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Abstract

Background

Clinically relevant genetic predictors of radiation response for cervical cancer are understud-

ied due to the morbidity of repeat invasive biopsies required to obtain genetic material.

Thus, we aimed to demonstrate the feasibility of a novel noninvasive cervical swab tech-

nique to (1) collect tumor DNA with adequate throughput to (2) perform whole-exome

sequencing (WES) at serial time points over the course of chemoradiation therapy (CRT).

Methods

Cervical cancer tumor samples from patients undergoing chemoradiation were collected at

baseline, at week 1, week 3, and at the completion of CRT (week 5) using a noninvasive

swab-based biopsy technique. Swab samples were analyzed with whole-exome sequencing

(WES) with mutation calling using a custom pipeline optimized for shallow whole-exome

sequencing with low tumor purity (TP). Tumor mutation changes over the course of treat-

ment were profiled.

Results

216 samples were collected and successfully sequenced for 70 patients (94% of total num-

ber of tumor samples collected). A total of 33 patients had a complete set of samples at all

four time points. The mean mapping rate was 98% for all samples, and the mean target cov-

erage was 180. Estimated TP was greater than 5% for all samples. Overall mutation fre-

quency decreased during CRT but mapping rate and mean target coverage remained at

>98% and >180 reads at week 5.
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Conclusion

This study demonstrates the feasibility and application of a noninvasive swab-based tech-

nique for WES analysis which may be applied to investigate dynamic tumor mutational

changes during treatment to identify novel genes which confer radiation resistance.

Introduction

The global burden of cervical cancer is growing despite the development of HPV vaccines

aimed at disease prevention [1]. In 2018, approximately 570,000 new cases of cervical cancer

were diagnosed worldwide, resulting in more than 311,000 deaths [2]. High-risk human papil-

lomaviruses (HPVs) are essential in cervical dysplasia and carcinogenesis and cause most cer-

vical cancers [3]. Multimodality therapy is the standard of care for treating locally advanced

disease and involves daily external beam radiation treatment, brachytherapy, and weekly che-

motherapy [4]. The rate of tumor regression during chemoradiotherapy (CRT) is variable and

is strongly associated with survival [5, 6]; however, predictive markers of radiation treatment

sensitivity and resistance are currently unknown.

Whole-exome sequencing (WES) technology is a powerful tool that allows for comprehen-

sive analysis of the frequency of somatic mutations, overall tumor mutational burden, and sin-

gle nucleotide human exome variants (SNVs), which can lead to the identification of pathways

that may be functionally significant in cancer outcomes [7].

Previous comprehensive studies of cervical cancer genomics have relied on the analysis of

untreated tumors, and none have identified predictors of radiation response [8, 9]. This is

mainly due to the challenges of repeated biopsy sampling over the course of the therapy, which

are logistically challenging to acquire and entail significant patient morbidity. Nevertheless,

cervical tumors are an ideal setting for the serial study of treatment response because tumors

can be readily monitored by physical exam and are accessible for sampling through the course

of chemoradiotherapy. Encouragingly, successful non-invasive swab-based sample acquisition

of DNA has been demonstrated in the screening and diagnosis of precancerous and cancerous

lesions in the oral cavity and detection of HPV-associated cutaneous lesions by PCR [10–13].

In this feasibility study, we hypothesize that swab-based sampling of cervical tumors can

serve as a robust noninvasive method to acquire tumor specimens for WES. Using swab-based

biopsies collected prospectively in 70 patients undergoing CRT for newly diagnosed cervical

cancer, the objectives of this study are to: (1) acquire tumor DNA samples adequate for WES

in the majority of patients and (2) develop a custom pipeline optimized for shallow WES with

low tumor purity (TP) to facilitate mutation calling. Feasibility of this novel non-invasive

approach will be essential for a planned follow up study aiming to link mutational landscape

changes in the context of disease response in an effort to establish biomarker predictors for

treatment response and identify potential drivers of treatment resistance in patients with cervi-

cal cancer undergoing definitive CRT.

