
Submitted 14 May 2020
Accepted 31 August 2020
Published 24 September 2020

Corresponding author
Xiang Wang, wangxiang@csu.edu.cn

Academic editor
Zunnan Huang

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj.10008

Copyright
2020 Zhao et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A model of twenty-three metabolic-
related genes predicting overall survival
for lung adenocarcinoma
Zhenyu Zhao, Boxue He, Qidong Cai, Pengfei Zhang, Xiong Peng,
Yuqian Zhang, Hui Xie and Xiang Wang
Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South
University, Changsha, Hunan, China
Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya
Hospital of Central South University, Central South University, Changsha, Hunan, China

ABSTRACT
Background. The highest rate of cancer-related deaths worldwide is from lung
adenocarcinoma (LUAD) annually. Metabolism was associated with tumorigenesis
and cancer development. Metabolic-related genes may be important biomarkers and
metabolic therapeutic targets for LUAD.
Materials andMethods. In this study, the gleaned cohort included LUAD RNA-SEQ
data from the Cancer GenomeAtlas (TCGA) and corresponding clinical data (n= 445).
The training cohort was utilized to model construction, and data from the Gene
Expression Omnibus (GEO, GSE30219 cohort, n= 83; GEO, GSE72094, n= 393) were
regarded as a testing cohort and utilized for validation. First, we used a lasso-penalized
Cox regression analysis to build a new metabolic-related signature for predicting the
prognosis of LUAD patients. Next, we verified the metabolic gene model by survival
analysis, C-index, receiver operating characteristic (ROC) analysis. Univariate and
multivariate Cox regression analyses were utilized to verify the gene signature as an
independent prognostic factor. Finally, we constructed a nomogram and performed
gene set enrichment analysis to facilitate subsequent clinical applications andmolecular
mechanism analysis.
Result. Patients with higher risk scores showed significantly associated with poorer
survival. We also verified the signature can work as an independent prognostic factor
for LUAD survival. The nomogram showed better clinical application performance
for LUAD patient prognostic prediction. Finally, KEGG and GO pathways enrichment
analyses suggested several especially enriched pathways, which may be helpful for us
investigative the underlying mechanisms.

Subjects Bioinformatics, Oncology, Respiratory Medicine, Medical Genetics
Keywords Metabolic, Prognostic, Dignature, Lung adenocarcinoma

INTRODUCTION
Lung cancer (LC) is one of the most common cancers worldwide and the main cause of
cancer-related mortality (Bray et al., 2018; Torre et al., 2015). Non-small cell lung cancer
(NSCLC) accounts for 85% of all LCs. The 5-year survival rate after the diagnosis of LC is
15.6% (Nanavaty, Alvarez & Alberts, 2014). In NSCLC, lung adenocarcinoma (LUAD) is
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the major histological subtype (Balzer et al., 2018), and the recurrence rate and mortality
rate remain high despite recent advances in surgical methods, neoadjuvant therapies, and
immunotherapies.

As bioinformatics advances in oncology research, researchers can utilize access public
resources from multiple public databases such as The Cancer Genome Atlas (TCGA)
and the Gene Expression Omnibus (GEO), as well as Surveillance and Epidemiology
and End Results (SEER) (Doll, Rademaker & Sosa, 2018; Li et al., 2018; Liu et al., 2019).
Bioinformatics has contributed to determining the prognosis and treatment of LC (Parikh,
2019). There have been numerous studies on gene prognosis models that could contribute
to the selection of LC treatment methods and the prediction of survival after LC surgery;
for example, a prognostic signature containing six genes (RRAGB, RSPH9, RPS6KL1,
RXFP1, RRM2, and RTL) to evaluate the prognosis of NSCLC patients (Xie & Xie, 2019).
In another article on prognostic characteristics of LUAD, a prognostic model based on 20
genes was developed to predict patient overall survival (OS) (Zhao, Li & Tian, 2018). These
prognostic signatures all have better clinical application performance.

Metabolic changes in LC are the key to diagnosis, and metabolic remodelling is a critical
factor in tumorigenesis and development (Chen et al., 2019b). Metabolic remodelling
not only provides substances and energy for the survival and proliferation of tumour
cells but also protects tumour cells so that they can survive, proliferate, and metastasize
in harsh microenvironments (Hensley et al., 2016). Therefore, changes in metabolism
affect tumour prognosis and treatment effects (Chang, Fang & Gu, 2020; Cruz-Bermúdez
et al., 2019). To explore the correlation between metabolic genes and the prognosis of
LUAD patients, we utilized the TCGA-LUAD database to build a prognostic signature of
multiple metabolic-related genes and validated it in GEO data sets for LUAD patients. We
conducted this study, and our findings suggested that metabolic-related gene signatures
may be a prognostic marker for LUAD patients.

