implemented. The approach described in
this study provides a framework for laboratories to establish similar assessments of assay
and/or independent controls to routinely evaluate molecular viral load assay perform-
ance. Furthermore, we found that Unity Real Time is a robust, modular product that can
support laboratory QC data management activities through its automated calculation
tools and QC Design module and can be used in conjunction with the approaches
described herein to standardize quality assurance activities for molecular assays.
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