Materials and methods

Patient population and treatment characteristics

Patients were enrolled in an IRB-approved (2014–0543) multi-institutional prospective clinical

trial at the University of Texas MD Anderson Cancer Center and the Harris Health System,

Lyndon B. Johnson General Hospital Oncology Clinic from 2014–2019 (Fig 1A, Table 1).
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Inclusion criteria were newly diagnosed cervical cancer per the Federation of Gynecology and

Obstetrics (FIGO) 2009 staging system, clinical stage IB1-IVA cancers, and visible, an exophy-

tic tumor on speculum examination with planned definitive treatment of intact cervical cancer

with external beam radiation therapy, cisplatin, and brachytherapy. Patients with any previous

pelvic radiation therapy were excluded.

Fig 1. Overall study design and CONSORT diagram. (A) Patients with cervical cancer underwent five weeks of

external beam radiation therapy (EBRT) followed by two brachytherapy treatments (B1 and B2), with swab samples

collected at baseline, week 1, week 3, and week 5 of radiation therapy as well as week 12 (after completion of radiation

therapy). (B) Of the 73 patients accrued on protocol, 70 patients with 217 total samples had DNA of adequate quantity

and quality for sequencing. One tumor sample failed sequencing due to low quantity and high degradation and was

not included in the analysis.

https://doi.org/10.1371/journal.pone.0274457.g001
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Patients underwent standard-of-care pretreatment evaluation for disease staging, including

tumor biopsy to confirm the diagnosis; pelvic magnetic resonance imaging (MRI) and posi-

tron emission tomography/computed tomography (PET/CT); and standard laboratory evalua-

tions, including a complete blood cell count, measurement of electrolytes, and evaluation of

renal and liver function. Patients received pelvic radiation therapy to a total dose of 40–45 Gy

delivered in daily fractions of 1.8 to 2 Gy over 4 to 5 weeks. Thereafter, patients received intra-

cavitary brachytherapy with pulsed-dose-rate or high-dose-rate treatments. According to stan-

dard institutional protocol, patients received cisplatin (40 mg/m2 weekly) during external

Table 1. Patient characteristics.

Characteristic No. of patients %

Age at diagnosis

Median 47 years

Range 28–91 years

Race/Ethnicity

African American 5 7%

American Indian/Alaskan Native 2 3%

Asian 2 3%

Hispanic/Latino 31 44%

White/Caucasian 30 43%

Histology

Serous 1 1%

Adenocarcinoma 9 13%

Squamous cell carcinoma 60 86%

2009 FIGO stage

IA1 1 2%

IB1 4 6%

IB2 12 17%

IIA 5 7%

IIB 31 44%

IIIB 12 17%

IVA 5 7%

Tumor grade

I 3 4%

II 24 34%

III 24 34%

Unknown 19 27%

Highest clinically involved nodal level on PET or CT

Para-aortic 4 6%

Common iliac 12 17%

External iliac 23 33%

Internal iliac 6 9%

Node-negative 22 31%

Unknown 3 4%

Max tumor dimension on MRI, cm

Median 5

Range 1.2–11.5

Unknown 2

https://doi.org/10.1371/journal.pone.0274457.t001
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beam radiation therapy. Patients underwent repeat MRI at the completion of external beam

radiation therapy or at the time of brachytherapy, as indicated by the extent of disease.

Sample collection and DNA extraction

Isohelix swabs (product # DSK-50 and XME-50, www.isohelix.com, UKSamples) were

brushed against the viable cervical tumor several times by a clinician from the department of

radiation oncology or gynecologic oncology at either the University of Texas MD Anderson

Cancer Center or Lyndon B. Johnson General Hospital Oncology Clinic. The isohelix swab

has a unique matrix design that yields one to five micrograms of high-quality DNA sufficient

for sequencing applications from a single swab of the tumor surface [14]. Patients underwent

swabbing at baseline, the end of week 1 (after five fractions), at the end of week 3 (after 10–15

fractions), and within a week before the first brachytherapy treatment or at the time of brachy-

therapy (week 5), for a total of four swabs during radiation therapy (Fig 1A). Additionally, 9

patients had swabs collected at the first follow up visit after treatment completion (week 12).