MATERIALS AND METHODS
Data collections
First, we got clinical information for patients with LUAD from TCGA (https://portal.
gdc.cancer.gov/). It included 497 LUAD patients with mRNA expression profiles and
clinical follow up information was available for our study. The number of obtainable
clinical cases for the selected subjects was 445 after removing 52 patient samples from
the study due to a lack of clinical information (such as survival time, T stage, N stage,
and so on) or survival time less than 30 days (avoiding non-cancer-related death
samples). A total of 445 LUAD patients and their information were utilized to build
a training cohort for identifying prognostic metabolic-related genes and building a
prognostic risk model. Next, we downloaded the LUAD gene expression data from GEO
(https://www.ncbi.nlm.nih.gov/geo/) in two accessed datasets GSE30219 and GSE72094.
Removing other cancer pathological types, such as lung squamous cell carcinoma, 83 LUAD
samples, and 393 LUAD samples were utilized to build a testing cohort for validating the
prognostic value of the TCGA-LUAD prognostic risk model (up to April 01, 2020).
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Identification of metabolic-related genes in TCGA-LUAD
First, we obtained 944 hub metabolism-related genes from the intersection of the
MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb) and TCGA-LUAD. Then,
a Wilcoxon signed-rank test was performed on normal and cancer tissues in the training
cohort by ‘‘limma’’ R package (|log FC|> 0.5; FC: fold change; a false discovery rate (FDR) P
< 0.05) (Diboun et al., 2006). The heatmap was plotted by the ’’pheatmap’’ R package and
we obtained 336 metabolic-related differentially expressed genes. Second, after univariate
Cox regression analysis, 59 metabolic genes were retained (P < 0.05) by using the method
that the correlation between expression values of metabolic genes and survival of samples
in the training cohort. Last, we performed lasso-penalized Cox regression analysis to
identify more important metabolic genes for OS prediction through the ‘‘glmnet, survival’’
R package (Zhang et al., 2019). We obtained twenty-three metabolic-related genes for
risk model building. The three-step screening method was robust and performed via Perl
(https://www.perl.org/) and R (version 3.6.1).

Building the prognostic metabolic gene signature
To construct the prognostic model, we utilized lasso-penalized Cox regression analysis
to select the prognostic metabolic-related gene (Tibshirani, 1997). We obtained a risk
score for each patient by their coefficient. Risk score= (Coef AKR1A 1× expression of
AKR1A1) + (Coef NT5E × expression of NT5E) + . . . . . . (Coef TYMS × expression of
TYMS) (Liu et al., 2020). R software packages ‘‘survival’’ and ‘‘survminer’’ were used to
calculate the optimal cut-off value for risk scores and plot Kaplan–Meier survival curves
(Chan et al., 2018). Using themedian as a point of differentiation, we differentiated patients
into two groups: high-risk and low-risk. The R package ‘‘survivalROC’’ was used to plot
time-dependent ROC curves for predicting the diagnostic value (Heagerty, Lumley & Pepe,
2000). The concordance index (C-index) was used to evaluate the predictive ability of the
risk model.

Verification of the prognostic signature as an independent risk factor
and correlation analysis between the clinical characteristics and risk
scores
Patients with complete information on the corresponding clinical data were available for
univariate and multivariate analysis. P < 0.05 symbolizes statistically significant (Liu et
al., 2020). We performing the Student’s t -test to verify the correlation between clinical
characteristics and risk scores.

Construction and verification of the predictive nomogram
The nomogramwas built by the ‘‘rms’’ R package according to training cohort data (Iasonos
et al., 2008). In our study, the tumour-node metastasis (TNM) model and the prognostic
signature were integrated into the predictive nomogram. We performed the calibration
plot and C-index to investigate the predictive ability of the nomogram. The calibration plot
was used to assess whether the numerical value of the predicted value of the model and the
probability of the occurrence of the ending event were consistent (Fenlon et al., 2018). We
used C-index to assess the predictive ability of the nomogram. It estimates the probability
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that the predicted result is consistent with the actual observed result. We compared the
TNM model, prognostic model, and the nomogram model through ROC analysis and
C-index (Liu et al., 2020). Next, we verified the nomogram by C-index, ROC analysis, and
calibration plot in the testing cohort data.

KEGG and GO pathways enrichment analyses
To study the biological role of mRNA markers in LUAD patients, we utilized the Kyoto
Encyclopedia of Genes and Genomics (KEGG) and Gene Ontology (GO) pathway
enrichment analysis to explore which pathways the differentially expressed genes were
mainly enriched in (up to April 11, 2020). Gene Set Enrichment Analysis (GESA)
(https://www.gsea-msigdb.org/gsea/index.jsp) was utilized to find enriched terms in
the training cohort or testing cohort (Subramanian et al., 2005). We choose ‘‘c2. cp.
kegg. v6.2. symbols. gmt. gene sets’’ as a reference gene set from the MSigDB database
(https://www.gsea-msigdb.org/gsea/msigdb/). P < 0.05, FDR q-value < 0.25, and
normalized enrichment score |NES| ≥1 suggested statistically significant. We plotted
the results by ‘‘ggplot2, gridExtra, grid, plyr’’ R package. All operations are carried out
in GSEA_4.0.3. GO pathway enrichment analysis of metabolic genes was performed by
‘‘clusterProfiler, org.Hs.eg.db, plot, ggplot2’’ in R p ackage (Pathan et al., 2015).

Statistical analyses
logFC: logarithmic value of FC; positive/negative logFC indicates the logarithmic foldness
of upregulation/downregulation; |log FC|>0.5 indicates multiple differences in the gene
expression greater than 0.5 between normal tissues and cancer tissues. A coefficient is a
number that expresses a measurement of a particular quality of a substance or object under
specified conditions (Bøvelstad et al., 2007). The risk score was calculated according to the
formula:

Risk score
(
patients

)
=

∑
n

(
coefficient(mRNAn)∗expression (mRNAn)

)
.

