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Shortest path is among classical problems of computer science. The problems are solved by hundreds of algorithms, silicon
computing architectures and novel substrate, unconventional, computing devices. Acellular slime mould P. polycephalum is
originally famous as a computing biological substrate due to its alleged ability to approximate shortest path from its inoculation site
to a source of nutrients. Several algorithms were designed based on properties of the slime mould. Many of the Physarum-inspired
algorithms suffer from a low converge speed. To accelerate the search of a solution and reduce a number of iterations we combined
an original model of Physarum-inspired path solver with a new a parameter, called energy. We undertook a series of computational
experiments on approximating shortest paths in networks with different topologies, and number of nodes varying from 15 to 2000.
We found that the improved Physarum algorithm matches well with existing Physarum-inspired approaches yet outperforms them
in number of iterations executed and a total running time. We also compare our algorithm with other existing algorithms, including

the ant colony optimization algorithm and Dijkstra algorithm.

1. Introduction

Shortest path problem (SPP) is one of the fundamental prob-
lems in the field of network optimization: given a network, it
is to find a path between two nodes such that the sum of the
weights of its edges is minimized. Due to its wide application
in many practical applications, for example transportation
of food and commodities [1-4], wireless networks [5, 6],
complex networks [7-10], and so forth [11-16]. A number
of researchers have developed many efficient algorithms to
deal with this problem. For example, one of the most famous
algorithms, Dijkstra algorithm [17] was proposed by Edsger
Dijkstra in 1959 to solve the single-source shortest path
problem. Bellman-Ford algorithm [18] is another well-known
algorithm that computes the shortest paths starting from a
single source vertex to all of the other vertices in a weighted
graph. Also, label correcting algorithm has been proposed

by various researchers to deal with this problem [19, 20].
However, these algorithms have one common feature: they
need excessive computational time when the scale of the
network becomes very large. As a result, many bioinspired
algorithms have emerged, such as genetic algorithm [21-23],
ant colony algorithm [24], and particle swarm optimization
[25].

With regard to future and emergent computing architec-
tures, a first two-dimensional cellular automaton computing
shortest path was designed in [26]. The algorithm was used
in developing a reaction-diffusion chemical processor to
compute a collision-free shortest path in [27]. Recently,
an amoeboid organism, Physarum polycephalum has been
shown to be capable of solving many graph theoretical
problems [28-30], including finding the shortest path [30-
32], network design [33-39], population migration [40] and
others [35, 41-43]. Inspired by this intelligent organism,
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a path finding mathematical model has been constructed
[44]. Moreover, this organism has been shown to be able to
form networks with features matching those of motorway
networks [38]. In addition, Baumgarten et al. have proved
that the mass of mold will eventually converge to the shortest
path of the network that the mold lies on [45].

However, when the original Physarum polycephalum
model is implemented to handle shortest path problem, it
needs substantial, often to a degree of excess, number of iter-
ations. In present paper we aimed to improve the efficiency
of the original Physarum polycephalum model. Here, a new
parameter called “energy” is incorporated with the original
model. We call the new method as improved Physarum
polycephalum algorithm (IPPA). In fact, many systems have
implied different kinds of “energy” when dealing with the
shortest path problem. A number of them employ this kind of
“energy” to solve many optimization problems [46-48]. For
example, Taherian et al. [49] make full use of the Resistive
Network concept to simulate the trust networks, in which
every node in the trust network is mapped to a node in the
resistive network, where the resistors’ values are inversely
proportional to the trust values.

Fuerstman et al. [50] use the pressure-driven flow in
microfluidic network to deal with the maze-like problems by
searching all the possible solutions in a parallel way. Liu et al.
[51, 52] found that current flows along the branch with lower
impedance in circuit are fundamentally similar to the aim of
path planning for a shorter path with better feasibility in the
map. They employed this phenomenon to find out a short and
wide path with light traffic jam for robots, which overcome
a lot of shortcomings of the previous approaches. Zelek [53]
treats analogous representations of harmonic functions as
Markov chains and combines them with resistor networks to
develop a novel method to handle the dynamic path planning
problem.