In each swabbing session, attention was taken to obtain samples from the same general tumor

region. Normal buccal samples were collected once at baseline to identify germline mutations

present in individual patients. DNA was extracted from normal buccal and cervical cancer

samples per Isohelix # DSK-50 manufacturer’s instructions.

Whole-exome sequencing and mutational analysis

Illumina WES sequencing was performed on normal buccal control and cervical tumor DNA

swab samples. Captured libraries were sequenced on a HiSeq 4000 series (Illumina Inc., San

Diego, CA, USA) on a TruSeq version 3 Paired-end Flowcell according to manufacturer’s

instructions at a cluster density between 700–1000K clusters/mm2. Sequencing was performed

for 2 × 100 paired-end reads with a 7-nucleotide read for indexes using Cycle Sequencing ver-

sion 3 reagents (Illumina). The average coverage achieved with the Roche Nimblegen probes

was 180 reads (range 50–359) for cervical tumor samples.

Paired-end raw sequence reads in fastq format were aligned to the reference genome

(human Hg19) using Burrows-Wheeler Aligner (BWA) [15] with three mismatches with 2 in

the first 40 seed regions for sequences less than 100 bp or using BWA-MEM with 31 bp seed

length for sequences over 100 bp. The aligned BAM files were subjected to mark duplication,

re-alignment, and re-calibration using Picard and the Genome Analysis Toolkit [16] before

any downstream analyses.

A custom computational pipeline was optimized for mutation calling (Fig 2). Based on the

alignment results (BAM files) above, somatic mutations, including single-nucleotide variants

(SNVs) and small insertions and deletions (INDELs), were obtained through merging variants

from multiple somatic variant callers–MuTect, Pindel, GATK4 Mutect2, and Strelka2 [17–20].

Common population variants reported in dbSNP138, 1000Genomes, ESP6500, and EXAC

with>1% allele frequency were removed. The following mutation-filtering criteria were

applied for calling somatic mutations: (i) sequencing depth� 20 for tumor and�10 for nor-

mal, (ii) tumor variant allele frequency (VAF)� 2%, and normal VAF < 2%, (iii) Evidence

(number of somatic variant callers supported)� 2. Associations between somatic mutations

and sample acquisition timepoint were analyzed and visualized using Maftools [21]. Tumor

purity (TP), that is, the proportion of cancer cells in a tumor sample, was calculated from

SNVs by the Tumor Purity Estimation (TPES) as well as from copy number profiles using

Sequenza [22, 23] (S1 Table).
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Feasibility and statistical analysis

Feasibility was defined as greater than or equal to 85% of swab acquired tumor DNA samples

successfully sequenced (objective 1) and successful processing through the above-described

customized pipeline for inclusion in WES data analysis with at least 5% TP (objective 2). As

this was an exploratory trial and the endpoints were primarily descriptive, no formal power

analysis was performed. When comparing values between two timepoints, p-values were calcu-

lated by two-sided unpaired t-test. For comparison of quantitative changes at multiple time

points, ANOVA testing was used to determine p-values.

Results

Patient and tumor characteristics

Clinicopathologic data are summarized in Table 1. Overall, 48 patients (68%) had advanced

disease (stage IIB or greater), and most had squamous cell carcinoma with tumor grade II or

higher. The median tumor size (based on the short axis diameter on pretreatment MRI) was

5cm (range 1.2–11.5 cm). Forty-five patients had positive pelvic or para-aortic lymph nodes

on PET or CT.

DNA quality and sequencing characteristics of collected samples

Two hundred twenty-nine total tumor samples were collected (Fig 1). For 3 patients, matching

normal (buccal) samples failed either DNA quality or quantity quality check (QC), and thus 12

paired tumor samples were excluded. Two hundred seventeen total tumor samples and 70 nor-

mal germline samples were sequenced. Of these, 161 (74%) had both optimal DNA quality and

quantity QC, 54 (25%) had suboptimal quantity, but adequate quality and 2 (1%) had optimal

quantity but low-quality DNA. 1 sample failed sequencing due to both suboptimal DNA qual-

ity and quantity; thus, 216 total tumor samples (94%) from 70 patients were included in the

analysis (Fig 1B). Median DNA concentration per sample was 12 ng/uL (range 1.5–167 ng/

uL). The mean total reads per sample was 216 million (+/-50), and mean mapping rate was