C-index had a lower accuracy from 0.50–0.70, medium accuracy between 0.71–0.90, and
higher accuracy when greater than 0.90 degrees (Kim, Schaubel & Mccullough, 2018). The
Area Under Curve (AUC) value of the time-dependent ROC lay in the range of 0.5–0.9
viewed as statistically significant. All statistical analyses were conducted through R 3.6.1.

RESULTS
Construction of the prognostic signature from the training cohort
The workflow of the study was shown in Fig. 1. In our study, 445 LUAD patients (Table S1,
clinical information in Table S1) from the TCGA data set were assigned to the training
sample cohort; 83 LUAD patients (Table S3, clinical information in Table S4) and 393
LUAD patients (Table S5, clinical information in Table S6) from the GEO data set were
assigned to the testing sample cohort for batch processing. After the Wilcoxon signed-rank
test was applied to the training set, we obtained 336 meaningful metabolic genes (Fig. 2,
Table S7). From the 336 meaningful metabolic genes, we got 59 mRNAs which were
considered to be significantly associated with OS in LUAD patients, 42 high-risk genes,
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TCGA-LUAD cohort (497patients, 56753 genes)

Get 944 hub metabolism genes by MSigDB database 

Wilcoxon signed-rank test and “limma” R package

336 metabolic  differently expression genes

Univariate Cox analysis

59 survival-related metabolic genes

Lasso Cox analysis

23  metabolic genes model

Performance verification of the metabolic genes model

Building nomogram

Performance verification of the nomogram

KEGG and GO enrichment analyses

Risk model and clinical features 
correlation analysis 

Compared with 
references model

Validation in testing 
cohorts

Validation in testing 
cohorts

Figure 1 Workflow of the study.
Full-size DOI: 10.7717/peerj.10008/fig-1

and 17 low-risk genes (Fig. 3, Table S8). Finally, lasso-penalized Cox analysis identified 23
genes (AKR1A1, NT5E, PTGIS, GMPS, MBOAT1, ADCY9, B4GALT1, MAOB, INPP4B,
NEU1, ALDOA, ENTPD2, GNPNAT1, GSTA3, PKM, HK3, ALDH2, AK2, LDHA, CHPT1,
SMS, CTPS2, and TYMS) to construct the prognostic model (Table 1).

The twenty-three metabolic genes signature and predictability
assessment in the training cohort
Finding that there is a significant and independent correlation between the expression of
twenty-three prognostic mRNAs and OS, we believed that combining the 23 metabolic
genes to form a twenty-three gene signature could predict a patient’s prognosis. According
to the optimal cut-off of 1.53, we classified training cohort samples into two groups: a
high-risk group (n= 222) and a low-risk group (n= 223) (Table S9). The OS rate between
the two risk groups was significantly different (P = 5.543e−10) (Fig. 4A).

The AUC was 0.798, 0.747, and 0.734 for the 1, 3, and 5-year OS, separately (Fig. 4B).
We plotted patients’ risk curves in the training cohort and analysed their distribution in
Figs. 4D–4E, and the heat map reveals the prognostic mRNA expression patterns between
two distinct prognostic patient groups (Fig. 4C).
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Figure 2 Heatmap and volcanomap of the differentially expressed genes in normal and tumour tis-
sues from TCGA-LUAD. (A) Heatmap of the differentially expressed genes in normal and tumour tissues
from TCGA-LUAD; (B) Volcano map of the differentially expressed genes in normal and tumour tissues
from TCGA-LUAD. In the volcano map, red: genes upregulated in tumour groups; yellow: genes down-
regulated in the tumour group; black: no differentially expressed genes in the tumour group.

Full-size DOI: 10.7717/peerj.10008/fig-2
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Figure 3 Forest map of the fifty-nine mRNAs (red: high-risk genes; yellow: low-risk genes).
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Table 1 The 23-gene signatures screened by their coefficients.

Gene Coefficient HR HR.95L HR.95H P

AKR1A1 −0.005 0.985 0.973 0.996 0.01
NT5E 0.003 1.01 1.003 1.017 0.007
PTGIS 0.01 1.007 1.003 1.011 0.001
GMPS 0.003 1.075 1.039 1.113 4.17E−05
MBOAT1 −0.025 0.956 0.92 0.994 0.023
ADCY9 −0.009 0.908 0.847 0.975 0.008
B4GALT1 0.002 1.011 1.006 1.016 3.05E−06
MAOB −0.019 0.968 0.938 0.998 0.039
INPP4B 0.046 1.122 1.033 1.219 0.006
NEU1 −0.003 0.986 0.972 0.999 0.034
ALDOA 0.001 1.002 1 1.003 0.006
ENTPD2 0.065 1.119 1.062 1.179 2.25E−05
GNPNAT1 0.028 1.045 1.029 1.061 2.86E−08
GSTA3 −0.084 0.708 0.502 0.997 0.048
PKM 0.001 1.004 1.002 1.007 0
HK3 −0.008 0.946 0.904 0.99 0.016
ALDH2 −0.001 0.98 0.966 0.993 0.003
AK2 −0.013 0.978 0.96 0.995 0.014
LDHA 0.002 1.005 1.003 1.006 4.20E−09
CHPT1 0.024 1.042 1.008 1.076 0.014
SMS 0.001 1.013 1.007 1.02 0
CTPS2 0.052 1.079 1.016 1.146 0.014
TYMS 0.016 1.028 1.014 1.044 0.0002

Notes.
HR, hazard ratio.