Let us incorporate the parameter “energy” with the
original Physarum solver. Advantages of our approach are
manifold. It completes the Physarum model with rather
physical notion of energy. During the actual expanding
process of Physarum, it needs to consume energy to expand
its tubes. At the same time, its tubes can absorb energy
from the surrounding environment. As a result, there is a
trade-off between the consumption and the absorption of
the energy. By the introduction of the parameter “energy’,
it makes this mode more effective when we employ it to
design adaptive networks. By binging in this parameter, the
executing time and iterations of the original algorithm has
been decreased to a great extent. To the authors’ knowledge,
this is the first attempt to combine “energy” parameter into
the Physarum model. In addition, we have compared the
efficiency of the proposed method and the original (or basic)
Physarum polycephalum algorithm when they deal with the
networks with various network topologies and nodes. Also,
we have shown its advantages by comparing with other
existing algorithms, including the ant colony optimization
algorithm and Dijkstra algorithm.

The remainder of this paper is organized as follows.
Section 2 briefly introduces the mathematical model of
Physarum polycephalum. Section 3 presents the improved
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Physarum polycephalum algorithm for path finding. We
compare the improved Physarum polycephalum algorithm
with the basic Physarum polycephalum algorithm and other
existing algorithms in Section 4. Section 5 concludes this

paper.

2. Physarum polycephalum Inspired Shortest
Path Finding Model

Physarum polycephalum is a large, single-celled amoeboid
organism forming a dynamic tubular network connecting the
discovered food sources during foraging. The mechanism of
tube formation can be described as tubes become thicker in
a given direction when shuttle streaming of the protoplasm
persists in that direction for a certain time. It implies positive
feedback between flux and tube thickness, as the conductance
of the sol is greater in a thicker channel. With this mechanism,
a mathematical model illustrating the shortest path finding
has been constructed [44].

Suppose that the shape of the network formed by the
Physarum is represented by a graph, in which a plasmodial
tube refers to an edge of the graph, and a junction between
tubes refers to a node. Two special nodes labeled as N, and
N, act as the starting node and ending node, respectively.
The other nodes are labeled as Nj, N,, N5, N, and so forth.
The edge between node N; and N; is expressed as M;;. The
parameter Q;; denotes the flux through tube M;; from node
N; to N;. Assume the flow along the tube as an approximately
Poiseuille flow; the flux Q;; can be expressed as

D,
Q= L_J (Pi - Pj)’ €))
ij
where p; is the pressure at the node N;; D;; is the conductivity
of the tube M;j; L;; is its length.
By considering that the inflow and outflow must be
balanced, we have:

2, Q=0 2

J#L2

For the source node N; and the sink node N, the
following two equations hold:

ZQil +1, =0,

(3)
ZQiZ -1, =0,

where I, is the flux flowing from the source node, and I is a
constant value here.

In order to describe such an adaptation of tubular
thickness we assume that the conductivity D;; changes over
time according to the flux Q;;. The following equation for the
evolution of Dij(t) can be used:

d
Dy = (|Qy]) - Dy (4)
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FIGURE 2: The changing trend of the conductivity associated with
every edge.

where r is a decay rate of the tube. It can be obtained that the
equation implies that the conductivity ends to vanish if there
is no flux along the edge, while it is enhanced by the flux. The
f is monotonically increasing continuous function satisfying
f(0)=o.

Then the network Poisson equation for the pressure can
be obtained from (1)to(3) as follows:

D.. +1 forj=1,
£ 0  otherwise.

By setting p, = 0 as a basic pressure level, all p; can be
determined by solving (5) and Q;; can also be obtained.

In this paper, f(Q) = |Q] is used. With the flux calculated,
the conductivity can be derived, where (6) is used instead of
(4), adopting the functional form f(Q) = |Q|:

mtl _ pn
ij ij _ pntl 6
——— - lQI-Dj" (6)

In order to illustrate the basic process of Physarum
polycephalum algorithm, one simple example is shown.

Example 1. Consider the network shown in Figure 1; as can
be seen, the numbers along each edge represent the edge
length. Now, the shortest path between node 1 and node 4
needs to be found. First of all, we initialize the conductivity
of all edges as 1. By implementing our proposed method, the

conductivity associated with each edge is recorded, which is
shown in Figure 2.

As can be seen in Figure 2, the flux of edges (1,2), (2,3),and
(3,4) converge to 1 while that of the other edges converge to
0. Therefore, the shortest path found by the proposed method
is1 - 2 — 3 — 4and the results are the same as that of
other algorithms, such as Dijkstra algorithm.