98.15% (+/-1.84) (Table 2). Total DNA yield was not different by timepoint (p = 0.54), nor

Fig 2. Computational pipeline for whole exome sequencing data. Workflow depicting preprocessing, variant calling and data analysis tools

and parameters implemented to analyze WES data acquired from tumor DNA collected by cervical swab.

https://doi.org/10.1371/journal.pone.0274457.g002
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were total reads (p = 0.35), mapping rate (p = 0.51), or mean target coverage (p = 0.10) (Fig

3A–3D). No significant differences were detected by sequencing batch.

Mutation characteristics for all samples

Sixty-six patients had samples analyzed at baseline, 49 at Week 1, 42 at Week 3, 51 at Week 5,

and 9 at Week 12. 33 patients had samples analyzed at all four time points. Mean number of

substitutions, insertions and deletions over time was 342 (range 50–2,857) at baseline, 394

(range 48–2,281) at Week 1, 232 (range 57–2,223) at Week 3, 170 (range 0–1,843) at Week 5,

and 110 (range 53–300) at Week 12 (Table 2, S1 Table). While total DNA alterations numeri-

cally decreased at Week 1 and Week 3 compared to baseline, this was not statistically signifi-

cant (p = 0.54 and 0.86 respectively). There was a statistically significant decrease in total DNA

alterations at baseline to Week 5 in all patients (p = 0.008) as well as patients with all 4 time-

points through the course of CRT (p = 0.03, Fig 3E and 3F).

Median TP of all samples as calculated by the Sequenza algorithm at baseline was 0.195

(range 0.10–0.99) and 0.190 (range 0.10–0.98) at week 5 (p = 0.07; Table 2, S1 Table). Median

Table 2. Quality characteristics for samples by timepoint.

Baseline Week 1 Week 3 Week 5 Week 12

(N = 66) (N = 49) (N = 42) (N = 51) (N = 9)

DNA concentration (ng/uL)

Mean/SD 39.42 ± 49.73 29.98 ± 46.48 22.86 ± 35.10 28.70 ± 45.12 56.34 ± 48.28

Median 14.5 13.4 8.65 9.1 27.5

Total DNA yield (ug)

Mean/SD 3.15 ± 4.13 2.64 ± 4.63 1.82 ± 3.44 2.90 ± 4.56 4.34 ± 4.44

Median 0.76 0.62 0.44 0.55 1.26

Unknown 16 (24.24%) 14 (28.57%) 13 (30.95%) 19 (37.25%) 0 (0.00%)

Total Reads (million)

Mean/SD 222.88 ± 53.26 218.06 ± 52.06 209.83 ± 43.11 212.85 ± 49.68 242.42 ± 38.15

Median 219.95 219.95 212.68 206.95 249.53

Mapping Rate (%)

Mean/SD 98.33 ± 1.37 97.99 ± 2.31 97.81 ± 2.59 98.36 ± 0.96 98.39 ± 0.30

Median 98.515 98.54 98.55 98.44 98.33

Mean Target Coverage (per sample)

Mean/SD 186.60 ± 64.26 176.10 ± 62.73 168.56 ± 52.51 171.78 ± 58.96 222.53 ± 32.11

Median 182.7 190.62 167.655 182.17 227.84

Insertions/ Deletions (Count)

Mean/SD 41.00 ± 20.07 41.61 ± 30.22 39.07 ± 28.99 32.62 ± 14.32 55.00 ± 38.11

Median 37 36 34.5 30.5 43

Substitutions (Count)

Mean/SD 301.14 ± 400.86 353.02 ± 523.01 283.83 ± 503.63 140.92 ± 259.59 54.56 ± 39.75

Median 177 165 138.5 66 45

TPES Tumor Purity

Mean/SD 0.62 ± 0.21 0.60 ± 0.19 0.61 ± 0.25 0.54 ± 0.23 0.69 ± 0.19

Median 0.635 0.59 0.615 0.56 0.72

Sequenza Tumor Purity

Mean/SD 0.28 ± 0.20 0.27 ± 0.20 0.23 ± 0.17 0.23 ± 0.16 0.19 ± 0.11

Median 0.195 0.18 0.15 0.19 0.12

https://doi.org/10.1371/journal.pone.0274457.t002
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TP of all samples as calculated by the TPES algorithm at baseline was 0.62 (range 0.17–0.99)

and 0.54 (range 0.12–0.97) at week 5 (p = 0.07; Table 2, S1 Table).