Validation of the twenty-three metabolic gene signatures
To test the robustness of the prognostic signature, according to the risk score cut-off of the
training cohort, GSE30219 was structured into a high-risk group (n= 25) and a low-risk
group (n= 58) (Table S10); and GSE72094 was structured into a high-risk group (n= 196)
and a low-risk group (n= 197) (Table S11). In the GSE30219 cohort, the Kaplan–Meier
survival curves of the prognostic signature have a statistically significant difference in the
two predicted risk groups (Fig. 5, P = 1.176e−02). The AUCwas 0.694, 0.645, and 0.637 for
the 1, 3, and 5-year OS, separately (Fig. 5B). The risk curves and expression of twenty-three
metabolic genes in the GSE30219 cohort were shown in Figs. 5C–5E Fig 5C-E. And in
the GSE72094 cohort, Kaplan–Meier survival curves of the prognostic signature has a
statistically significant difference in the two predicted risk groups (Fig. 6, P = 1.417e−10).
The AUC was 0.695, 0.725, and 0.742 for the 1, 3, and 5-year OS, separately (Fig. 6B). The
risk curves and expression of the twenty-three metabolic genes in the GSE30219 cohort
were shown in Figs. 6C–6E. We also compared our results with the two published gene
signature studies (Xie & Xie, 2019; Zhao, Li & Tian, 2018) and found that the C-index
results were better than their signatures (Table 2).
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Figure 4 Kaplan–Meier analysis, time-dependent ROC analysis, and risk score analysis for the twenty-
three gene signature in the TCGA-LUAD cohort. (A) Kaplan–Meier curve of the twenty-three gene sig-
nature in the TCGA cohort; (B) time-dependent ROC analysis of the twenty-three gene signature in the
TCGA cohort; (C–E) a heatmap of mRNA expression of the twenty-three gene signature, and risk curves
in the TCGA cohort.

Full-size DOI: 10.7717/peerj.10008/fig-4

Taken together, these results indicated a better predictive performance about our
prognostic signature.

Correlation analysis between the prognostic signature and clinical
characteristics
445 patients with their information from TCGA-LUAD cohort were utilized for the
correlation analysis. Being male (P = 0.017) and TNM stage (P < 0.01) have a significant
correlation with a higher risk score. Samples with higher T, N, and M grading were also
significantly correlated with a higher risk score (Table 3).

83 patients with their information from GSE30219 cohort were utilized for the
correlation analysis. TNM stage was significantly associated with a higher risk score
(P < 0.001). Samples with higher T, N, and M grading were also significantly correlated
with a higher risk score (P < 0.01) (Table 3). And 393 patients with their information from
GSE72094 cohort were utilized for the correlation analysis. TNM stage was significantly
correlated with a higher risk score (P < 0.001) (Table 3).

Validation of the independent prognostic factor
We analysed 445 patients, with a median age of 68, grouping them by gender (Table 4).
The results identified that our prognostic signature was an independent OS prognostic
indicator (Figs. 7A and 7B). We also verified that the prognostic signature can serve as
an independent prognostic indicator in the GSE30219 cohort (Figs. 7C and 7D) and
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Figure 5 Kaplan–Meier analysis, time-dependent ROC analysis, and risk score analysis for the twenty-
three gene signature in the GSE30219 cohort. (A) Kaplan–Meier curve of the twenty-three gene signa-
ture in the GSE30219 cohort; (B) time-dependent ROC analysis of the twenty-three gene signature in the
GSE30219 cohort; (C–E) a heatmap of mRNA expression of the twenty-three gene signature, and risk
curves in the GSE30219 cohort.

Full-size DOI: 10.7717/peerj.10008/fig-5

GSE72094 cohort (Figs. 7E and 7F). The multivariate Cox analysis indicating that the
prognostic signature was significantly associated with OS in each cohort when adjusted
for the TNM stage (Table 4). And stratification analysis showed that high-risk group was
significantly correlated with a poorer OS (Figs. 8A–8F). However, in the GSE30219 testing
cohort, patients in the high-risk group from TNM stages III and IV show no significantly
correlated with OS (Fig. 8D).

Construction and verification of the predictive nomogram
We built the nomogram by including the independent prognostic roles (Fig. 9A).
Calibration plots verified the performance of the nomogram (Fig. 9B). The C-index
of the TNM model, prognostic signature, and nomogram model were 0.654, 0.730, and
0.793, separately (Table 5). The AUC was 0.838, 0.785, and 0.779 for the 1, 3, and 5-year
OS, respectively. The nomogram model showed a better AUC predicting 1, 3, and 5-year
OS than the prognostic model in the training cohort (Figs. 9C–9E).