3. Improved Physarum
polycephalum Algorithm

In this section, the improved Physarum polycephalum algo-
rithm is introduced in detail. In this approach, a new param-
eter called “energy” is incorporated with the original math-
ematical model. The maintenance of the tubes in Physarum
polycephalum model needs to consume energy while this
energy comes from the flowing nutrients in the tubes. When
the obtained energy is greater than the consumed energy,
these tubes become coarser and the conductivity increases.
Otherwise these tubes will vanish. The change of the tubes
results in the change of the allocated flux associated with each
tube. In turn, the variance of the flux changes the energy
balance in the tubes. As a consequence, the tube changes
further. Through a series of change associated with energy,
flux, and tube, the Physarum polycephalum tends to converge
to a steady state.

First of all, the energy E, the flux Q, and the conductivity
D are defined as below

El = f (Q) > (73)
E,=g(D), (7b)
AD = h(E), (7¢)

where (7a) represents how much energy can be provided
by the tube when its flux reaches Q; (7b) denotes the
energy consumed by the tube with conductivity equal to
D; (7c) means how the conductivity will change when the
remaining energy (here, remaining energy is equal to the
energy provided by the flux minus the energy consumed by
the tube itself) is E;.
Therefore, (6) is changed to the following form:

AD; = h(f(Q;-g(Dy))) x At. (8)
In the differential form, it will be
dD;;
— =h(f(Q-9(Dy))), ©)

which is similar to (6). But it is in more accordance with
biological significance.

In what follows, we will construct the functions f, g,
and h in (7a)-(7c). Equation (7a) reflects the relationship
between the flux and the energy. In the original Physarum
polycephalum model, this is defined by the absolute value of
Q as shown in (6). However, it breaks the basic principle of
conservation of energy. Consider a period of tube containing
Q’s flux; then the energy acquired by this tube is E = |Q]
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/1 s is the starting node, e is the ending node
Dy« (0,1] (Vi,j=1,2,...,N)
Q< 0 (Vi,j=12,...,N)
p,—0(Yi=12...,N)
count < 1
repeat

p. < 0// the pressure at the ending node e

jev \ Lij

Q‘J - Dl] X (Pz - P]) /Ll] /1 Usmg (1)

count «— count + 1
until a termination criterion is met

/'L is an n x n matrix, L;; denotes the length between node i and node j, V' denotes the set of arcs.

Calculate the pressure of every node using (5)

Z<&)(P1—Pj)= -1

D, < (1/2) ((Qij X (p,- - pj)) / (Li]. x(p,— pz)) + D,-j) // Using (6)

+1 fori=s
fori=e
0  otherwise

AvrGoriTHM L: Improved Physarum polycephalum algorithm (L, s, e).
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FIGURE 3: Comparison of executing time on randomly generated
networks. IPPA refers to the improved Physarum polycephalum
algorithm while BPPA represents the basic Physarum polycephalum
algorithm.

according to (6). If we regard the above tube as two connected
tubes, calculate their energy, respectively; it is found that
they all get the energy |Q|. Therefore, the flux Q offers 2|Q[’s
energy for this tube. Obviously, this fact contradicts with
the previous result. It means that the relationship between
the flux and the energy described by (6) in Section 2 is not
reasonable.

Here, in order to satisfy the law of conservation of
energy, we assume that the total energy provided by the
flux beginning from the starting node to the ending node is
constant and has nothing to do with the path. Therefore, the
function f is defined as follows:

£(Q,) = 2P (10)

220 T T T T T T T T T T
200 |
180 |
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Number of nodes
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—e— IPPA
—— BPPA

FIGURE 4: Comparison of running iterations on randomly generated
networks. IPPA refers to the improved Physarum polycephalum
algorithm while BPPA represents the basic Physarum polycephalum
algorithm.

where s and e represent the starting node and the ending
node, respectively, p; and p; denote the pressure at the node
i and node j.

Consider (7b); it reflects the consumed energy for main-
taining the tubes. Naturally, the consumed energy is not only
relevant with the conductivity, but also with the length of the
tubes. Thus, we define it as follows:

g(D;) =Dy xLj. (11)

Similarly, the effect of the energy on the change of the
conductivity is also relevant with the length of the tube. The
longer the tube is, the more energy it consumes. As a result,
we define (7c) as

E
h(Es) = T (12)
Y
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FIGURE 5: Comparison of running time on randomly generated net-
works. ACO refers to the ant colony optimization algorithm while
IPPA refers to the improved Physarum polycephalum algorithm.