Across analyzed samples (n = 216), the top 5 most common alterations were in PIK3CA,

FBXW7, FNDC1, KMT2D, and CSMD3 (Fig 4, S2 Table). For 33 patients with samples avail-

able at all 4 time points (n = 132 samples), the top 10 most common alterations were in

PIK3CA (17%), FBXW7 (13%), KMT2D (11%), LRP1B (11%), RYR2 (11%), MUC16 (10%),

CSMD3 (8%), EP300 (8%), PCLO (8%), and KMT2C (8%) (Fig 5). Of these, the remaining

detectable alterations at week 5 were in FBXW7, LRP1B, and RYR2. From the top 50 alter-

ations, other genes with alterations remaining at week 5 included CGREF1, CAMSAP1,

DOCK11, LRP2, CRTAC1, KIF2, LTPB1, STK11, SUFU, GPR98, AGGF1, AMER1, CLTCL1,

and ENC1.

Fig 3. Quality Characteristics and DNA alterations for all Samples by Time (A) Total DNA yield did not differ by

acquisition timepoint. Total reads (B), mean target coverage (C) and mapping rate (D) did not differ by timepoint.

Number of DNA alterations at baseline decreased at week 5 of CRT in all patients (E, p = 0.008) as well as when 33

patients with samples at all 4 time points were examined (F, p = 0.03).

https://doi.org/10.1371/journal.pone.0274457.g003
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Discussion

To our knowledge, this is the first study describing the use of non-invasive swab-based cervical

tumor sample collection and performance of serial WES over the course of CRT. TP analysis

confirmed the presence of tumor cells captured and sequenced at timepoints throughout the

course of treatment, and gene alterations present at baseline and persistent through the course

of treatment were identified. We anticipate that this methodology will allow for comprehensive

characterization of changes in the mutational landscape of cervical cancers in patients under-

going treatment.

A limitation of the current study is the absence of tumor biopsy samples with which to com-

pare DNA yield, quality, and sequencing output in swab-acquired samples. A previously

reported study comparing various tumor sample acquisition methodologies has shown that

DNA yield and quality recovered from isohelix swabs is comparable to alternative techniques

including other commercially available brushes (Rover brush [24]), formalin-fixed, paraffin-

embedded (FFPE) tissue, and flash frozen tissue biopsy [25]. Mean DNA yield from samples

collected by isohelix swabs of the oral cavity was 0.76ug, while mean DNA yield from isohelix

swabs of the cervix reported here was 2.8ug when evaluating 5 sampling time points. Likewise,

in a comparison of DNA quality, DNA recovered from isohelix swabs and FFPE had compara-

ble mapping rate (67% for FFPE samples and 71% for samples acquired by isohelix swab) [25].

In our study, the mean mapping rate was 98.2% (range 85.2–99.5%) among all time points. In

both the previous study and the current one, swab-based sampling provided adequate DNA

yield for successful WES. Variations in quantitative DNA yield and mapping rates between the

Fig 4. Top 50 gene alterations over time for 70 patients with paired normals. Heat map displaying the top 50 genes ranked

by occurrence for 70 patients (216 samples) grouped by timepoint collection during chemoradiation.

https://doi.org/10.1371/journal.pone.0274457.g004
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current study and others may be due to the variation in eluting volumes, DNA extraction and

preparation kits, and sequencing techniques.