Next, we verified the clinical application of the nomogram in the GSE30219 and
GSE72094 cohorts. In the GSE30219 and GSE72094 testing cohorts, calibration plots
verified the performance of the nomogram (Figs. 10A and 10E). In the GSE30219 testing
cohort, the C-index of the TNM model, prognostic signature, and nomogram model were
0.612, 0.682, and 0.684 (Table 5). The AUC was 0.731, 0.686, and 0.722 for the 1, 3, and
5-year OS, separately (Figs. 10B–10D). In the GSE72094 testing cohort, the C-index of the
TNM model, prognostic signature, and nomogram model were 0.579, 0.709, and 0.713,
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Figure 6 Kaplan–Meier analysis, time-dependent ROC analysis, and risk score analysis for the twenty-
three gene signature in the GSE72094 cohort. (A) Kaplan–Meier curve of the twenty-three gene signa-
ture in the GSE72094 cohort; (B) time-dependent ROC analysis of the twenty-three gene signature in the
GSE72094 cohort; (C–E) a heatmap of mRNA expression of the twenty-three gene signature, and risk
curves in the GSE72094 cohort.

Full-size DOI: 10.7717/peerj.10008/fig-6

separately (Table 5). The AUC was 0.708, 0.794, and 0.771 for the 1, 3, and 5-year OS,
separately (Figs. 10F–10H). The nomogram model identified the better AUC predicting 1,
3, and 5-year OS than the prognostic signature in both testing cohorts.

Taken together, the nomogram model increased the predicting ability of the prognostic
signature. These results indicated the better predictive performance of the nomogram
model.

KEGG and GO pathways enrichment analyses
KEGG enrichment analyses suggesting that a majority of the metabolism-related pathways
such as themetabolism of fatty acid, arachidonic acid, glycerophospholipid, alpha-linolenic
acid, and pyrimidine were associated with the low-risk group, while the cell cycle, mismatch
repair, ubiquitin-mediated proteolysis, and p53 signalling pathways were associated with
the high-risk group (Fig. 11A, Table 6, Table S12). Besides, we performed GO pathway
enrichment analysis on 23 genes. These 23 genes were statistically significant in metabolic-
related pathways, such as nucleotide biosynthetic processes, secretory granule lumen,
and monosaccharide binding in Biological Processes (BP), cellular component (CC), and
molecular function (MF) (Fig. 11B, Table S13).

Zhao et al. (2020), PeerJ, DOI 10.7717/peerj.10008 10/26

https://peerj.com
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72094
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72094
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72094
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72094
https://doi.org/10.7717/peerj.10008/fig-6
http://dx.doi.org/10.7717/peerj.10008#supp-12
http://dx.doi.org/10.7717/peerj.10008#supp-13
http://dx.doi.org/10.7717/peerj.10008


Table 2 Comparison of the twenty-three gene prognostic signature to the two published prognostic signatures.

Studies TCGA cohort GSE30219 cohort GSE72094 cohort

HR (95% CI) P C-index HR (95% CI) P C-index HR (95% CI) P C-index

Present study 4.55(3.487∼5.946) 2.00E−16 0.730 3.80(1.977∼7.308) 6.25E−05 0.682 1.74(1.514∼1.99) 2.96E−15 0.709
23-gene signature
Zhao, K.et al. 1.10(1.073∼1.123) 6.20E−16 0.697 1.98(1.683∼2.319) 1.72E−19 0.682 1.53(1.39∼1.672) 2.17E−15 0.704
20-gene signature
Xie, H.et al. 1.29(1.167∼1.428) 7.45E−07 0.632 2.34(1.825∼2.996) 1.87E−11 0.668 1.82 (1.506∼2.206) 7.10E−10 0.660
6-gene signature

Notes.
HR, hazard ratio; CI, confidence interval.
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Table 3 Correlation analysis of the clinical characteristics and the twenty-three gene signature in LUAD.

Characteristics TCGA training cohort (n= 445) GSE30219 testing cohort (n= 83) GSE72094 testing cohort (n= 393)

n Mean
(rick score)

SD t P n Mean
(rick score)

SD t P n Mean
(rick score)

SD t P

Age(years)
<68 247 0.765 0.64 −0.164 0.87 23 0.543 0.346 −0.088 0.931 153 1.253 0.93 −0.524 0.600
≥68 198 0.775 0.663 60 0.55 0.272 240 1.305 1.04

Gender
Female 244 0.702 0.611 −2.393 0.017 19 0.535 0.357 −0.183 0.856 219 1.203 1.012 −1.850 0.065
Male 201 0.851 0.686 64 0.552 0.274 174 1.389 0.972

TNM stage
Stage I+II 348 0.68 0.584 −4.822 <0.001 60 0.456 0.235 −6.598 <0.001 320 1.166 0.842 −3.771 <0.001
Stage III+IV 97 1.083 0.765 23 0.875 0.239 73 1.805 1.392

T
T1+2 387 0.716 0.595 −3.5 0.001 73 0.528 0.299 −2.479 0.024 – – – – –
T3+4 58 1.125 0.86 10 0.697 0.185 – – –

N
N0 292 0.71 0.639 −2.629 0.009 71 0.502 0.276 −4.03 0.001 – – – – –
N1-3 153 0.881 0.657 12 0.817 0.245 – – –

M
M0 403 0.742 0.64 −2.577 0.013 67 0.468 0.241 −5.959 <0.001 – – – – –
M1 42 1.028 0.689 16 0.881 0.251 – – –

Notes.
SD, standard deviation; TNM, tumornode metastasis.
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Table 4 Univariate andmultivariate Cox regression analysis of overall survival in each cohort.