FIGURE 6: A simple network with 7 nodes.

After we combine (10)-(12), the following equation can be
constructed:

-D;,. (13)
pe)

dD;  Qyx(pi-p;)
dt Ly (ps -

Based on the above constructed model, the main pro-
cedures of this model for the shortest path problem are
presented as Algorithm 1.

There are several possible solutions to decide when to
stop execution of Algorithm 1, such as the maximum number
of iterations is arrived, the flux through each tube remains
unchanged.

As for the time complexity of this bioinspired algorithm,
it is o(n’), where n is the number of the nodes in the
network. When we implement this algorithm, it is necessary
to solve the linear equations shown in (5). Although the time
complexity is substantial; different strategies can be applied
to reduce the time cost, such as parallel computing and
approximate approaches to solve the equations, and these
advantages make this algorithm promising.

0.2942

FIGURE 7: The flux associated with each edge in the Physarum
polycephalum algorithm.

TABLE 1: The related parameters of the erdos.renyi.game function. In
this function, the parameter P denotes the probability of drawing an
edge between two arbitrary vertices.

Test problem  Number of nodes ~ Number of edges P

1 15 23 0.20

2 30 45 0.15

3 50 107 0.10

4 80 240 0.08

5 100 304 0.06

6 200 819 0.04

7 250 1124 0.04

8 400 1634 0.02

9 500 2496 0.02

10 800 3229 0.01

11 1000 3950 0.008
12 1200 4347 0.006
13 1500 6822 0.006
14 1800 6521 0.004
15 2000 4044 0.002

4. Comparison of Algorithms

In order to demonstrate the efficiency of the proposed
method, a number of experiments have been conducted
on different datasets. In addition, we have compared the
computational results between our method and the existing
path finding mathematical model. In addition, we have
compared the computational efficiency with other state-of-
the-art algorithms, including Dijkstra algorithm and Ant
Colony Optimization Algorithm. All the approaches are
tested on networks with random and varying topologies
through computer simulations using Matlab on an Intel
Pentium Dual-Core E5700 processor (3.00 GHz) with 2 GB
of RAM under Windows Seven.

As for the random networks, they are generated by
erdos.renyi.game function of the igraph package in R language
[54]. Table 1 shows the size of testing networks. In this paper,
we test the proposed method on 15 networks with different
topologies and their network size ranges from 15 to 2000.
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FIGURE 8: The process of shortest path formulation by real Physarum polycephalum. From (a) to (f) the Physarum polycephalum grew out of
the source node and gradually constructed the shortest path from the source node to the ending node.

Each instance is run for 40 times, and we compute the average
executing time and average accuracy.

4.1. Comparison with the Basic Physarum polycephalum Algo-
rithm. In order to ensure that there exists at least one path
from starting node to ending node in the network, we make
the network fully connected. The length of each edge is
uniformly distributed integer ranging from 1 to 100. The
scale of the tested network varies from 15 to 2000. In our
experiments, when ) JA:LZMn(|Dl.°]9““”1 - Df}’“ntl) < 0.01
(ij"“m+1 and D{"™ refer to the conductivity associated with
the edge Lij during the n + 1th and nth iteration, resp., and n
represents the scale of the network), the procedure ends.
Normally, the performance of an algorithm is its accuracy
and executing time. First of all, consider the accuracy; both
IPPA (short for improved Physarum polycephalum algorithm)
and BPPA (short for basic Physarum polycephalum algo-
rithm) are capable of finding the optimal path as Dijkstra
algorithm with one hundred percent. Secondly, as for running
time, the results are summarized in Figures 3 and 4. It is obvi-
ous that IPPA outperforms BPPA at all testing instances on
both executing time and running iterations. Moreover, when

the scale of the network gradually increases, the advantage
of IPPA becomes more noticeable. From the view of running
iterations as shown in Figure 4, due to the randomness of the
edge length, for both IPPA and BPPA, executing iterations
fluctuate slightly. However, as can be seen, IPPA still has
obvious priority when compared with BPPA for all the testing
instances. In addition, IPPA is more stable than BPPA. In
summary, the above features make IPPA more applicable to
real-world applications.