An additional study comparing sample acquisition by biopsy and isohelix brush swab for

cancers in the oral cavity for epigenome-wide DNA methylation found no significant differ-

ence in DNA yield between tissue and brush samples and matched tissue. Isohelix brush swabs

had an excellent correlation in the oral cavity [10]. Mean DNA yield from frozen tissue was

0.39ug (range 0.19–0.66ug), and 0.53ug (range 0.51–2.00ug) from swab-acquired DNA. Geno-

mic DNA from both swabs and frozen tissues had similar mapping efficiency with over 90%

mapping efficiency for swab-acquired DNA. Investigators successfully identified potential

prognostic and predictive biomarkers for malignant lesions in the oral cavity with high sensi-

tivity and specificity using a comparable isohelix swab design as was used here [10]. While iso-

helix brushes have been designed and marketed for DNA acquisition of the buccal mucosa, we

were able to acquire sufficient quality and quantity DNA for WES in all but one tumor sample

with collected samples by isohelix brushings from cervical mucosa. This method could rapidly

be applied to the study of other gynecologic, head and neck, anorectal, and skin malignancies.

Past studies that relied on serial biopsies have been limited by logistical challenges, concerns

about patient discomfort, and complications from traditional biopsies, including bleeding and

infection. In a report by Weidhaas et al., gene expression profiling was performed on tissue

biopsies collected from 13 patients pre- and mid-treatment and investigators identified a seven

gene signature that predicted improved local control [26]. In a similar study of patients with

locally advanced cervical cancer undergoing CRT, investigators acquired biopsies pretreat-

ment and at week 3 of CRT and performed RNA-sequencing on 20 matched pairs. They found

Fig 5. Top 50 gene alterations over time for 33 patients with all four-time points. Heat map displaying the top 50 genes

ranked by occurrence for 33 patients (132 samples) grouped by timepoint collection during chemoradiation.

https://doi.org/10.1371/journal.pone.0274457.g005
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that patients who succumbed to disease at the time of their report had enrichment of gene

expression from mitotic pathways and increased retention of HPV E6/E7 gene expression at

week 3 of CRT, which may promote treatment resistance [27]. No analysis of somatic muta-

tions was performed in either of these studies. Our novel, non-invasive technique allows DNA

to be collected from cervical swabs, reducing obstacles to serial biopsy collections. Further-

more, while previous studies have recognized gene expression signatures associated with long-

term patient outcomes, this is the first study to report findings from WES of cervical tumor

samples collected longitudinally over the course of CRT.

Encouragingly, when mutation profile of swab acquired tumor samples from 23 patients in

our preliminarily analyzed cohort was compared with those obtained from cervical cancer

patients in The Cancer Genome Atlas (TCGA) as a comparison group, we found that more

than 93% of mutated genes detected at baseline were also present in the TCGA group (S1 Fig).

Likewise, several canonical genes known to promote cervical cancer pathogenesis including

Rb and p53 were detected in our dataset [28]. Phosphoinositide 3-kinase (PI3K) pathway-

related mutations were also prevalent (S2 Fig). Complementing our findings, previous studies

have reported perturbations in PIK3CA, an oncogene part of the ERBB2/PI3K/AKT/mTOR

pathway with a battery of druggable targets, present in over 50% of cervical tumor and cervical

cancer cell lines [3].

More interestingly, serial tumor profiling also allowed us to identify a panel of mutated

genes enriched and present at baseline and persisting through the end of CRT including

FBXW7, LRP1B, and RYR2. Mutations in FBXW7 which encodes a protein involved in ubi-

quination and proteasome degradation of oncoproteins as well as DNA double strand break

response [29], are frequently present in cervical cancers and loss of function has been corre-

lated with chemotherapy resistance and poor clinical outcomes [30, 31]. Likewise, LRP1B

mutations have frequently been identified in cancers including cervical cancer and while high

mutation rates have been found to correlate with worse prognosis in hepatocellular carcinoma

and glioblastoma [32] they have also been associated with improved patient response to immu-

notherapies in multiple cancer types including prostate, melanoma, and non-small cell lung

cancer [33, 34]. The role of RYR2 in cervical cancer has not yet been described but has previ-

ously been identified as a frequently altered gene in cervical cancer samples collected for the

TCGA database [35]. Time dependent changes in these mutational signatures would have

been impossible to detected in pretreatment biopsies alone and may open doors to future ther-

apeutic interventions.