Variables Univariate analysis Multivariate analysis

HR HR.95L HR.95H P HR HR.95L HR.95H P

TCGA training cohort (n= 445)
Age(≥68/<68) 0.999 0.98 1.018 0.922 1.007 0.987 1.028 0.491
Gender (female/male) 1.006 0.692 1.462 0.976 0.936 0.638 1.373 0.736
TNM stage (I+II/III+IV) 1.659 1.404 1.961 3.01E−09 2.677 0.994 2.831 0.043
T 1.592 1.278 1.982 3.27E−05 1.009 0.788 1.291 0.944
N 1.798 1.463 2.209 2.34E−08 1.142 0.714 1.826 0.58
M 1.798 0.985 3.283 0.056 0.466 0.116 1.871 0.281
Risk Score 3.89 2.925 5.174 9.79E−21 3.699 2.717 5.036 9.80E−17

GSE30219 testing cohort (n= 83)
Age(≥68/<68) 1.037 1.023 1.052 3.22E−07 1.031 0.994 1.07 0.102
Gender(female/male) 1.815 1.129 2.917 0.014 1.126 0.491 2.586 0.779
TNM stage(I+II/III+IV) 2.719 0.762 3.03 2.35E−03 2.409 1.014 2.882 0.044
T 1.663 1.448 1.911 7.10E−13 1.361 1.126 1.644 0.001
N 1.777 1.51 2.091 4.36E−12 1.358 1.087 1.698 0.007
M 2.856 1.17 6.97 0.021 2.357 0.958 5.797 0.062
Risk Score 3.726 1.429 9.714 0.007 2.26 1.168 4.374 0.016

GSE72094 testing cohort (n= 393)
Age(≥68/<68) 1.007 0.988 1.027 0.479 0.999 0.978 1.019 0.889
Gender(female/male) 1.547 1.065 2.246 0.022 1.487 1.011 2.189 0.044
TNM stage 1.625 1.360 1.941 <0.001 1.607 1.333 1.938 <0.001
Risk Score 1.736 1.514 1.990 <0.001 1.646 1.431 1.894 <0.001

Notes.
HR, hazard ratio; TNM, tumornode metastasis.

DISCUSSION
Lung cancer has the highest mortality rate among cancer-related diseases worldwide (Bray
et al., 2018). LUAD is the principal type of LC, with a percentage of more than half of
morbidity and mortality in this group of patients (Jemal et al., 2017). With the increasing
exploration of cancer metabolic heterogeneity, metabolic genes can work as a prognostic
signature for LUAD. Identification ofmetabolism-related gene preferences and dependence
mechanisms in tumour regulation has become increasingly important (Peng et al., 2017).
Metabolic changes in LC are strategic to the diagnosis and influence the prognosis and
response to treatment (Cruz-Bermúdez et al., 2019). TCGA andGEOdatabases already have
a large amount of RNA-seq data from tumour samples in multiple cancers. Prognostic
signatures of LUAD have been built and developed utilizing the public databases (Shang et
al., 2017). Several metabolic genes for LUAD, such as TKT, ALDOA, TSC1, and CYP2A6,
have been demonstrated to be related to the OS of LUAD (Lin et al., 2011; Wassenaar et
al., 2015). Therefore, we investigated the relationship between tumour metabolism-related
genes and the prognosis of LUAD. We first built twenty-three metabolic-related gene
prognostic signatures, which may be helpful for the diagnosis, treatment, and prognosis of
LUAD.
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Table 5 Comparison of the nomogrammodel with the TNMmodel and prognostic model.

Cohort Nomogrammodel TNMmodel Prognostic model

HR (95% CI) P C-index HR (95% CI) P C-index HR (95% CI) P C-index

TCGA cohort 2.719(2.269∼3.259) 2.00E−16 0.793 2.957(2.015∼4.339) 3.03E−08 0.654 4.55(3.487∼5.946) 2.00E−16 0.730
GSE30219
cohort

2.958(2.189∼3.375) 7.55E−16 0.684 1.267(0.889∼1.803) 0.016 0.619 3.80(1.977∼7.308) 6.25E−05 0.682

GSE72094
cohort

2.718(2.181∼3.388) 7.55E−16 0.713 2.606 (1.736∼3.914) 3.85E−06 0.579 1.74(1.514∼1.99) 2.96E−15 0.709

Notes.
TNM, tumornode metastasis; CI, confidence interval.
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Figure 7 Forrest plot of the univariate (yellow) andmultivariate (red) Cox regression analysis in the
each cohort. (A–B) Forrest plot of the univariate (yellow) and multivariate (red) Cox regression analysis
in the TCGA-LUAD cohort; (C–D) Forrest plot of the univariate (yellow) and multivariate (red) Cox re-
gression analysis in the GSE30219 cohort; (E–F) Forrest plot of the univariate (yellow) and multivariate
(red) Cox regression analysis in the GSE72094 cohort.