4.2. Comparison with Other State-of-the-Art Algorithms.
Here, we compare the improved Physarum polycephalum
algorithm with the classical Dijkstra algorithm [17] and Ant
Colony Optimization (ACO) algorithm [55]. We focus on
two important factors: a time of execution and a degree of
accuracy.

In all experiments discussed here the numeric parame-
ters, except when explicitly shown, are set to the following
values: « = 2, and it denotes the preference weight of
pheromone trail; § = 5, and it represents the preference
weight of the heuristic parameter #, and # is the inverse of the
distance between the nodes. The global update evaporation
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FIGURE 9: Comparison of accuracy on different algorithms solving
the shortest path problem on randomly generated networks. ACO
refers to the ant colony optimization algorithm while IPPA refers to
the improved Physarum polycephalum algorithm.

rate p is equal to 0.1. Both the size of the ants in each ant
colony system and the maximum number of iterations are
equal to the number of nodes in each network.

As can be seen in Figure 5, Dijkstra algorithm is faster
than the improved Physarum polycephalum algorithm. At the
same time, the improved Physarum polycephalum algorithm
is faster than the ant colony optimization algorithm. It is
obvious that the improved Physarum polycephalum algorithm
outperforms the ant colony optimization algorithm when
dealing with the shortest path problem. As for the Dijkstra
algorithm, although it is faster than the improved Physarum
polycephalum algorithm, it needs extra operation before it can
be implemented directly to solve the shortest path problem
when there is more than one shortest path in the network.
For instance, for the network shown in Figure 6, the length of
all the edges is 1. If we want to find the shortest path between
node 1 and node 7, it will be hard for the classical Dijkstra
algorithm to solve this problem. On the contrary, it is very
simple for the improved Physarum polycephalum algorithm.
As can be seen in Figure 7, each edge is associated with the
flux. If we want to find all the shortest paths from node 1 to
node 7, we can follow the direction of the flow to construct
these paths, which is very easy to realize.

In order to prove this point, we have observed how
Physarum will behave in this network and compare the result
with that shown in Figure 7. As can be seen in Figure 8, it
has shown the specific process of Physarum connecting the
source node and the ending node. Each junction represents
the node in the network shown in Figure 6, and Physarum
is placed in the left side of the container. The Physarum
polycephalum is allowed to spread along each edge in the
network. With the time going, an alternative shortest path is
gradually constructed as shown in Figure 8(a). At this stage,
the Physarum polycephalum does not stop. On the contrary,
it starts propagating back to the source as shown in Figures
8(b), 8(c), 8(d), and 8(e). At t = 72, the tubes of Physarum
were connected with the initial food sources. Finally, the

Physarum yields the network starting from the source node to
the ending node shown in Figure 8(f). It can be seen that the
real Physarum yields similar results as we discuss before. This
is a unique feature for Physarum. It can retain all the shortest
paths in a network, and its process is continuous, which is
totally different from Dijkstra algorithm. This is also why the
Physarum can construct the robust network.

As for the accuracy of these algorithms, we also have com-
pared it with the ant colony optimization and Dijkstra algo-
rithm. As shown in Figure 9, both the improved Physarum
polycephalum algorithm and Dijkstra algorithm can find the
optimal paths with one hundred percent. However, for the
ant colony optimization algorithm, its accuracy decreases
gradually with the increase of the network. When compared
with the improved Physarum polycephalum algorithm and
Dijkstra algorithm, its accuracy is very low.

5. Conclusion

In this paper, the basic model of Physarum polycephalum
is combined with a new parameter “energy” to solve the
shortest path problem. Through this novel parameter, we
make the Physarum polycephalum model more reasonable.
Furthermore, this parameter helps to accelerate the search
speed and to reduce the number of iterations of the basic
Physarum polycephalum algorithm. The performance of this
novel approach is tested on various networks with different
structures, and nodes ranging from 15 to 2000. In addi-
tion, we compare the proposed method with the original
Physarum polycephalum model, the ant colony optimization
algorithm, and Dijkstra algorithm. The results show that the
proposed method outperforms the basic model of Physarum
polycephalum algorithm and the ant colony optimization
algorithm on both running time and executing iterations.
Also, when compared with Dijkstra algorithm, it has some
obvious advantages, such as finding more than one shortest
path at the same time. In the future, we will investigate how
to accelerate the speed of solving the linear equations shown
in equation (5).
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