As expected, TP estimates for swab acquired samples were lower, however, comparable to

previously reported estimates from biopsy samples from the TCGA analysis in biopsy samples

[36] and decreased over the course of therapy. Even in the case of biopsies, often considered

the "gold-standard" method for cancer cell sampling, TP values can display wide range and

variance. For example, biopsy-sourced cells from both cervical cancer and other solid tumors

that underwent WES demonstrated TP values ranging from 0.21 to 1.0 [37, 38].

While several computational methods exist to infer TP, these methods differ in the types of

genomic information used, such as gene expression, SCNA, and somatic mutations [39, 40].

To reduce the systematic bias of genomic investigation of samples containing both tumor and

non-neoplastic tissue, TP levels are often considered during analysis to deconvolute contami-

nant contributions from the tumor microenvironment field [41–43]. Thus, we evaluated two

purity estimation tools with differing prediction mechanisms to better understand the cellular

heterogeneity within our swab acquired samples. The Sequenza tool was developed for both

exome and whole-genome deep sequencing of tumor DNA where average depth ratio in

tumor versus normal samples and allele frequency is used to estimate for cellularity and ploidy

[23]. Investigators found that Sequenza correctly detected ploidy in samples with as low as
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30% tumor content. TPES predicts TP from variant allelic fraction distribution of SNVs to

more accurately predict TP when tumor genomes are copy-number neutral or euploid [22].

This tool was validated on WES data from TCGA tumor samples and enabled TP estimation

in samples that failed TP prediction algorithms dependent on somatic copy-number alter-

ations. TPES estimates were enriched in samples with low genomic burden, while SCNA-

based tools similar to Sequenza were more proficient with high genomic burden cases suggest-

ing a complementary role for these two tools in the analysis of tumor WES data. Indeed, previ-

ous work investigating differences in TP algorithms have supported the use of a combined

value when multiple estimations are performed [36]. Moving forward, when applying TP esti-

mations to describe dynamic mutational changes over time, we propose to utilize Sequenza

estimations given the low tumor content of our samples and expected high genomic mutation

burden in cervical cancer samples, and reserve TPES or other alternative algorithms for sam-

ples that fail the Sequenza prediction algorithm.

There are several limitations to this study that must be addressed. First, tumor samples

were not available at all four time points for 37 patients due to the inability to procure samples.

Second, long-term follow-up data is not available for this cohort at this time. Finally, while the

clinical significance of individual mutations was not the focus of the present study, studies are

underway to identify signatures and mutations associated with radiation sensitivity and resis-

tance among women with differential responses to CRT for cervical cancer. For this future

work, we hypothesize that mutations that survive the initial weeks of radiation treatment may

be clinically relevant drivers of radiation resistance, and we plan to focus on characterizing the

clonal architecture of residual tumors to identify more granular molecular signatures predic-

tive of treatment response. This will permit future investigations of treatment escalation or de-

escalation in appropriate populations.

Conclusion

In conclusion, this work provides proof of concept that a noninvasive, swab-based biopsy tech-

nique can be utilized to serially sample tumors for in-depth sequencing analysis. This novel

methodology can be added to the translational research armamentarium to interrogate tumor

genetics and eventually tailor cancer-directed therapies.

Supporting information

S1 Checklist. CONSORT 2010 checklist of information to include when reporting a pilot

or feasibility trial�.

(PDF)

S1 Table. Sample and sequencing quality control metrics and tumor purity estimates for

each tumor sample.

(XLSX)

S2 Table. Gene list with alteration type and frequency for all samples.

(CSV)

S1 Fig. Overall gene alterations from swab acquired tumor samples (patients 2–30) is simi-

lar to landscape of TCGA cervical squamous cell carcinoma dataset. (A) Ninety-four per-

cent (1339/1430) of altered genes in baseline samples (defined as substitutions, insertions or

deletions in gene) were also identified in the TCGA dataset, suggesting accurate identification

of mutated genes related to cervical cancer. (B) The distribution of the top 30 most altered

genes in study samples 2–30 and in TCGA(C) was also similar.

(TIF)
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S2 Fig. Lollipop plots showing mutation site, type, and frequency of canonical genes associ-

ated with cervical cancer pathogenesis for all samples.

(TIF)
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