Full-size DOI: 10.7717/peerj.10008/fig-7

In this study, we identified an efficient twenty-three metabolic-related gene prognostic
model based on the TCGA-LUADdatabases. Our prognosticmodel had better performance
in predicting patients’ prognosis. We also verified the performance of the prognostic
signature in the testing cohort, and the results confirm the prognostic value of the
prognostic signature. It is worth noting that in the GSE30219 databases, the high-risk
group did not show a significant correlation with poorer survival in TNM stages III and IV
when compared with the low-risk group. One possible reason is that with improvements
in diagnostic technology, more and more early patients are diagnosed at TNM stages
I and II, and fewer patients are diagnosed at TNM stages III and IV. The AUC of the
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Figure 8 The Kaplan–Meier curve for the twenty-three gene signature in LUAD. (A–B) The Kaplan–
Meier curve showed that the survival of patients was significantly poorer in the high-risk group in TNM
stages I and II/TNM stages III and IV of the TCGA-LUAD cohort; (C–D) the Kaplan–Meier curve showed
that the survival of patients was significantly poorer in the high-risk group in TNM stages I and II/TNM
stages III and IV of the GSE30219 cohort. However, there was no statistical significance in TNM stages III
and IV; (E–F) the Kaplan–Meier curve showed that the survival of patients was significantly poorer in the
high-risk group in TNM stages I and II/TNM stages III and IV of the GSE72094 cohort.
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ROC analysis from the TCGA-LUAD cohort and GEO cohorts verified the performance
of the prognostic signature. Besides, the nomogram model showed better performance
in prognosis predicting. We think that the nomogram will help us to make the clinical
treatment strategy in the future. In conclusion, these results demonstrated a significant
prognostic value of our prognostic model.

To better understand the molecular mechanism of metabolic genes, we enriched ten
KEGG signalling pathways that are significantly related to metabolic gene models through
GSEA. We found that patients in low-risk groups may profit from metabolic therapies.
whereas, the outcomes provide feasible guidance for explaining the unknown mechanisms
of labelling. GO analysis also indicated the twenty-three genes that were enriched in
metabolic pathways. In conclusion, our signatures may reflect the disorder of LUAD
patient tumour microenvironment and provide molecule biomarkers for treatment and
prediction of the prognosis of LUAD.

In our twenty-three gene prognosis model, several metabolic genes, including GSTA3,
ENTPD2, HK3, CHPT1, CTPS2, and ADCY9, were confirmed for the first time to be
correlated with the prognosis of LUAD. GSTA3 is recognized as an antioxidative protease
(Chen et al., 2019a). Studies of genetic analysis models and the mechanism of GSTA3
found that it was associated with tumour prognosis (Bruzzoni-Giovanelli et al., 2015). For
example, GSTA3 was identified and regarded as a prognostic biomarker for nasopharyngeal
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carcinoma and gastric cancer (Duan et al., 2018; Zhang, Wu & Cheng, 2019). GSTA3
inhibits HSC activation and liver fibrosis by inhibiting MAPK and GSK-3 β signalling
pathways, suggesting that GSTA3 could be a feasible target for therapeutic interventions
for liver fibrosis (Chen et al., 2019a). GSTA3 overexpression in breast cancer cells stimulates
proliferation and inhibits apoptosis, which leads to chemotherapy resistance and radiation
resistance in tumour cells (Thewes et al., 2010). Overexpression of ENTPD2 can be regarded
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Table 6 The SIZE, ES, NES. NOM p-val, and FDR q-val of the KEGG enrichment pathways.

SIZE ES NES NOM
P

FDR
q-valve

Low risk group enrich pathways
KEGG_ASTHMA 28 −0.802 −2.039 <0.01 0.040
KEGG_ARACHIDONIC_ACID_METABOLISM 58 −0.558 −1.956 0.002 0.057
KEGG_GLYCEROPHOSPHOLIPID_METABOLISM 77 −0.435 −1.739 0.008 0.117
KEGG_ALDOSTERONE_REGULATED_SODIUM_
REABSORPTION

42 −0.494 −1.702 0.010 0.135

KEGG_ALPHA_LINOLENIC_ACID_METABOLISM 19 −0.568 −1.672 0.019 0.136
KEGG_FATTY_ACID_METABOLISM 42 −0.517 −1.635 0.048 0.138
High risk group enrich pathways
KEGG_CELL_CYCLE 124 0.746 2.384 <0.01 0.001
KEGG_PYRIMIDINE_METABOLISM 98 0.620 2.160 <0.01 0.008
KEGG_MISMATCH_REPAIR 23 0.852 2.149 <0.01 0.005
KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 134 0.541 2.144 <0.01 0.004
KEGG_P53_SIGNALING_PATHWAY 68 0.546 2.100 0.002 0.006

Notes.
ES, enrichment score; NES, normalized enrichment score; NOM P, nominal p value; FDR q-valve, false discovery rate.

as a poor prognostic indicator of liver cancer. In an anoxic environment, ENTPD2 converts
extracellular ATP into 5′-AMP, which inhibits the differentiation of myeloid inhibitory
cells (MDSC) and promotes the stability of MDSC. The inhibition of ENTPD2 expression
can reduce cancer growth and improve the effectiveness of immune checkpoint inhibitors
(Chiu et al., 2017). HK3 is a very well-known glycolysis gene whose overexpression could
be linked to hypoxia-induced upregulation of glycolysis and improvement in breast cancer
cell survival (Jarrar et al., 2020). The pre-expression of HK3 is related to the epithelial-
mesenchymal transition in colorectal cancer (CRC) and maybe a strategic metabolic
gene for rapid proliferation, survival, and metastasis of CRC cells (Pudova et al., 2018).
Besides, HK3 is associated with a CpG island methylated phenotype (CIMP) in colon
adenocarcinoma (COAD). The upregulation of HK3 was reported in CIMP-high tumours
compared to non-CIMP ones. HK3 can serve as a biomarker of high CIMP status in
COAD (Fedorova et al., 2019). CHPT1 is considered to be a direct oestrogen receptor
α-regulatory gene and is necessary for oestrogen-induced choline metabolism. CHPT1
mediates metabolic changes in breast cancer cells, and silencing CHPT1 can inhibit breast
cancer cell proliferation and early metastasis of tamoxifen-resistant breast cancer cells,
suggesting that CHPT1 is a treatment target for cancers (Fedorova et al., 2019; Jia et al.,
2016). CTPS2 had a profound effect on osteosarcoma metastasis (Fan et al., 2019) and
also participated in the primary immunodeficiency of herpes virus susceptible populations
(Verzegnassi et al., 2018). LowCTPS2 expressionmay be the underlying determinant of 5FU
resistance (Tan et al., 2011). ADCY9 regulates signalling pathways mainly by producing
a second messenger cyclic adenosine monophosphate. Some research found that ADCY9
acts as a key gene in the cisplatin response regulatory network in the pro-apoptotic stage in
breast cancer treatment (Fallahi & Godini, 2019), and overexpression of ADCY9 is a poor
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prognostic marker for disease-free survival in colon cancer (Yi et al., 2018). The above
studies provided us with directions for studying these six genes in LUAD.

In addition to the above genes, many metabolic-related genes that were linked to the
prognosis of the LUADwere included in seventeen additional genes, such as ALDH2, PKM,
LDHA, and SMS. First, some of them, such as INPP4B, ALDOA, ALDH2, and LDHA, are
significantly involved in LUAD suppression. INPP4B is regarded as a tumour suppressor of
LC because it regulates the level of 3-phosphorylated phosphoinositide at the cellular level
and activates phosphoinositide in PTEN-deficient cells (Vo & Fruman, 2015). ALDOA is
a critical enzyme involved in metabolic reprogramming and metastasis of NSCLC that
increases the ability of LC cells to migrate and invade by interacting with γ -actin. Blocking
this interaction could be an effective cancer treatment (Chang et al., 2019). The expression
level of ALDH2 was substantially correlated with a poor prognosis in LUAD (Chen et
al., 2018). The principal role of ALDH2 is detoxifying acetaldehyde (ACE) to non-toxic
acetic acid. ALDH2 inhibition leads to the accumulation of ACE, which enhances the
migration of LUAD cells by damaging DNA. Therefore, activating ALDH2 could provide a
novel strategy for treating LUAD (Li et al., 2019). LDHA is an essential enzyme for glucose
metabolism. It can inhibit the expression of HIF-1 α and its downstream gene GLUT1
and thus inhibit the growth of NSCLC cells (Massari et al., 2016). Some additional genes
are associate with tumour treatment tolerance. For example, low expression of MOBA
inhibits the NF- κB signalling pathway, leading to NSCLC radioresistance (Son et al.,
2016). In another study, silencing TYMS increased the sensitivity of NSCLC tumour cells
to pemetrexed (Agulló-Ortuño et al., 2020). In addition, several metabolic genes have also
been confirmed to be closely related to the occurrence of LC and have provided some
novel research directions. For instance, B4GALT1 is related to aberrant gene promoter
methylation and maintains the stemness of LC stem cells (Zhang, Zhang & Yu, 2019). SMS
participates in the lymphatic metastasis of LUAD (Lemay et al., 2019).

Compared to other studies, we first used metabolic-related genes to build a prognosis
model fromTCGA-LUADand validated it in twoGEOdatasets. Our gene signature also had
a better prediction ability compared to the other model. This risk model perhaps provides
potential biomarkers for studying the relationship of metabolic microenvironmental
diseases, metabolic therapies, and therapeutic responses. The risk model and TNM model
were used to build the nomogram, and the calibration plot, C-index, ROC analysis validated
the clinical application of the twenty-three metabolic-related gene signature, which may
be helpful for the diagnosis, treatment, and prognosis of LUAD.

However, there are still some limitations in our study: first, the connection between 23
metabolic gene markers and the metabolic microenvironment needs to be verified by basic
experiments. Secondly, a large number of clinical samples are lacking to verify whether
the prognostic effect of metabolic therapy is related to its metabolic microenvironment.
Basic and clinical trials will need to continue in the future to explore this relationship.
Besides, some prognostic metabolic genes may not meet the screening criteria and were
not included when constructing the prognostic signature, which could also lead to the
development and progression of LUAD. Based on the above factors, the application of risk
score to the clinic remains a huge challenge
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CONCLUSION
In conclusion, our research identified a 23 metabolic-related gene signature for LUAD
patient prognosis based on the TCGA data set. Our signature provides potential biomarkers
for studying aspects of metabolic microenvironmental diseases, metabolic therapies, and
therapeutic responses. However, it is still urgent to further investigate the relationship
between metabolic microenvironment and metabolic therapy, and more functional
experiments are required for revealing the mechanism of metabolic genes in the process of
LUAD development.
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